1
|
Hussain A, Brooks III CL. Guiding discovery of protein sequence-structure-function modeling. Bioinformatics 2024; 40:btae002. [PMID: 38195719 PMCID: PMC10789314 DOI: 10.1093/bioinformatics/btae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/05/2023] [Accepted: 01/08/2024] [Indexed: 01/11/2024] Open
Abstract
MOTIVATION Protein engineering techniques are key in designing novel catalysts for a wide range of reactions. Although approaches vary in their exploration of the sequence-structure-function paradigm, they are often hampered by the labor-intensive steps of protein expression and screening. In this work, we describe the development and testing of a high-throughput in silico sequence-structure-function pipeline using AlphaFold2 and fast Fourier transform docking that is benchmarked with enantioselectivity and reactivity predictions for an ancestral sequence library of fungal flavin-dependent monooxygenases. RESULTS The predicted enantioselectivities and reactivities correlate well with previously described screens of an experimentally available subset of these proteins and capture known changes in enantioselectivity across the phylogenetic tree representing ancestorial proteins from this family. With this pipeline established as our functional screen, we apply ensemble decision tree models and explainable AI techniques to build sequence-function models and extract critical residues within the binding site and the second-sphere residues around this site. We demonstrate that the top-identified key residues in the control of enantioselectivity and reactivity correspond to experimentally verified residues. The in silico sequence-to-function pipeline serves as an accelerated framework to inform protein engineering efforts from vast informative sequence landscapes contained in protein families, ancestral resurrects, and directed evolution campaigns. AVAILABILITY Jupyter notebooks detailing the sequence-structure-function pipeline are available at https://github.com/BrooksResearchGroup-UM/seq_struct_func.
Collapse
Affiliation(s)
- Azam Hussain
- Department of Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, MI 48109-1055, United States
| | - Charles L Brooks III
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, United States
| |
Collapse
|
2
|
Bučko M, Kaniaková K, Hronská H, Gemeiner P, Rosenberg M. Epoxide Hydrolases: Multipotential Biocatalysts. Int J Mol Sci 2023; 24:7334. [PMID: 37108499 PMCID: PMC10138715 DOI: 10.3390/ijms24087334] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Epoxide hydrolases are attractive and industrially important biocatalysts. They can catalyze the enantioselective hydrolysis of epoxides to the corresponding diols as chiral building blocks for bioactive compounds and drugs. In this review article, we discuss the state of the art and development potential of epoxide hydrolases as biocatalysts based on the most recent approaches and techniques. The review covers new approaches to discover epoxide hydrolases using genome mining and enzyme metagenomics, as well as improving enzyme activity, enantioselectivity, enantioconvergence, and thermostability by directed evolution and a rational design. Further improvements in operational and storage stabilization, reusability, pH stabilization, and thermal stabilization by immobilization techniques are discussed in this study. New possibilities for expanding the synthetic capabilities of epoxide hydrolases by their involvement in non-natural enzyme cascade reactions are described.
Collapse
Affiliation(s)
- Marek Bučko
- Department of Glycobiotechnology, Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia;
| | - Katarína Kaniaková
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (K.K.); (H.H.); (M.R.)
| | - Helena Hronská
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (K.K.); (H.H.); (M.R.)
| | - Peter Gemeiner
- Department of Glycobiotechnology, Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia;
| | - Michal Rosenberg
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (K.K.); (H.H.); (M.R.)
| |
Collapse
|
3
|
Gabaston J, Buffeteau T, Irvine AD, Gambetta G, Mérillon JM, Waffo-Téguo P. Chiral analysis of E-ε-viniferin enantiomers, towards a new chemotaxonomic marker of the vine. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2295-2303. [PMID: 36636878 DOI: 10.1002/jsfa.12444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND The accurate characterization of grapevine cultivars (Vitis vinifera) is crucial for grape growers, winemakers, wine sellers, consumers and authorities, considering that mistakes could involve significant damage to the wine economic system. To avoid any misunderstanding, morphological, molecular and chemical tools are developed to positively identify grape varieties. RESULTS E-ε-viniferin is a stilbene dimer mainly present in the woody part of grapevine and present as a mixture of two enantiomers: (7aR, 8aR)-(-)-E-ε-viniferin (1) and (7aS, 8aS)-(+)-E-ε-viniferin (2). In addition to phenotypic and genotypic approaches, a chemotaxonomic method using E-ε-viniferin enantiomers as chemical markers of grapevine cultivars was investigated. The isolation and purification of E-ε-viniferin enantiomers by preparative high-performance liquid chromatography (HPLC) and chiral HPLC from 14 red and eight white grapevine cane cultivars enabled us to determine the proportion of each enantiomer and therefore to calculate the enantiomeric excess for each variety. The relative abundance of each E-ε-viniferin enantiomer permitted us to distinguish grape varieties, as well as to establish cultivar relationships and patterns through statistical analysis. CONCLUSION This pioneering work highlighting the enantiomeric excess of E-ε-viniferin as a chemical marker of grapevine paves the way for further studies to understand what mechanisms are involved in the production of these enantiomers in grapevine. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Julien Gabaston
- Unité de Recherche Œnologie, UMR 1366 INRAE, ISVV, Université de Bordeaux, Bordeaux, France
| | - Thierry Buffeteau
- Université Bordeaux, Institut des Sciences Moléculaires, Talence, France
| | | | | | - Jean-Michel Mérillon
- Unité de Recherche Œnologie, UMR 1366 INRAE, ISVV, Université de Bordeaux, Bordeaux, France
| | - Pierre Waffo-Téguo
- Unité de Recherche Œnologie, UMR 1366 INRAE, ISVV, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
4
|
Ashworth MA, Bombino E, de Jong RM, Wijma HJ, Janssen DB, McLean KJ, Munro AW. Computation-Aided Engineering of Cytochrome P450 for the Production of Pravastatin. ACS Catal 2022; 12:15028-15044. [PMID: 36570080 PMCID: PMC9764288 DOI: 10.1021/acscatal.2c03974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/22/2022] [Indexed: 11/29/2022]
Abstract
CYP105AS1 is a cytochrome P450 from Amycolatopsis orientalis that catalyzes monooxygenation of compactin to 6-epi-pravastatin. For fermentative production of the cholesterol-lowering drug pravastatin, the stereoselectivity of the enzyme needs to be inverted, which has been partially achieved by error-prone PCR mutagenesis and screening. In the current study, we report further optimization of the stereoselectivity by a computationally aided approach. Using the CoupledMoves protocol of Rosetta, a virtual library of mutants was designed to bind compactin in a pro-pravastatin orientation. By examining the frequency of occurrence of beneficial substitutions and rational inspection of their interactions, a small set of eight mutants was predicted to show the desired selectivity and these variants were tested experimentally. The best CYP105AS1 variant gave >99% stereoselective hydroxylation of compactin to pravastatin, with complete elimination of the unwanted 6-epi-pravastatin diastereomer. The enzyme-substrate complexes were also examined by ultrashort molecular dynamics simulations of 50 × 100 ps and 5 × 22 ns, which revealed that the frequency of occurrence of near-attack conformations agreed with the experimentally observed stereoselectivity. These results show that a combination of computational methods and rational inspection could improve CYP105AS1 stereoselectivity beyond what was obtained by directed evolution. Moreover, the work lays out a general in silico framework for specificity engineering of enzymes of known structure.
Collapse
Affiliation(s)
- Mark A. Ashworth
- Manchester
Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Elvira Bombino
- Department
of Biochemistry, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 4, Groningen 9747 AG, Netherlands
| | - René M. de Jong
- DSM
Food & Beverage, Alexander Fleminglaan 1, 2613 AX Delft, the Netherlands
| | - Hein J. Wijma
- Department
of Biochemistry, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 4, Groningen 9747 AG, Netherlands
| | - Dick B. Janssen
- Department
of Biochemistry, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 4, Groningen 9747 AG, Netherlands,
| | - Kirsty J. McLean
- Manchester
Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester M1 7DN, United Kingdom,Department
of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, United Kingdom
| | - Andrew W. Munro
- Manchester
Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester M1 7DN, United Kingdom
| |
Collapse
|
5
|
Reetz M. Making Enzymes Suitable for Organic Chemistry by Rational Protein Design. Chembiochem 2022; 23:e202200049. [PMID: 35389556 PMCID: PMC9401064 DOI: 10.1002/cbic.202200049] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/07/2022] [Indexed: 11/25/2022]
Abstract
This review outlines recent developments in protein engineering of stereo- and regioselective enzymes, which are of prime interest in organic and pharmaceutical chemistry as well as biotechnology. The widespread application of enzymes was hampered for decades due to limited enantio-, diastereo- and regioselectivity, which was the reason why most organic chemists were not interested in biocatalysis. This attitude began to change with the advent of semi-rational directed evolution methods based on focused saturation mutagenesis at sites lining the binding pocket. Screening constitutes the labor-intensive step (bottleneck), which is the reason why various research groups are continuing to develop techniques for the generation of small and smart mutant libraries. Rational enzyme design, traditionally an alternative to directed evolution, provides small collections of mutants which require minimal screening. This approach first focused on thermostabilization, and did not enter the field of stereoselectivity until later. Computational guides such as the Rosetta algorithms, HotSpot Wizard metric, and machine learning (ML) contribute significantly to decision making. The newest advancements show that semi-rational directed evolution such as CAST/ISM and rational enzyme design no longer develop on separate tracks, instead, they have started to merge. Indeed, researchers utilizing the two approaches have learned from each other. Today, the toolbox of organic chemists includes enzymes, primarily because the possibility of controlling stereoselectivity by protein engineering has ensured reliability when facing synthetic challenges. This review was also written with the hope that undergraduate and graduate education will include enzymes more so than in the past.
Collapse
Affiliation(s)
- Manfred Reetz
- Max-Planck-Institut fur KohlenforschungMülheim an der RuhrGermany
| |
Collapse
|
6
|
Ramírez-Palacios C, Wijma HJ, Thallmair S, Marrink SJ, Janssen DB. Computational Prediction of ω-Transaminase Specificity by a Combination of Docking and Molecular Dynamics Simulations. J Chem Inf Model 2021; 61:5569-5580. [PMID: 34653331 PMCID: PMC8611723 DOI: 10.1021/acs.jcim.1c00617] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ω-Transaminases (ω-TAs) catalyze the conversion of ketones to chiral amines, often with high enantioselectivity and specificity, which makes them attractive for industrial production of chiral amines. Tailoring ω-TAs to accept non-natural substrates is necessary because of their limited substrate range. We present a computational protocol for predicting the enantioselectivity and catalytic selectivity of an ω-TA from Vibrio fluvialis with different substrates and benchmark it against 62 compounds gathered from the literature. Rosetta-generated complexes containing an external aldimine intermediate of the transamination reaction are used as starting conformations for multiple short independent molecular dynamics (MD) simulations. The combination of molecular docking and MD simulations ensures sufficient and accurate sampling of the relevant conformational space. Based on the frequency of near-attack conformations observed during the MD trajectories, enantioselectivities can be quantitatively predicted. The predicted enantioselectivities are in agreement with a benchmark dataset of experimentally determined ee% values. The substrate-range predictions can be based on the docking score of the external aldimine intermediate. The low computational cost required to run the presented framework makes it feasible for use in enzyme design to screen thousands of enzyme variants.
Collapse
Affiliation(s)
- Carlos Ramírez-Palacios
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Molecular Dynamics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Hein J Wijma
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Sebastian Thallmair
- Molecular Dynamics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.,Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main, Germany
| | - Siewert J Marrink
- Molecular Dynamics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Dick B Janssen
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
7
|
Kawabata H, Miyake R, Asada K, Dekishima Y, Miyaike M, Kato R. Asymmetric synthesis of intermediate for (1R,2S)-ethyl 1-amino-2-vinylcyclopropanecarboxylate by desymmetrization using engineered esterase from Bacillus subtilis. J Biosci Bioeng 2021; 131:599-604. [PMID: 33744099 DOI: 10.1016/j.jbiosc.2021.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/08/2021] [Accepted: 02/14/2021] [Indexed: 01/04/2023]
Abstract
(1R,2S)-Ethyl 1-amino-2-vinylcyclopropanecarboxylate (VCPA), is a key intermediate for anti-hepatitis C virus drugs. In this study, we developed an efficient manufacturing method of intermediate for (1R,2S)-VCPA by enzymatic desymmetrization of a malonate diester derivative. In synthesis scheme of VCPA (1S,2S)-1-(ethoxycarbonyl)-2-vinylcyclopropanecarboxylic acid (VCPME) is the monoester intermediate, which is converted from 2-vinylcyclopropane-1,1-dicarboxylate diethyl ester (VCPDE). As a result of esterase screening for producing (1S,2S)-VCPME from VCPDE by enzymatic desymmetrization, p-nitrobenzyl esterase from Bacillus subtilis NBRC3027 (PNBE3027) showed high enantioselectivity (more than 90% e.e.). Based on the homology model of PNBE3027, a library of mutants with the substitution of L70, L270, L273, and L313 in substrate-binding pocket was created for improvement in enantioselectivity. (1S,2S)-VCPME produced by the best variant harboring L70D, L270Q, L273R, and L313M showed 98.9% e.e. of enanthiopurity. Furthermore, preparative scale production of (1S,2S)-VCPME using the quadruple mutant was achieved. Our investigations present a new efficient process for (1R,2S)-VCPA using esterase and diverse to be applied for the industrial scale production.
Collapse
Affiliation(s)
- Hiroshi Kawabata
- Mitsubishi Chemical Corporation, Yokohama R&D Center, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-8502, Japan; API Corporation, 13-4 Uchikanda 1-chome, Chiyoda-ku, Tokyo 101-0047, Japan
| | - Ryoma Miyake
- Mitsubishi Chemical Corporation, Yokohama R&D Center, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-8502, Japan.
| | - Kuniko Asada
- Mitsubishi Chemical Corporation, Yokohama R&D Center, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-8502, Japan
| | - Yasumasa Dekishima
- Mitsubishi Chemical Corporation, Yokohama R&D Center, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-8502, Japan
| | - Mitsuko Miyaike
- Mitsubishi Chemical Corporation, Yokohama R&D Center, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-8502, Japan
| | - Ryohei Kato
- Mitsubishi Chemical Corporation, Yokohama R&D Center, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-8502, Japan
| |
Collapse
|
8
|
Qin L, Wu L, Nie Y, Xu Y. Biosynthesis of chiral cyclic and heterocyclic alcohols via CO/C–H/C–O asymmetric reactions. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00113b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review covers the recent progress in various biological approaches applied to the synthesis of enantiomerically pure cyclic and heterocyclic alcohols through CO/C–H/C–O asymmetric reactions.
Collapse
Affiliation(s)
- Lei Qin
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
| | - Lunjie Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
| | - Yao Nie
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
- International Joint Research Laboratory for Brewing Microbiology and Applied Enzymology at Jiangnan University
| | - Yan Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
- International Joint Research Laboratory for Brewing Microbiology and Applied Enzymology at Jiangnan University
| |
Collapse
|
9
|
Arabnejad H, Bombino E, Colpa DI, Jekel PA, Trajkovic M, Wijma HJ, Janssen DB. Computational Design of Enantiocomplementary Epoxide Hydrolases for Asymmetric Synthesis of Aliphatic and Aromatic Diols. Chembiochem 2020; 21:1893-1904. [PMID: 31961471 PMCID: PMC7383614 DOI: 10.1002/cbic.201900726] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/16/2020] [Indexed: 12/13/2022]
Abstract
The use of enzymes in preparative biocatalysis often requires tailoring enzyme selectivity by protein engineering. Herein we explore the use of computational library design and molecular dynamics simulations to create variants of limonene epoxide hydrolase that produce enantiomeric diols from meso‐epoxides. Three substrates of different sizes were targeted: cis‐2,3‐butene oxide, cyclopentene oxide, and cis‐stilbene oxide. Most of the 28 designs tested were active and showed the predicted enantioselectivity. Excellent enantioselectivities were obtained for the bulky substrate cis‐stilbene oxide, and enantiocomplementary mutants produced (S,S)‐ and (R,R)‐stilbene diol with >97 % enantiomeric excess. An (R,R)‐selective mutant was used to prepare (R,R)‐stilbene diol with high enantiopurity (98 % conversion into diol, >99 % ee). Some variants displayed higher catalytic rates (kcat) than the original enzyme, but in most cases KM values increased as well. The results demonstrate the feasibility of computational design and screening to engineer enantioselective epoxide hydrolase variants with very limited laboratory screening.
Collapse
Affiliation(s)
- Hesam Arabnejad
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Elvira Bombino
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Dana I. Colpa
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Peter A. Jekel
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Milos Trajkovic
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Hein J. Wijma
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Dick B. Janssen
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| |
Collapse
|
10
|
Hu B, Hu D, Zhang D, Wen Z, Zang J, Wu M. Manipulating the regioselectivity of a Solanum lycopersicum epoxide hydrolase for the enantioconvergent synthesis of enantiopure alkane- and alkene-1,2-diols. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00990c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This work engineered a superior double-site mutant SlEH1W106T/F189L used for the enantioconvergent biosynthesis of (R)-1b–6b with high eep values.
Collapse
Affiliation(s)
- Bochun Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| | - Die Hu
- Wuxi School of Medicine
- Jiangnan University
- Wuxi 214122
- China
| | - Dong Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| | - Zheng Wen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| | - Jia Zang
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University
- Wuxi 214002
- China
| | - Minchen Wu
- Wuxi School of Medicine
- Jiangnan University
- Wuxi 214122
- China
| |
Collapse
|