1
|
Yang J, Jiang Q, Chen Y, Wen Q, Ge X, Zhu Q, Zhao W, Adegbite O, Yang H, Luo L, Qu H, Del-Angel-Hernandez V, Clowes R, Gao J, Little MA, Cooper AI, Liu LN. Light-Driven Hybrid Nanoreactor Harnessing the Synergy of Carboxysomes and Organic Frameworks for Efficient Hydrogen Production. ACS Catal 2024; 14:18603-18614. [PMID: 39722887 PMCID: PMC11667666 DOI: 10.1021/acscatal.4c03672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 12/28/2024]
Abstract
Synthetic photobiocatalysts are promising catalysts for valuable chemical transformations by harnessing solar energy inspired by natural photosynthesis. However, the synergistic integration of all of the components for efficient light harvesting, cascade electron transfer, and efficient biocatalytic reactions presents a formidable challenge. In particular, replicating intricate multiscale hierarchical assembly and functional segregation involved in natural photosystems, such as photosystems I and II, remains particularly demanding within artificial structures. Here, we report the bottom-up construction of a visible-light-driven chemical-biological hybrid nanoreactor with augmented photocatalytic efficiency by anchoring an α-carboxysome shell encasing [FeFe]-hydrogenases (H-S) on the surface of a hydrogen-bonded organic molecular crystal, a microporous α-polymorph of 1,3,6,8-tetra(4'-carboxyphenyl)pyrene (TBAP-α). The self-association of this chemical-biological hybrid system is facilitated by hydrogen bonds, as revealed by molecular dynamics simulations. Within this hybrid photobiocatalyst, TBAP-α functions as an antenna for visible-light absorption and exciton generation, supplying electrons for sacrificial hydrogen production by H-S in aqueous solutions. This coordination allows the hybrid nanoreactor, H-S|TBAP-α, to execute hydrogen evolution exclusively driven by light irradiation with a rate comparable to that of photocatalyst-loaded precious cocatalyst. The established approach to constructing new light-driven biocatalysts combines the synergistic power of biological nanotechnology with the multilength-scale structure and functional control offered by supramolecular organic semiconductors. It opens up innovative opportunities for the fabrication of biomimetic nanoreactors for sustainable fuel production and enzymatic reactions.
Collapse
Affiliation(s)
- Jing Yang
- Materials
Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool L7 3NY, U.K.
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K.
| | - Qiuyao Jiang
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K.
| | - Yu Chen
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K.
| | - Quan Wen
- Hubei
Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Xingwu Ge
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K.
| | - Qiang Zhu
- Materials
Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool L7 3NY, U.K.
| | - Wei Zhao
- Materials
Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool L7 3NY, U.K.
| | - Oluwatobi Adegbite
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K.
| | - Haofan Yang
- Materials
Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool L7 3NY, U.K.
| | - Liang Luo
- Materials
Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool L7 3NY, U.K.
| | - Hang Qu
- Materials
Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool L7 3NY, U.K.
| | | | - Rob Clowes
- Materials
Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool L7 3NY, U.K.
| | - Jun Gao
- Hubei
Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Marc A. Little
- Materials
Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool L7 3NY, U.K.
- Institute
of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K.
| | - Andrew I. Cooper
- Materials
Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool L7 3NY, U.K.
| | - Lu-Ning Liu
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K.
- College
of Marine Life Sciences and Frontiers Science Center for Deep Ocean
Multispheres and Earth System, Ocean University
of China, Qingdao 266003, China
| |
Collapse
|
2
|
Wei D, Xu S, Wang X, Wu W, Liu Z, Wu X, Yang J, Xu Y, Li Y, Luo Y. Photoinduced electron transfer enables cytochrome P450 enzyme-catalyzed reaction cycling. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 219:109412. [PMID: 39708699 DOI: 10.1016/j.plaphy.2024.109412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/08/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Cytochrome P450 enzymes (CYPs), the members of the largest superfamily of enzymes in plant kingdom, catalyze a variety of functional group transformations involved in metabolite biosynthesis, end-product derivatization, and exogeneous molecule detoxification. Nevertheless, CYPs' functional characterization and practically industrial application have been largely encumbered by their critical dependency on the reducing equivalent for the catalytic cycling, driven by the tedious electron relay mediated by CYP reductase (CPR). Here, we report a photoinduced electron transfer system that initiates and sustains the CYP-catalyzed reaction cycling. Using Camptotheca acuminata CYP72A565-catalyzed carbon-carbon cleavage reaction, a key biosynthetic reaction in the biosynthesis of plant-derived antitumor monoterpene indole alkaloid camptothecin, as a representative CYP-catalyzed reaction model, we identified eosin Y (EY) and triethanolamine (TEOA) as an efficient photosensitizer/sacrificial reagent pair for the photoinduced electron generating system. The C. acuminata camptothecin 10-hydroxylase-catalyzed regioselective C10-hydroxylation of camptothecin into 10-hydroxycamptothecin could be enabled by the photoinduced electron transfer system, demonstrating that the EY/TEOA pair serves as an efficient surrogate for membranous CPR and can be expanded to other CYP-catalyzed reaction cycling. The catalytic efficiency of the photoinduced electron transfer-driven CYP-catalyzed cycling exceeds that of the native NADPH-dependent CPR-supported CYP-catalyzed reaction, thereby circumventing the dependency on both NADPH and the reductase CPR. The present study provides a photoinduced electron generating and transferring system as an efficient and facile alternative to membranous NADPH-dependent CPR, offering a new avenue for CYP-mediated conversion of complex bioactive natural products using synthetic biology approaches.
Collapse
Affiliation(s)
- Daijing Wei
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuangyu Xu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuefei Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenlin Wu
- Chengdu Institute of Food Inspection, Chengdu, 611130, China
| | - Zhan Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xudong Wu
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin, 644000, China
| | - Jing Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Xu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yinggang Luo
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China.
| |
Collapse
|
3
|
Moniruzzaman M, Afrin S, Hossain S, Yoon KS. A Comprehensive Review of CO 2 Hydrogenation into Formate/Formic Acid Catalyzed by Whole Cell Bacteria. Chem Asian J 2024; 19:e202400468. [PMID: 39080499 DOI: 10.1002/asia.202400468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/21/2024] [Indexed: 10/23/2024]
Abstract
The increasing levels of carbon dioxide (CO2) in the atmosphere, primarily due to the use of fossil fuels, pose a significant threat to the environment and necessitate urgent action to mitigate climate change. Carbon capture and utilization technologies that can convert CO2 into economically valuable compounds have gained attention as potential solutions. Among these technologies, biocatalytic CO2 hydrogenation using bacterial whole cells shows promise for the efficient conversion of CO2 into formate, a valuable chemical compound. Although it was discovered nearly a century ago, comprehensive reviews focusing on the utilization of whole-cell bacteria as the biocatalyst in this area remain relatively limited. Therefore, this review provides an analysis of the progress, strategies, and key findings in this field. It covers the use of living cells, resting cells, or genetically modified bacteria as biocatalysts to convert CO2 into formate, either naturally or with the integration of electrochemical and protochemical techniques as sources of protons and electrons. By consolidating the current knowledge in this field, this review article aims to serve as a valuable resource for researchers and practitioners interested in understanding the recent progress, challenges, and potential applications of bacterial whole cell catalyzed CO2 hydrogenation into formate.
Collapse
Affiliation(s)
- Mohammad Moniruzzaman
- Mitsui Chemicals, Inc. Carbon Neutral Research Center (MCI-CNRC), International Institution for Carbon-Neutral Energy Research (I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Sadia Afrin
- Department of Chemistry, University of South Dakota, 414 E, Clark Street, Vermillion, SD, 57069, USA
| | - Saddam Hossain
- Department of Chemistry, Khulna University of Engineering and Technology, Khulna, 9203, Bangladesh
| | - Ki-Seok Yoon
- Mitsui Chemicals, Inc. Carbon Neutral Research Center (MCI-CNRC), International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
4
|
Zheng CC, Gao L, Sun H, Zhao XY, Gao ZQ, Liu J, Guo W. Advancements in enzymatic reaction-mediated microbial transformation. Heliyon 2024; 10:e38187. [PMID: 39430465 PMCID: PMC11489147 DOI: 10.1016/j.heliyon.2024.e38187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024] Open
Abstract
Enzymatic reaction-mediated microbial transformation has emerged as a promising technology with significant potential in various industries. These technologies offer the ability to produce enzymes on a large scale, optimize their functionality, and enable sustainable production processes. By utilizing microbial hosts and manipulating their genetic makeup, enzymes can be synthesized efficiently and tailored to meet specific industrial requirements. This leads to enhanced enzyme performance and selectivity, facilitating the development of novel processes and the production of valuable compounds. Moreover, microbial transformation and biosynthesis offer sustainable alternatives to traditional chemical methods, reducing environmental impact and promoting greener production practices. Microbial transformations enrich drug candidate diversity and enhance active ingredient potency, benefiting the pharmaceutical industry. Continued advancements in genetic engineering and bioprocess optimization drive further innovation and application development in Enzymatic reaction-mediated microbial transformation. The integration of AI for predicting enzymatic reactions and optimizing pathways marks a promising direction for future research. In summary, these technologies have the potential to revolutionize several industries by providing cost-effective, sustainable solutions.
Collapse
Affiliation(s)
| | - Liang Gao
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Hao Sun
- Beijing Lu-he Hospital, Capital Medical University, Beijing, China
| | - Xin-Yu Zhao
- Beijing Lu-he Hospital, Capital Medical University, Beijing, China
| | - Zhu-qing Gao
- Beijing Ji-shui-tan Hospital, Capital Medical University, Beijing, China
| | - Jie Liu
- The affiliated Jiang-ning Hospital of Nanjing Medical University, Jiangsu, China
| | - Wei Guo
- Aviation General Hospital, Beijing, 100012, China
| |
Collapse
|
5
|
Sheldon RA. Waste Valorization in a Sustainable Bio-Based Economy: The Road to Carbon Neutrality. Chemistry 2024; 30:e202402207. [PMID: 39240026 DOI: 10.1002/chem.202402207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Indexed: 09/07/2024]
Abstract
The development of sustainable chemistry underlying the quest to minimize and/or valorize waste in the carbon-neutral manufacture of chemicals is followed over the last four to five decades. Both chemo- and biocatalysis have played an indispensable role in this odyssey. in particular developments in protein engineering, metagenomics and bioinformatics over the preceding three decades have played a crucial supporting role in facilitating the widespread application of both whole cell and cell-free biocatalysis. The pressing need, driven by climate change mitigation, for a drastic reduction in greenhouse gas (GHG) emissions, has precipitated an energy transition based on decarbonization of energy and defossilization of organic chemicals production. The latter involves waste biomass and/or waste CO2 as the feedstock and green electricity generated using solar, wind, hydroelectric or nuclear energy. The use of waste polysaccharides as feedstocks will underpin a renaissance in carbohydrate chemistry with pentoses and hexoses as base chemicals and bio-based solvents and polymers as environmentally friendly downstream products. The widespread availability of inexpensive electricity and solar energy has led to increasing attention for electro(bio)catalysis and photo(bio)catalysis which in turn is leading to myriad innovations in these fields.
Collapse
Affiliation(s)
- Roger A Sheldon
- Department of Biotechnology, Delft University of Technology, Netherlands
- Department of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
6
|
Carceller JM, Arias KS, Climent MJ, Iborra S, Corma A. One-pot chemo- and photo-enzymatic linear cascade processes. Chem Soc Rev 2024; 53:7875-7938. [PMID: 38965865 DOI: 10.1039/d3cs00595j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The combination of chemo- and photocatalyses with biocatalysis, which couples the flexible reactivity of the photo- and chemocatalysts with the highly selective and environmentally friendly nature of enzymes in one-pot linear cascades, represents a powerful tool in organic synthesis. However, the combination of photo-, chemo- and biocatalysts in one-pot is challenging because the optimal operating conditions of the involved catalyst types may be rather different, and the different stabilities of catalysts and their mutual deactivation are additional problems often encountered in one-pot cascade processes. This review explores a large number of transformations and approaches adopted for combining enzymes and chemo- and photocatalytic processes in a successful way to achieve valuable chemicals and valorisation of biomass. Moreover, the strategies for solving incompatibility issues in chemo-enzymatic reactions are analysed, introducing recent examples of the application of non-conventional solvents, enzyme-metal hybrid catalysts, and spatial compartmentalization strategies to implement chemo-enzymatic cascade processes.
Collapse
Affiliation(s)
- J M Carceller
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - K S Arias
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - M J Climent
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - S Iborra
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - A Corma
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| |
Collapse
|
7
|
Zhang T, Li K, Cheung YH, Grinstaff MW, Liu P. Photo-reduction facilitated stachydrine oxidative N-demethylation reaction: A case study of Rieske non-heme iron oxygenase Stc2 from Sinorhizobium meliloti. Methods Enzymol 2024; 703:263-297. [PMID: 39260999 DOI: 10.1016/bs.mie.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Rieske-type non-heme iron oxygenases (ROs) are an important family of non-heme iron enzymes. They catalyze a diverse range of transformations in secondary metabolite biosynthesis and xenobiotic bioremediation. ROs typically shuttle electrons from NAD(P)H to the oxygenase component via reductase component(s). This chapter describes our recent biochemical characterization of stachydrine demethylase Stc2 from Sinorhizobium meliloti. In this work, the eosin Y/sodium sulfite pair serves as the photoreduction system to replace the NAD(P)H-reductase system. We describe Stc2 protein purification and quality control details as well as a flow-chemistry to separate the photo-reduction half-reaction and the oxidation half-reaction. Our study demonstrates that the eosin Y/sodium sulfite photo-reduction pair is a NAD(P)H-reductase surrogate for Stc2-catalysis in a flow-chemistry setting. Experimental protocols used in this light-driven Stc2 catalysis are likely to be applicable as a photo-reduction system for other redox enzymes.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Chemistry, Boston University, Boston, MA, United States
| | - Kelin Li
- Department of Chemistry, Boston University, Boston, MA, United States
| | - Yuk Hei Cheung
- Department of Chemistry, Boston University, Boston, MA, United States
| | - Mark W Grinstaff
- Department of Chemistry, Boston University, Boston, MA, United States
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, MA, United States.
| |
Collapse
|
8
|
Qiao S, Jin H, Zuo A, Chen Y. Integration of Enzyme and Covalent Organic Frameworks: From Rational Design to Applications. Acc Chem Res 2024; 57:93-105. [PMID: 38105494 DOI: 10.1021/acs.accounts.3c00565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Manufacturing is undergoing profound transformations, among which green biomanufacturing with low energy consumption, high efficiency, and sustainability is becoming one of the major trends. However, enzymes, as the "core chip" of biomanufacturing, are often handicapped in their application by their high cost, low operational stability, and nonreusability. Immobilization of enzymes is a technology that binds or restricts enzymes in a certain area with solid materials, allows them to still carry out their unique catalytic reaction, and allows them to be recycled and reused. Compared with free enzymes, immobilized enzymes boast numerous advantages such as enhanced storage stability, ease of separation, reusability, and controlled operation. Currently, commonly used supports for enzyme immobilization (e.g., mesoporous silica, sol-gel hydrogels, and porous polymer) can effectively improve enzyme stability and reduce product inhibition. However, they still face drawbacks such as potential leaching or conformational change during immobilization and poor machining performance. Especially, most enzyme carrier solid materials possess disordered structures, inevitably introducing deficiencies such as low loading capacity, hindered mass transfer, and unclear structure-property relationships. Additionally, it remains a notable challenge to meticulously design immobilization systems tailored to the specific characteristics of enzyme/reaction. Therefore, there is a significant demand for reliable solid materials to overcome the above challenges. Crystalline porous materials, particularly covalent organic frameworks (COFs), have garnered significant interest as a promising platform for immobilizing enzymes due to their unique properties, such as their crystalline nature, high porosity, accessible active sites, versatile synthetic conditions, and tunable structure. COFs create a stabilizing microenvironment that protects enzymes from denaturation and significantly enhances reusability. Nevertheless, some challenges still remain, including difficulties in loading large enzymes, reduced enzyme activities, and the limited functionality of carriers. Therefore, it is essential to develop innovative carriers and novel strategies to broaden the methods of immobilizing enzymes, enabling their application across a more diverse array of fields.The integration of enzymes with advanced porous materials for intensified performance and diverse applications is still in its infancy, and our group has done a series of pioneering works. This Account presents a comprehensive overview of recent research progress made by our group, including (i) the development of innovative enzyme immobilization strategies utilizing COFs to make the assembly and integration of enzymes and carriers more effective; (ii) rational design and construction of functional carriers for enzyme immobilization using COFs; and (iii) extensions of immobilized enzyme applications based on COFs from industrial catalysis to biomedicine and chiral separation. The integration of enzymes with functional crystalline materials offers mutual benefits and results in a performance that surpasses what either component can achieve individually. Additionally, immobilized enzymes exhibit enhanced functionality and intriguing characteristics that differ from those of free enzymes. Consistent with our research philosophy centered on integration, platform development, and engineering application, this Account addresses the critical challenges associated with enzyme immobilization using COFs while extending the applications of COFs and proposing future design principles for biomanufacturing and enzyme industry.
Collapse
Affiliation(s)
- Shan Qiao
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Haiqun Jin
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Along Zuo
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Synthetic Biology, Tianjin 300308, China
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China
| |
Collapse
|
9
|
Zhu C, Yuan Z, Deng Z, Yin D, Zhang Y, Zhou J, Rao Y. Photoenzymatic Enantioselective Synthesis of Oxygen-Containing Benzo-Fused Heterocycles. Angew Chem Int Ed Engl 2023; 62:e202311762. [PMID: 37899302 DOI: 10.1002/anie.202311762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 10/31/2023]
Abstract
New-to-nature biocatalysis in organic synthesis has recently emerged as a green and powerful strategy for the preparation of valuable chiral products, among which chiral oxygen-containing benzo-fused heterocycles are important structural motifs in pharmaceutical industry. However, the asymmetric synthesis of these compounds through radical-mediated methods is challenging. Herein, a novel asymmetric radical-mediated photoenzymatic synthesis strategy is developed to realize the efficient enantioselective synthesis of oxygen-containing benzo-fused heterocycles through structure-guided engineering of a flavin-dependent 'ene'-reductase GluER. It shows that variant GluER-W100H could efficiently produce various benzoxepinones, chromanone and indanone with different benzo-fused rings in high yields with great stereoselectivities under visible light. Moreover, these results are well supported by mechanistic experiments, revealing that this photoenzymatic process involves electron donor-acceptor complex formation, single electron transfer and hydrogen atom transfer. Therefore, we provide an alternative green approach for efficient chemoenzymatic synthesis of important chiral skeletons of bioactive pharmaceuticals.
Collapse
Affiliation(s)
- Changtong Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, P. R. China
| | - Zhenbo Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, P. R. China
| | - Zhiwei Deng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, P. R. China
| | - Dejing Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, P. R. China
| | - Yan Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, 214122, Wuxi, P. R. China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 214122, Wuxi, P. R. China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, P. R. China
| |
Collapse
|
10
|
Liu Y, Zhu L, Li X, Cui Y, Roosta A, Feng J, Chen X, Yao P, Wu Q, Zhu D. Photoredox/Enzymatic Catalysis Enabling Redox-Neutral Decarboxylative Asymmetric C-C Coupling for Asymmetric Synthesis of Chiral 1,2-Amino Alcohols. JACS AU 2023; 3:3005-3013. [PMID: 38034963 PMCID: PMC10685423 DOI: 10.1021/jacsau.3c00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 12/02/2023]
Abstract
Photocatalysis offers tremendous opportunities for enzymes to access new functions. Herein, we described a redox-neutral photocatalysis/enzymatic catalysis system for the asymmetric synthesis of chiral 1,2-amino alcohols via decarboxylative radical C-C coupling of N-arylglycines and aldehydes by combining an organic photocatalyst, eosin Y, and carbonyl reductase RasADH. Notably, this protocol avoids using any sacrificial reductants. A possible reaction mechanism proposed is that the transformation proceeds through sequential photoinduced decarboxylative radical addition to an aldehyde and a photoenzymatic deracemization pathway. This redox-neutral photoredox/enzymatic strategy is promising not only for effective synthesis of a series of chiral amino alcohols in a green and sustainable manner but also for the design of other novel C-C radical coupling transformations for the synthesis of bioactive molecules.
Collapse
Affiliation(s)
- Yiyin Liu
- National
Engineering Research Center of Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of
Sciences, Tianjin 300308, China
- National
Technology Innovation Center for Synthetic Biology, Tianjin 300308, China
| | - Liangyan Zhu
- National
Engineering Research Center of Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of
Sciences, Tianjin 300308, China
- National
Technology Innovation Center for Synthetic Biology, Tianjin 300308, China
| | - Xuemei Li
- National
Engineering Research Center of Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of
Sciences, Tianjin 300308, China
- National
Technology Innovation Center for Synthetic Biology, Tianjin 300308, China
| | - Yunfeng Cui
- National
Engineering Research Center of Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of
Sciences, Tianjin 300308, China
- National
Technology Innovation Center for Synthetic Biology, Tianjin 300308, China
| | - Atefeh Roosta
- National
Engineering Research Center of Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of
Sciences, Tianjin 300308, China
- National
Technology Innovation Center for Synthetic Biology, Tianjin 300308, China
| | - Jinhui Feng
- National
Engineering Research Center of Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of
Sciences, Tianjin 300308, China
- National
Technology Innovation Center for Synthetic Biology, Tianjin 300308, China
| | - Xi Chen
- National
Engineering Research Center of Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of
Sciences, Tianjin 300308, China
- National
Technology Innovation Center for Synthetic Biology, Tianjin 300308, China
| | - Peiyuan Yao
- National
Engineering Research Center of Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of
Sciences, Tianjin 300308, China
- National
Technology Innovation Center for Synthetic Biology, Tianjin 300308, China
| | - Qiaqing Wu
- National
Engineering Research Center of Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of
Sciences, Tianjin 300308, China
- National
Technology Innovation Center for Synthetic Biology, Tianjin 300308, China
| | - Dunming Zhu
- National
Engineering Research Center of Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of
Sciences, Tianjin 300308, China
- National
Technology Innovation Center for Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
11
|
Cheng J, Zhang C, Zhang K, Li J, Hou Y, Xin J, Sun Y, Xu C, Xu W. Cyanobacteria-Mediated Light-Driven Biotransformation: The Current Status and Perspectives. ACS OMEGA 2023; 8:42062-42071. [PMID: 38024730 PMCID: PMC10653055 DOI: 10.1021/acsomega.3c05407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023]
Abstract
Most chemicals are manufactured by traditional chemical processes but at the expense of toxic catalyst use, high energy consumption, and waste generation. Biotransformation is a green, sustainable, and cost-effective process. As cyanobacteria can use light as the energy source to power the synthesis of NADPH and ATP, using cyanobacteria as the chassis organisms to design and develop light-driven biotransformation platforms for chemical synthesis has been gaining attention, since it can provide a theoretical and practical basis for the sustainable and green production of chemicals. Meanwhile, metabolic engineering and genome editing techniques have tremendous prospects for further engineering and optimizing chassis cells to achieve efficient light-driven systems for synthesizing various chemicals. Here, we display the potential of cyanobacteria as a promising light-driven biotransformation platform for the efficient synthesis of green chemicals and current achievements of light-driven biotransformation processes in wild-type or genetically modified cyanobacteria. Meanwhile, future perspectives of one-pot enzymatic cascade biotransformation from biobased materials in cyanobacteria have been proposed, which could provide additional research insights for green biotransformation and accelerate the advancement of biomanufacturing industries.
Collapse
Affiliation(s)
- Jie Cheng
- School
of Life Sciences, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Chaobo Zhang
- School
of Life Sciences, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Kaidian Zhang
- State
Key Laboratory of Marine Resource Utilization in the South China Sea,
School of Marine Biology and Aquaculture, Hainan University, Haikou, Hainan 570100, China
- Xiamen
Key Laboratory of Urban Sea Ecological Conservation and Restoration,
State Key Laboratory of Marine Environmental Science, College of Ocean
and Earth Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Jiashun Li
- Xiamen
Key Laboratory of Urban Sea Ecological Conservation and Restoration,
State Key Laboratory of Marine Environmental Science, College of Ocean
and Earth Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Yuyong Hou
- Key
Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotech-nology, Chinese
Academy of Sciences, Tianjin 300308, China
| | - Jiachao Xin
- School
of Life Sciences, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Yang Sun
- School
of Life Sciences, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Chengshuai Xu
- School
of Life Sciences, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Wei Xu
- School
of Life Sciences, Liaocheng University, Liaocheng, Shandong 252000, China
| |
Collapse
|
12
|
Meizler A, Porter N, Roddick F. Removal and detoxification of pentahalogenated phenols using a photocatalytically induced enzymatic process. Heliyon 2023; 9:e21738. [PMID: 38034683 PMCID: PMC10684381 DOI: 10.1016/j.heliyon.2023.e21738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/29/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Poly-halogenated phenols generated from a range of industrial processes can find their way into rivers and ground water. Here we report on a potential treatment for reducing the toxicity of these aqueous pollutants using two highly toxic penta-halogenated phenols (pentachlorophenol (PCP) and pentabromophenol (PBP)) as surrogates. Solutions were passed through a glass column packed with a silica support fused with titanium dioxide (TiO2) and horseradish peroxidase (HRP) immobilized on its TiO2/glass surface (HRP-Tglass). TiO2 photocatalysis was activated through irradiation with UVB (320 nm) which in turn activated the HRP. Two operational flow rates (0.5 and 1.25 mL min-1; hydraulic retention times (HRTs) of 20 and 8 min, respectively), tested the effect of retention time on the extent of degradation and reduction in toxicity of the treated effluent. Microtox® was used to measure the toxicity of the substrate and its by-products at both flow rates. At the highest flow rate, dehalogenation was limited (removal of 37 % chlorine and 22 % bromine) and the toxicity of the reaction products increased. At the lowest flow rate, the longer exposure time resulted in approximately 97 % and 96 % transformation of PCP and PBP, respectively, a greater degree of dehalogenation (removal of 65 % chlorine and 70 % bromine) and a substantial decrease in toxicity of the treated solutions. The higher toxicity of effluent from the higher flow rate was attributed to the initial degradation products being more toxic than the substrates. With a longer HRT, these were then further broken down to less toxic products. Additional toxicity tests (Hydra hexactinella (Hydra) and Chinese Hamster Ovary (CHO) cell toxicity were conducted on the effluent from the lowest flow rate. Both were less sensitive than the Microtox test, with Hydra proving more sensitive than CHO. The novelty of this work is the toxicity risk assessment of the products resulting from the use of a spatially separated immobilized enzyme and photooxidation system. The system was robust and showed no decrease in treatment efficacy over 10 h.
Collapse
Affiliation(s)
- A. Meizler
- Department of Post-Graduate, Hong Bang International University, 215 Điện Biên Phủ, P.15, Q. Bình Thạnh, Ho Chi Minh City, 700000, Viet Nam
| | - N.A. Porter
- School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia
| | - F.A. Roddick
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia
| |
Collapse
|
13
|
Ma X, He J, Liu Y, Bai X, Leng J, Zhao Y, Chen D, Wang J. Plant Photocatalysts: Photoinduced Oxidation and Reduction Abilities of Plant Leaf Ashes under Solar Light. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2260. [PMID: 37570577 PMCID: PMC10421452 DOI: 10.3390/nano13152260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
Plant leaf ashes were obtained via the high temperature calcination of the leaves of various plants, such as sugarcane, couchgrass, bracteata, garlic sprout, and the yellowish leek. Although the photosynthesis systems in plant leaves cannot exist after calcination, minerals in these ashes were found to exhibit photochemical activities. The samples showed solar light photocatalytic oxidation activities sufficient to degrade methylene blue dye. They were also shown to possess intrinsic dehydrogenase-like activities in reducing the colorless electron acceptor 2,3,5-triphenyltetrazolium chloride to a red formazan precipitate under solar light irradiation. The possible reasons behind these two unreported phenomena were also investigated. These ashes were characterized using a combination of physicochemical techniques. Moreover, our findings exemplify how the soluble and insoluble minerals in plant leaf ashes can be synergistically designed to yield next-generation photocatalysts. It may also lead to advances in artificial photosynthesis and photocatalytic dehydrogenase.
Collapse
Affiliation(s)
- Xiaoqian Ma
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, China
| | - Jiao He
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, China
| | - Yu Liu
- School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Xiaoli Bai
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, China
| | - Junyang Leng
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, China
| | - Yi Zhao
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, China
| | - Daomei Chen
- School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Jiaqiang Wang
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, China
- School of Materials and Energy, Yunnan University, Kunming 650091, China
| |
Collapse
|
14
|
Kato M, Huynh M, Chan N, Elliott J, Trinh A, Lucero K, Vu J, Parker D, Cheruzel LE. A one-pot Pd- and P450-catalyzed chemoenzymatic synthesis of a library of oxyfunctionalized biaryl alkanoic acids leveraging a substrate anchoring approach. J Inorg Biochem 2023; 245:112240. [PMID: 37245283 DOI: 10.1016/j.jinorgbio.2023.112240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/05/2023] [Accepted: 04/27/2023] [Indexed: 05/30/2023]
Abstract
A one-pot chemoenzymatic approach was developed by combining Palladium-catalysis with selective cytochrome P450 enzyme oxyfunctionalization. Various iodophenyl alkanoic acids could be coupled with alkylphenyl boronic acids to generate a series of alkyl substituted biarylalkanoic acids in overall high yield. The identity of the products could be confirmed by various analytical and chromatographic techniques. Addition of an engineered cytochrome P450 heme domain mutant with peroxygenase activity upon completion of the chemical reaction resulted in the selective oxyfunctionalization of those compounds, primarily at the benzylic position. Moreover, in order to increase the biocatalytic product conversion, a reversible substrate engineering approach was developed. This involves the coupling of a bulky amino acid such as L- phenylalanine or tryptophan, to the carboxylic acid moiety. The approach resulted in a 14 to 49% overall biocatalytic product conversion increase associated with a change in regioselectivity of hydroxylation towards less favored positions.
Collapse
Affiliation(s)
- Mallory Kato
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, USA
| | - Michael Huynh
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, USA
| | - Nicholas Chan
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, USA
| | - Julien Elliott
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, USA
| | - Amie Trinh
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, USA
| | - Kathreena Lucero
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, USA
| | - Julia Vu
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, USA
| | - Daniel Parker
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, USA
| | - Lionel E Cheruzel
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, USA.
| |
Collapse
|
15
|
Villa R, Nieto S, Donaire A, Lozano P. Direct Biocatalytic Processes for CO 2 Capture as a Green Tool to Produce Value-Added Chemicals. Molecules 2023; 28:5520. [PMID: 37513391 PMCID: PMC10383722 DOI: 10.3390/molecules28145520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Direct biocatalytic processes for CO2 capture and transformation in value-added chemicals may be considered a useful tool for reducing the concentration of this greenhouse gas in the atmosphere. Among the other enzymes, carbonic anhydrase (CA) and formate dehydrogenase (FDH) are two key biocatalysts suitable for this challenge, facilitating the uptake of carbon dioxide from the atmosphere in complementary ways. Carbonic anhydrases accelerate CO2 uptake by promoting its solubility in water in the form of hydrogen carbonate as the first step in converting the gas into a species widely used in carbon capture storage and its utilization processes (CCSU), particularly in carbonation and mineralization methods. On the other hand, formate dehydrogenases represent the biocatalytic machinery evolved by certain organisms to convert CO2 into enriched, reduced, and easily transportable hydrogen species, such as formic acid, via enzymatic cascade systems that obtain energy from chemical species, electrochemical sources, or light. Formic acid is the basis for fixing C1-carbon species to other, more reduced molecules. In this review, the state-of-the-art of both methods of CO2 uptake is assessed, highlighting the biotechnological approaches that have been developed using both enzymes.
Collapse
Affiliation(s)
- Rocio Villa
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, 30100 Murcia, Spain
- Department of Biotechnology, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Susana Nieto
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, 30100 Murcia, Spain
| | - Antonio Donaire
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, 30100 Murcia, Spain
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, 30100 Murcia, Spain
| |
Collapse
|
16
|
Garcia-Munoz P, Valenzuela L, Wegstein D, Schanz T, Lopez GE, Ruppert AM, Remita H, Bloh JZ, Keller N. Photocatalytic Synthesis of Hydrogen Peroxide from Molecular Oxygen and Water. Top Curr Chem (Cham) 2023; 381:15. [PMID: 37160833 DOI: 10.1007/s41061-023-00423-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/28/2023] [Indexed: 05/11/2023]
Abstract
Hydrogen peroxide is a powerful and green oxidant that allows for the oxidation of a wide span of organic and inorganic substrates in liquid media under mild reaction conditions, and forms only molecular water and oxygen as end products. Hydrogen peroxide is therefore used in a wide range of applications, for which the well-documented and established anthraquinone autoxidation process is by far the dominating production method at the industrial scale. As this method is highly energy consuming and environmentally costly, the search for more sustainable synthesis methods is of high interest. To this end, the article reviews the basis and the recent development of the photocatalytic synthesis of hydrogen peroxide. Different oxygen reduction and water oxidation mechanisms are discussed, as well as several kinetic models, and the influence of the main key reaction parameters is itemized. A large range of photocatalytic materials is reviewed, with emphasis on titania-based photocatalysts and on high-prospect graphitic carbon nitride-based systems that take advantage of advanced bulk and surface synthetic approaches. Strategies for enhancing the performances of solar-driven photocatalysts are reported, and the search for new, alternative, photocatalytic materials is detailed. Finally, the promise of in situ photocatalytic synthesis of hydrogen peroxide for water treatment and organic synthesis is described, as well as its coupling with enzymes and the direct in situ synthesis of other technical peroxides.
Collapse
Affiliation(s)
- Patricia Garcia-Munoz
- Department of Chemical and Environmental Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, 28006, Madrid, Spain
| | - Laura Valenzuela
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), CNRS/University of Strasbourg, 25 rue Becquerel, Strasbourg, France
| | - Deborah Wegstein
- DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | - Tobias Schanz
- DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | - Girlie Eunice Lopez
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, 91405, Orsay, France
| | - Agnieszka M Ruppert
- Institute of General and Ecological Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924, Łódź, Poland
| | - Hynd Remita
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, 91405, Orsay, France
| | - Jonathan Z Bloh
- DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | - Nicolas Keller
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), CNRS/University of Strasbourg, 25 rue Becquerel, Strasbourg, France.
| |
Collapse
|
17
|
Wang J, Zhao H, Larter SR, Kibria MG, Hu J. One-pot sequential cascade reaction for selective gluconic acid production from cellulose photobiorefining. Chem Commun (Camb) 2023; 59:3451-3454. [PMID: 36866729 DOI: 10.1039/d2cc06462f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
We demonstrate the feasibility of cellulose photobiocatalytic conversion with >75% cellulose conversion and >75% gluconic acid selectivity from converted glucose. This process is realized via a one-pot sequential cascade reaction by cellulase enzymes and a carbon nitride photocatalyst that can realize selective glucose photoreforming into gluconic acid. Cellulase enzymes breakdown cellulose into glucose, which will subsequently be converted into gluconic acid by essential oxidative species (˙O2- and ˙OH) via a selective photocatalysis process with simultaneous H2O2 formation. This work demonstrates a good example to realize direct cellulose photobiorefining into value-added chemicals via the photo-bio hybrid system.
Collapse
Affiliation(s)
- Jiu Wang
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada.
| | - Heng Zhao
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada.
| | - Stephen R Larter
- Department of Geosciences, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada.
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
18
|
Ölçücü G, Krauss U, Jaeger KE, Pietruszka J. Carrier‐Free Enzyme Immobilizates for Flow Chemistry. CHEM-ING-TECH 2023. [DOI: 10.1002/cite.202200167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Gizem Ölçücü
- Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH Institute of Molecular Enzyme Technology Wilhelm Johnen Straße 52425 Jülich Germany
- Forschungszentrum Jülich GmbH Institute of Bio- and Geosciences IBG-1: Biotechnology Wilhelm Johnen Straße 52425 Jülich Germany
| | - Ulrich Krauss
- Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH Institute of Molecular Enzyme Technology Wilhelm Johnen Straße 52425 Jülich Germany
- Forschungszentrum Jülich GmbH Institute of Bio- and Geosciences IBG-1: Biotechnology Wilhelm Johnen Straße 52425 Jülich Germany
| | - Karl-Erich Jaeger
- Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH Institute of Molecular Enzyme Technology Wilhelm Johnen Straße 52425 Jülich Germany
- Forschungszentrum Jülich GmbH Institute of Bio- and Geosciences IBG-1: Biotechnology Wilhelm Johnen Straße 52425 Jülich Germany
| | - Jörg Pietruszka
- Forschungszentrum Jülich GmbH Institute of Bio- and Geosciences IBG-1: Biotechnology Wilhelm Johnen Straße 52425 Jülich Germany
- Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH Institute of Biorganic Chemistry Wilhelm Johnen Straße 52425 Jülich Germany
| |
Collapse
|
19
|
Teshima M, Willers VP, Sieber V. Cell-free enzyme cascades - application and transition from development to industrial implementation. Curr Opin Biotechnol 2023; 79:102868. [PMID: 36563481 DOI: 10.1016/j.copbio.2022.102868] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
In the vision to realize a circular economy aiming for net carbon neutrality or even negativity, cell-free bioconversion of sustainable and renewable resources emerged as a promising strategy. The potential of in vitro systems is enormous, delivering technological, ecological, and ethical added values. Innovative concepts arose in cell-free enzymatic conversions to reduce process waste production and preserve fossil resources, as well as to redirect and assimilate released industrial pollutions back into the production cycle again. However, the great challenge in the near future will be the jump from a concept to an industrial application. The transition process in industrial implementation also requires economic aspects such as productivity, scalability, and cost-effectiveness. Here, we briefly review the latest proof-of-concept cascades using carbon dioxide and other C1 or lignocellulose-derived chemicals as blueprints to efficiently recycle greenhouse gases, as well as cutting-edge technologies to maturate these concepts to industrial pilot plants.
Collapse
Affiliation(s)
- Mariko Teshima
- Technical University of Munich, Campus Straubing, 94315 Straubing, Germany
| | | | - Volker Sieber
- Technical University of Munich, Campus Straubing, 94315 Straubing, Germany; SynBioFoundry@TUM, Technical University of Munich, 94315 Straubing, Germany; School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Australia.
| |
Collapse
|
20
|
Long C, He Y, Guan Z. Emerging Strategies for Asymmetric Synthesis: Combining Enzyme Promiscuity and Photo‐/Electro‐redox Catalysis. ASIAN J ORG CHEM 2023. [DOI: 10.1002/ajoc.202200685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Chao‐Jiu Long
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P. R. China
| | - Yan‐Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P. R. China
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P. R. China
| |
Collapse
|
21
|
Ham R, Nielsen CJ, Pullen S, Reek JNH. Supramolecular Coordination Cages for Artificial Photosynthesis and Synthetic Photocatalysis. Chem Rev 2023; 123:5225-5261. [PMID: 36662702 PMCID: PMC10176487 DOI: 10.1021/acs.chemrev.2c00759] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Because sunlight is the most abundant energy source on earth, it has huge potential for practical applications ranging from sustainable energy supply to light driven chemistry. From a chemical perspective, excited states generated by light make thermodynamically uphill reactions possible, which forms the basis for energy storage into fuels. In addition, with light, open-shell species can be generated which open up new reaction pathways in organic synthesis. Crucial are photosensitizers, which absorb light and transfer energy to substrates by various mechanisms, processes that highly depend on the distance between the molecules involved. Supramolecular coordination cages are well studied and synthetically accessible reaction vessels with single cavities for guest binding, ensuring close proximity of different components. Due to high modularity of their size, shape, and the nature of metal centers and ligands, cages are ideal platforms to exploit preorganization in photocatalysis. Herein we focus on the application of supramolecular cages for photocatalysis in artificial photosynthesis and in organic photo(redox) catalysis. Finally, a brief overview of immobilization strategies for supramolecular cages provides tools for implementing cages into devices. This review provides inspiration for future design of photocatalytic supramolecular host-guest systems and their application in producing solar fuels and complex organic molecules.
Collapse
Affiliation(s)
- Rens Ham
- Homogeneous and Supramolecular Catalysis, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XHAmsterdam, The Netherlands
| | - C Jasslie Nielsen
- Homogeneous and Supramolecular Catalysis, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XHAmsterdam, The Netherlands
| | - Sonja Pullen
- Homogeneous and Supramolecular Catalysis, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XHAmsterdam, The Netherlands
| | - Joost N H Reek
- Homogeneous and Supramolecular Catalysis, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XHAmsterdam, The Netherlands
| |
Collapse
|
22
|
Mangas-Sánchez J, Ascaso-Alegre C. Cascade Processes Merging Chemical and Enzyme Catalysis. Synlett 2023. [DOI: 10.1055/s-0042-1751403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
AbstractCascade processes are an attractive strategy to rapidly build molecular complexity and circumvent the need to isolate reaction intermediates, providing higher efficiencies into synthetic routes with lower environmental toll. We have recently developed a new method to synthesise chiral 1,4-nitro alcohols by sequentially combining three transformations in the same reaction vessel via asymmetric C–C bond formation using a chiral thiourea catalyst and a bioreduction process as key steps.1 Introduction2 A Chemoenzymatic Cascade to Make Chiral 1,4-Nitro Alcohols3 Conclusions and Perspectives
Collapse
Affiliation(s)
- Juan Mangas-Sánchez
- Institute of Chemical Synthesis and Homogeneous Catalysis (ISQCH) Spanish National Research Council (CSIC)
- Aragonese Foundation for Research & Development (ARAID)
| | - Christian Ascaso-Alegre
- Institute of Chemical Synthesis and Homogeneous Catalysis (ISQCH) Spanish National Research Council (CSIC)
| |
Collapse
|
23
|
Design and Applications of Enzyme-Linked Nanostructured Materials for Efficient Bio-catalysis. Top Catal 2023. [DOI: 10.1007/s11244-022-01770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
24
|
Fast quinazolinone synthesis by combining enzymatic catalysis and photocatalysis. Photochem Photobiol Sci 2022; 22:525-534. [PMID: 36445645 DOI: 10.1007/s43630-022-00332-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/20/2022] [Indexed: 11/30/2022]
Abstract
A fast and highly efficient method for the synthesis of functionalized quinazolinones by combining enzymatic catalysis and photocatalysis is reported. The α-Chymotrypsin catalyzed the cyclization of aldehyde and 2-aminobenzamide, which was subsequently followed by White LED-induced oxidation of 2-phenyl-2, 3-dihydroquinazolin-4(1H)-one to obtain quinazolinone. The reaction process was highly efficient with a reaction yield of 99% in just 2 h, and a wide range of quinazolinones could be synthesized. Furthermore, the plausible mechanism was investigated by control experiments and DFT calculations. This protocol provides an alternative synthetic route for the preparation of quinazolinone derivatives.
Collapse
|
25
|
Valotta A, Malihan-Yap L, Hinteregger K, Kourist R, Gruber-Woelfler H. Design and Investigation of a Photocatalytic Setup for Efficient Biotransformations Within Recombinant Cyanobacteria in Continuous Flow. CHEMSUSCHEM 2022; 15:e202201468. [PMID: 36069133 PMCID: PMC9828554 DOI: 10.1002/cssc.202201468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Photo- and biocatalysis show many advantages as more sustainable solutions for the production of fine chemicals. In an effort to combine the benefits and the knowledge of both these areas, a continuous photobiocatalytic setup was designed and optimized to carry out whole-cell biotransformations within cells of the cyanobacterium Synechocystis sp. PCC 6803 expressing the gene of the ene-reductase YqjM from B. subtilis. The effect of the light intensity and flow rate on the specific activity in the stereoselective reduction of 2-methyl maleimide was investigated via a design-of-experiments approach. The cell density in the setup was further increased at the optimal operating conditions without loss in specific activity, demonstrating that the higher surface area/volume ratio in the coil reactor improved the illumination efficiency of the process. Furthermore, different reactor designs were compared, proving that the presented approach was the most cost- and time-effective solution for intensifying photobiotransformations within cyanobacterial cells.
Collapse
Affiliation(s)
- Alessia Valotta
- Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010, Graz, Austria
| | - Lenny Malihan-Yap
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
| | - Kerstin Hinteregger
- Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010, Graz, Austria
| | - Robert Kourist
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
- ACIB GmbH, Krenngasse 37, 8010, Graz, Austria
| | - Heidrun Gruber-Woelfler
- Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010, Graz, Austria
| |
Collapse
|
26
|
Sharma VK, Hutchison JM, Allgeier AM. Redox Biocatalysis: Quantitative Comparisons of Nicotinamide Cofactor Regeneration Methods. CHEMSUSCHEM 2022; 15:e202200888. [PMID: 36129761 PMCID: PMC10029092 DOI: 10.1002/cssc.202200888] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Enzymatic processes, particularly those capable of performing redox reactions, have recently been of growing research interest. Substrate specificity, optimal activity at mild temperatures, high selectivity, and yield are among the desirable characteristics of these oxidoreductase catalyzed reactions. Nicotinamide adenine dinucleotide (phosphate) or NAD(P)H-dependent oxidoreductases have been extensively studied for their potential applications like biosynthesis of chiral organic compounds, construction of biosensors, and pollutant degradation. One of the main challenges associated with making these processes commercially viable is the regeneration of the expensive cofactors required by the enzymes. Numerous efforts have pursued enzymatic regeneration of NAD(P)H by coupling a substrate reduction with a complementary enzyme catalyzed oxidation of a co-substrate. While offering excellent selectivity and high total turnover numbers, such processes involve complicated downstream product separation of a primary product from the coproducts and impurities. Alternative methods comprising chemical, electrochemical, and photochemical regeneration have been developed with the goal of enhanced efficiency and operational simplicity compared to enzymatic regeneration. Despite the goal, however, the literature rarely offers a meaningful comparison of the total turnover numbers for various regeneration methodologies. This comprehensive Review systematically discusses various methods of NAD(P)H cofactor regeneration and quantitatively compares performance across the numerous methods. Further, fundamental barriers to enhanced cofactor regeneration in the various methods are identified, and future opportunities are highlighted for improving the efficiency and sustainability of commercially viable oxidoreductase processes for practical implementation.
Collapse
Affiliation(s)
- Victor K Sharma
- Chemical and Petroleum Engineering, The University of Kansas, 1530 W 15th St, 66045, Lawrence, Kansas, United States
| | - Justin M Hutchison
- Civil, Environmental and Architectural Engineering, The University of Kansas, 1530 W 15th St, 66045, Lawrence, Kansas, United States
| | - Alan M Allgeier
- Chemical and Petroleum Engineering, The University of Kansas, 1530 W 15th St, 66045, Lawrence, Kansas, United States
| |
Collapse
|
27
|
Hu WY, Li K, Weitz A, Wen A, Kim H, Murray JC, Cheng R, Chen B, Naowarojna N, Grinstaff MW, Elliott SJ, Chen JS, Liu P. Light-Driven Oxidative Demethylation Reaction Catalyzed by a Rieske-Type Non-heme Iron Enzyme Stc2. ACS Catal 2022; 12:14559-14570. [PMID: 37168530 PMCID: PMC10168674 DOI: 10.1021/acscatal.2c04232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rieske-type non-heme iron oxygenases/oxidases catalyze a wide range of transformations. Their applications in bioremediation or biocatalysis face two key barriers: the need of expensive NAD(P)H as a reductant and a proper reductase to mediate the electron transfer from NAD(P)H to the oxygenases. To bypass the need of both the reductase and NAD(P)H, using Rieske-type oxygenase (Stc2) catalyzed oxidative demethylation as the model system, we report Stc2 photocatalysis using eosin Y/sulfite as the photosensitizer/sacrificial reagent pair. In a flow-chemistry setting to separate the photo-reduction half-reaction and oxidation half-reaction, Stc2 photo-biocatalysis outperforms the Stc2-NAD(P)H-reductase (GbcB) system. In addition, in a few other selected Rieske enzymes (NdmA, CntA, and GbcA), and a flavin-dependent enzyme (iodotyrosine deiodinase, IYD), the eosin Y/sodium sulfite photo-reduction pair could also serve as the NAD(P)H-reductase surrogate to support catalysis, which implies the potential applicability of this photo-reduction system to other redox enzymes.
Collapse
Affiliation(s)
- Wei-Yao Hu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, P. R. China
- Department of Chemistry, Boston University, Boston, Massachusetts02215, United States
| | - Kelin Li
- Department of Chemistry, Boston University, Boston, Massachusetts02215, United States
| | - Andrew Weitz
- Department of Chemistry, Boston University, Boston, Massachusetts02215, United States
| | - Aiwen Wen
- Department of Chemistry, Boston University, Boston, Massachusetts02215, United States
| | - Hyomin Kim
- Department of Chemistry, Boston University, Boston, Massachusetts02215, United States
| | - Jessica C. Murray
- Department of Chemistry, Boston University, Boston, Massachusetts02215, United States
| | - Ronghai Cheng
- Department of Chemistry, Boston University, Boston, Massachusetts02215, United States
| | - Baixiong Chen
- Department of Chemistry, Boston University, Boston, Massachusetts02215, United States
| | - Nathchar Naowarojna
- Department of Chemistry, Boston University, Boston, Massachusetts02215, United States
| | - Mark W. Grinstaff
- Department of Chemistry, Boston University, Boston, Massachusetts02215, United States
| | - Sean J. Elliott
- Department of Chemistry, Boston University, Boston, Massachusetts02215, United States
| | - Jie-Sheng Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, P. R. China
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, Massachusetts02215, United States
| |
Collapse
|
28
|
Gianolio S, Roura Padrosa D, Paradisi F. Combined chemoenzymatic strategy for sustainable continuous synthesis of the natural product hordenine. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2022; 24:8434-8440. [PMID: 36353210 PMCID: PMC9621339 DOI: 10.1039/d2gc02767d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
To improve sustainability, safety and cost-efficiency of synthetic methodologies, biocatalysis can be a helpful ally. In this work, a novel chemoenzymatic stategy ensures the rapid synthesis of hordenine, a valuable phenolic phytochemical under mild working conditions. In a two-step cascade, the immobilized tyrosine decarboxylase from Lactobacillus brevis (LbTDC) is here coupled with the chemical reductive amination of tyramine. Starting from the abundant and cost-effective amino acid l-tyrosine, the complete conversion to hordenine is achieved in less than 5 minutes residence time in a fully-automated continuous flow system. Compared to the metal-catalyzed N,N-dimethylation of tyramine, this biocatalytic approach reduces the process environmental impact and improves its STY to 2.68 g L-1 h-1.
Collapse
Affiliation(s)
- Stefania Gianolio
- Department of Chemistry, Biochemistry and Pharmacology, University of Bern Freistrasse 3 Bern Switzerland
| | - David Roura Padrosa
- Department of Chemistry, Biochemistry and Pharmacology, University of Bern Freistrasse 3 Bern Switzerland
| | - Francesca Paradisi
- Department of Chemistry, Biochemistry and Pharmacology, University of Bern Freistrasse 3 Bern Switzerland
| |
Collapse
|
29
|
Malihan‐Yap L, Grimm HC, Kourist R. Recent Advances in Cyanobacterial Biotransformations. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202200077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lenny Malihan‐Yap
- Graz University of Technology Institute of Molecular Biotechnology NAWI Graz 8010 Graz Austria
| | - Hanna C. Grimm
- Graz University of Technology Institute of Molecular Biotechnology NAWI Graz 8010 Graz Austria
| | - Robert Kourist
- Graz University of Technology Institute of Molecular Biotechnology NAWI Graz 8010 Graz Austria
- ACIB GmbH 8010 Graz Austria
| |
Collapse
|
30
|
Liu C, Cui X, Chen W, Ma X, Prather KJ, Zhou K, Wu J. Synthesis of Oxygenated Sesquiterpenoids Enabled by Combining Metabolic Engineering and Visible‐Light Photocatalysis. Chemistry 2022; 28:e202201230. [DOI: 10.1002/chem.202201230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Chenguang Liu
- Department of Chemistry National University of Singapore Singapore 117543 Singapore
| | - Xiaoyi Cui
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore 119077 Singapore
- Disruptive & Sustainable Technologies for Agricultural Precision Singapore-MIT Alliance for Research and Technology Singapore
| | - Wei Chen
- Department of Chemistry National University of Singapore Singapore 117543 Singapore
| | - Xiaoqiang Ma
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore 119077 Singapore
| | - Kristala J. Prather
- Disruptive & Sustainable Technologies for Agricultural Precision Singapore-MIT Alliance for Research and Technology Singapore
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Kang Zhou
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore 119077 Singapore
- Disruptive & Sustainable Technologies for Agricultural Precision Singapore-MIT Alliance for Research and Technology Singapore
| | - Jie Wu
- Department of Chemistry National University of Singapore Singapore 117543 Singapore
| |
Collapse
|
31
|
Wang Z, Hu Y, Zhang S, Sun Y. Artificial photosynthesis systems for solar energy conversion and storage: platforms and their realities. Chem Soc Rev 2022; 51:6704-6737. [PMID: 35815740 DOI: 10.1039/d1cs01008e] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In natural photosynthesis, photosynthetic organisms such as green plants realize efficient solar energy conversion and storage by integrating photosynthetic components on the thylakoid membrane of chloroplasts. Inspired by natural photosynthesis, researchers have developed many artificial photosynthesis systems (APS's) that integrate various photocatalysts and biocatalysts to convert and store solar energy in the fields of resource, environment, food, and energy. To improve the system efficiency and reduce the operation cost, reaction platforms are introduced in APS's since they allow for great stability and continuous processing. A systematic understanding of how a reaction platform affects the performance of artificial photosynthesis is conducive for designing an APS with superb solar energy utilization. In this review, we discuss the recent APS's researches, especially those confined on/in platforms. The importance of different platforms and their influences on APS's performance are emphasized. Generally, confined platforms can enhance the stability and repeatability of both photocatalysts and biocatalysts in APS's as well as improve the photosynthetic performance due to the proximity effect. For functional platforms that can participate in the artificial photosynthesis reactions as active parts, a high integration of APS's components on/in these platforms can lead to efficient electron transfer, enhanced light-harvesting, or synergistic catalysis, resulting in superior photosynthesis performance. Therefore, the integration of APS's components is beneficial for the transfer of substrates and photoexcited electrons in artificial photosynthesis. We finally summarize the current challenges of APS's development and further efforts on the improvement of APS's.
Collapse
Affiliation(s)
- Zhenfu Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Yang Hu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
32
|
Özgen FF, Jorea A, Capaldo L, Kourist R, Ravelli D, Schmidt S. The Synthesis of Chiral γ‐Lactones by Merging Decatungstate Photocatalysis with Biocatalysis. ChemCatChem 2022. [DOI: 10.1002/cctc.202200855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Fatma Feyza Özgen
- Rijksuniversiteit Groningen Chemical and Pharmaceutical Biology Antonius Deusinglaan 1 9713AV Groningen NETHERLANDS
| | - Alexandra Jorea
- University of Pavia: Universita degli Studi di Pavia Department of Chemistry viale Taramelli 12 27100 Pavia ITALY
| | - Luca Capaldo
- University of Pavia: Universita degli Studi di Pavia Department of Chemistry viale Taramelli 12 27100 Pavia ITALY
| | - Robert Kourist
- Graz University of Technology: Technische Universitat Graz Institut of Molecular Biotechnology Petersgass 14 8010 Graz AUSTRIA
| | - Davide Ravelli
- University of Pavia: Universita degli Studi di Pavia Department of Chemistry viale Taramelli 12 27100 Pavia ITALY
| | - Sandy Schmidt
- Rijksuniversiteit Groningen Chemical and Pharmaceutical Biology Antonius Deusinglaan 1 9713AV Groningen NETHERLANDS
| |
Collapse
|
33
|
Ascaso-Alegre C, MANGAS JUAN. Construction of chemoenzymatic linear cascades for the synthesis of chiral compounds. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Christian Ascaso-Alegre
- CSIC: Consejo Superior de Investigaciones Cientificas Institute of Chemical Synthesis and Homogeneous Catalysis SPAIN
| | - JUAN MANGAS
- ARAID: Agencia Aragonesa para la Investigacion y Desarrollo ISQCH PEDRO CERBUNA, 12FACULTAD DE CIENCIAS D 50009 ZARAGOZA SPAIN
| |
Collapse
|
34
|
Benítez-Mateos AI, Roura Padrosa D, Paradisi F. Multistep enzyme cascades as a route towards green and sustainable pharmaceutical syntheses. Nat Chem 2022; 14:489-499. [PMID: 35513571 DOI: 10.1038/s41557-022-00931-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 03/17/2022] [Indexed: 12/25/2022]
Abstract
Enzyme cascades are a powerful technology to develop environmentally friendly and cost-effective synthetic processes to manufacture drugs, as they couple different biotransformations in sequential reactions to synthesize the product. These biocatalytic tools can address two key parameters for the pharmaceutical industry: an improved selectivity of synthetic reactions and a reduction of potential hazards by using biocompatible catalysts, which can be produced from sustainable sources, which are biodegradable and, generally, non-toxic. Here we outline a broad variety of enzyme cascades used either in vivo (whole cells) or in vitro (purified enzymes) to specifically target pharmaceutically relevant molecules, from simple building blocks to complex drugs. We also discuss the advantages and requirements of multistep enzyme cascades and their combination with chemical catalysts through a series of reported examples. Finally, we examine the efficiency of enzyme cascades and how they can be further improved by enzyme engineering, process intensification in flow reactors and/or enzyme immobilization to meet all the industrial requirements.
Collapse
Affiliation(s)
- Ana I Benítez-Mateos
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - David Roura Padrosa
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Francesca Paradisi
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
35
|
Bierbaumer S, Schmermund L, List A, Winkler CK, Glueck SM, Kroutil W. Synthesis of Enantiopure Sulfoxides by Concurrent Photocatalytic Oxidation and Biocatalytic Reduction. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202117103. [PMID: 38505243 PMCID: PMC10946591 DOI: 10.1002/ange.202117103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 03/21/2024]
Abstract
The concurrent operation of chemical and biocatalytic reactions in one pot is still a challenging task, and, in particular for chemical photocatalysts, examples besides simple cofactor recycling systems are rare. However, especially due to the complementary chemistry that the two fields of catalysis promote, their combination in one pot has the potential to unlock intriguing, unprecedented overall reactivities. Herein we demonstrate a concurrent biocatalytic reduction and photocatalytic oxidation process. Specifically, the enantioselective biocatalytic sulfoxide reduction using (S)-selective methionine sulfoxide reductases was coupled to an unselective light-dependent sulfoxidation. Protochlorophyllide was established as a new green photocatalyst for the sulfoxidation. Overall, a cyclic deracemization process to produce nonracemic sulfoxides was achieved and the target compounds were obtained with excellent conversions (up to 91 %) and superb optical purity (>99 % ee).
Collapse
Affiliation(s)
- Sarah Bierbaumer
- Institute of Chemistry, Department of Organic and Bioorganic ChemistryUniversity of GrazNAWI GrazBioTechMed GrazField of Excellence BioHealthHeinrichstraße 288010GrazAustria
| | - Luca Schmermund
- Institute of Chemistry, Department of Organic and Bioorganic ChemistryUniversity of GrazNAWI GrazBioTechMed GrazField of Excellence BioHealthHeinrichstraße 288010GrazAustria
| | - Alexander List
- Institute of Chemistry, Department of Organic and Bioorganic ChemistryUniversity of GrazNAWI GrazBioTechMed GrazField of Excellence BioHealthHeinrichstraße 288010GrazAustria
| | - Christoph K. Winkler
- Institute of Chemistry, Department of Organic and Bioorganic ChemistryUniversity of GrazNAWI GrazBioTechMed GrazField of Excellence BioHealthHeinrichstraße 288010GrazAustria
| | - Silvia M. Glueck
- Institute of Chemistry, Department of Organic and Bioorganic ChemistryUniversity of GrazNAWI GrazBioTechMed GrazField of Excellence BioHealthHeinrichstraße 288010GrazAustria
| | - Wolfgang Kroutil
- Institute of Chemistry, Department of Organic and Bioorganic ChemistryUniversity of GrazNAWI GrazBioTechMed GrazField of Excellence BioHealthHeinrichstraße 288010GrazAustria
| |
Collapse
|
36
|
Bierbaumer S, Schmermund L, List A, Winkler CK, Glueck SM, Kroutil W. Synthesis of Enantiopure Sulfoxides by Concurrent Photocatalytic Oxidation and Biocatalytic Reduction. Angew Chem Int Ed Engl 2022; 61:e202117103. [PMID: 35188997 PMCID: PMC9310851 DOI: 10.1002/anie.202117103] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 11/18/2022]
Abstract
The concurrent operation of chemical and biocatalytic reactions in one pot is still a challenging task, and, in particular for chemical photocatalysts, examples besides simple cofactor recycling systems are rare. However, especially due to the complementary chemistry that the two fields of catalysis promote, their combination in one pot has the potential to unlock intriguing, unprecedented overall reactivities. Herein we demonstrate a concurrent biocatalytic reduction and photocatalytic oxidation process. Specifically, the enantioselective biocatalytic sulfoxide reduction using (S)-selective methionine sulfoxide reductases was coupled to an unselective light-dependent sulfoxidation. Protochlorophyllide was established as a new green photocatalyst for the sulfoxidation. Overall, a cyclic deracemization process to produce nonracemic sulfoxides was achieved and the target compounds were obtained with excellent conversions (up to 91 %) and superb optical purity (>99 % ee).
Collapse
Affiliation(s)
- Sarah Bierbaumer
- Institute of Chemistry, Department of Organic and Bioorganic ChemistryUniversity of GrazNAWI GrazBioTechMed GrazField of Excellence BioHealthHeinrichstraße 288010GrazAustria
| | - Luca Schmermund
- Institute of Chemistry, Department of Organic and Bioorganic ChemistryUniversity of GrazNAWI GrazBioTechMed GrazField of Excellence BioHealthHeinrichstraße 288010GrazAustria
| | - Alexander List
- Institute of Chemistry, Department of Organic and Bioorganic ChemistryUniversity of GrazNAWI GrazBioTechMed GrazField of Excellence BioHealthHeinrichstraße 288010GrazAustria
| | - Christoph K. Winkler
- Institute of Chemistry, Department of Organic and Bioorganic ChemistryUniversity of GrazNAWI GrazBioTechMed GrazField of Excellence BioHealthHeinrichstraße 288010GrazAustria
| | - Silvia M. Glueck
- Institute of Chemistry, Department of Organic and Bioorganic ChemistryUniversity of GrazNAWI GrazBioTechMed GrazField of Excellence BioHealthHeinrichstraße 288010GrazAustria
| | - Wolfgang Kroutil
- Institute of Chemistry, Department of Organic and Bioorganic ChemistryUniversity of GrazNAWI GrazBioTechMed GrazField of Excellence BioHealthHeinrichstraße 288010GrazAustria
| |
Collapse
|
37
|
Peng Y, Chen Z, Xu J, Wu Q. Recent Advances in Photobiocatalysis for Selective Organic Synthesis. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Yongzhen Peng
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, P.R. China
| | - Zhichun Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, P.R. China
| | - Jian Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Qi Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, P.R. China
| |
Collapse
|
38
|
Buglioni L, Raymenants F, Slattery A, Zondag SDA, Noël T. Technological Innovations in Photochemistry for Organic Synthesis: Flow Chemistry, High-Throughput Experimentation, Scale-up, and Photoelectrochemistry. Chem Rev 2022; 122:2752-2906. [PMID: 34375082 PMCID: PMC8796205 DOI: 10.1021/acs.chemrev.1c00332] [Citation(s) in RCA: 261] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Indexed: 02/08/2023]
Abstract
Photoinduced chemical transformations have received in recent years a tremendous amount of attention, providing a plethora of opportunities to synthetic organic chemists. However, performing a photochemical transformation can be quite a challenge because of various issues related to the delivery of photons. These challenges have barred the widespread adoption of photochemical steps in the chemical industry. However, in the past decade, several technological innovations have led to more reproducible, selective, and scalable photoinduced reactions. Herein, we provide a comprehensive overview of these exciting technological advances, including flow chemistry, high-throughput experimentation, reactor design and scale-up, and the combination of photo- and electro-chemistry.
Collapse
Affiliation(s)
- Laura Buglioni
- Micro
Flow Chemistry and Synthetic Methodology, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, Het Kranenveld, Bldg 14—Helix, 5600 MB, Eindhoven, The Netherlands
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Fabian Raymenants
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Aidan Slattery
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Stefan D. A. Zondag
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Timothy Noël
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
39
|
da Silva RTP, Ribeiro de Barros H, Sandrini DMF, Córdoba de Torresi SI. Stimuli-Responsive Regulation of Biocatalysis through Metallic Nanoparticle Interaction. Bioconjug Chem 2022; 33:53-66. [PMID: 34914373 DOI: 10.1021/acs.bioconjchem.1c00515] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The remote control of biocatalytic processes in an extracellular medium is an exciting idea to deliver innovative solutions in the biocatalysis field. With this purpose, metallic nanoparticles (NPs) are great candidates, as their inherent thermal, electric, magnetic, and plasmonic properties can readily be manipulated upon external stimuli. Exploring the unique NP properties beyond an anchoring platform for enzymes brings up the opportunity to extend the efficiency of biocatalysts and modulate their activity through triggered events. In this review, we discuss a set of external stimuli, such as light, electricity, magnetism, and temperature, as tools for the regulation of nanobiocatalysis, including the challenges and perspectives regarding their use. In addition, we elaborate on the use of combined stimuli that create a more refined framework in terms of a multiresponsive system. Finally, we envision this review might instigate researchers in this field of study with a set of promising opportunities in the near future.
Collapse
Affiliation(s)
- Rafael T P da Silva
- Instituto de Química, Universidade de São Paulo, São Paulo (SP), 05508-000, Brazil
| | | | | | | |
Collapse
|
40
|
Giraldi V, Marchini M, Di Giosia M, Gualandi A, Cirillo M, Calvaresi M, Ceroni P, Giacomini D, Cozzi PG. Acceleration of oxidation promoted by laccase irradiation with red light. NEW J CHEM 2022. [DOI: 10.1039/d2nj01107g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Irradiation with red light is able to improve yields and shorten the reaction time in enzymatic reactions.
Collapse
Affiliation(s)
- Valentina Giraldi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum – Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Marianna Marchini
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum – Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Matteo Di Giosia
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum – Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Andrea Gualandi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum – Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Martina Cirillo
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum – Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Matteo Calvaresi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum – Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Paola Ceroni
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum – Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Daria Giacomini
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum – Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Pier Giorgio Cozzi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum – Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| |
Collapse
|
41
|
Chen JJ, Zhang Y, Huang HM. Radical umpolung chemistry enabled by dual catalysis: concept and recent advances. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01161a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a perspective on recent advances in radical umpolung chemistry; some selected examples in this area have been highlighted.
Collapse
Affiliation(s)
- Jun-Jie Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ying Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Huan-Ming Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
42
|
Reactivity and selectivity modulation within a molecular assembly: recent examples from photochemistry. Photochem Photobiol Sci 2021; 21:719-737. [PMID: 34914081 PMCID: PMC9174329 DOI: 10.1007/s43630-021-00146-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/17/2021] [Indexed: 12/05/2022]
Abstract
In recent years, photochemical reactions have emerged as powerful transformations which significantly expand the repertoire of organic synthesis. However, a certain lack of selectivity can hamper their application and limit their scope. In this context, a major research effort continues to focus on an improved control over stereo- and chemoselectivity that can be achieved in molecular assemblies between photosubstrates and an appropriate host molecule. In this tutorial review, some recent, representative examples of photochemical reactions have been collected whose unique outcome is dictated by the formation of a molecular assembly driven by non-covalent weak interactions.
Collapse
|
43
|
Gao X, Turek-Herman JR, Choi YJ, Cohen RD, Hyster TK. Photoenzymatic Synthesis of α-Tertiary Amines by Engineered Flavin-Dependent "Ene"-Reductases. J Am Chem Soc 2021; 143:19643-19647. [PMID: 34784482 PMCID: PMC10157440 DOI: 10.1021/jacs.1c09828] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
α-Tertiary amines are a common motif in pharmaceutically important molecules but are challenging to prepare using asymmetric catalysis. Here, we demonstrate engineered flavin-dependent 'ene'-reductases (EREDs) can catalyze radical additions into oximes to prepare this motif. Two different EREDs were evolved into competent catalysts for this transformation with high levels of stereoselectivity. Mechanistic studies indicate that the oxime contributes to the enzyme templated charge-transfer complex formed between the substrate and cofactor. These products can be further derivatized to prepare a variety of motifs, highlighting the versatility of ERED photoenzymatic catalysis for organic synthesis.
Collapse
Affiliation(s)
- Xin Gao
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Joshua R Turek-Herman
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Young Joo Choi
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Ryan D Cohen
- Analytical Research & Development, Merck & Company Inc., Rahway, New Jersey 07065, United States
| | - Todd K Hyster
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
44
|
Simić S, Zukić E, Schmermund L, Faber K, Winkler CK, Kroutil W. Shortening Synthetic Routes to Small Molecule Active Pharmaceutical Ingredients Employing Biocatalytic Methods. Chem Rev 2021; 122:1052-1126. [PMID: 34846124 DOI: 10.1021/acs.chemrev.1c00574] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biocatalysis, using enzymes for organic synthesis, has emerged as powerful tool for the synthesis of active pharmaceutical ingredients (APIs). The first industrial biocatalytic processes launched in the first half of the last century exploited whole-cell microorganisms where the specific enzyme at work was not known. In the meantime, novel molecular biology methods, such as efficient gene sequencing and synthesis, triggered breakthroughs in directed evolution for the rapid development of process-stable enzymes with broad substrate scope and good selectivities tailored for specific substrates. To date, enzymes are employed to enable shorter, more efficient, and more sustainable alternative routes toward (established) small molecule APIs, and are additionally used to perform standard reactions in API synthesis more efficiently. Herein, large-scale synthetic routes containing biocatalytic key steps toward >130 APIs of approved drugs and drug candidates are compared with the corresponding chemical protocols (if available) regarding the steps, reaction conditions, and scale. The review is structured according to the functional group formed in the reaction.
Collapse
Affiliation(s)
- Stefan Simić
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Erna Zukić
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Luca Schmermund
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Kurt Faber
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Christoph K Winkler
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria.,Field of Excellence BioHealth─University of Graz, 8010 Graz, Austria.,BioTechMed Graz, 8010 Graz, Austria
| |
Collapse
|
45
|
Liu W, Watson EE, Winssinger N. Photocatalysis in Chemical Biology: Extending the Scope of Optochemical Control and Towards New Frontiers in Semisynthetic Bioconjugates and Biocatalysis. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Weilong Liu
- Department of Organic Chemistry NCCR Chemical Biology Faculty of Science University of Geneva 30 quai Ernest Ansermet CH-1211 Geneva Switzerland
| | - Emma E. Watson
- Department of Organic Chemistry NCCR Chemical Biology Faculty of Science University of Geneva 30 quai Ernest Ansermet CH-1211 Geneva Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry NCCR Chemical Biology Faculty of Science University of Geneva 30 quai Ernest Ansermet CH-1211 Geneva Switzerland
| |
Collapse
|
46
|
Aselmeyer C, Légeret B, Bénarouche A, Sorigué D, Parsiegla G, Beisson F, Carrière F. Fatty Acid Photodecarboxylase Is an Interfacial Enzyme That Binds to Lipid-Water Interfaces to Access Its Insoluble Substrate. Biochemistry 2021; 60:3200-3212. [PMID: 34633183 DOI: 10.1021/acs.biochem.1c00317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fatty acid photodecarboxylase (FAP), one of the few natural photoenzymes characterized so far, is a promising biocatalyst for lipid-to-hydrocarbon conversion using light. However, the optimum supramolecular organization under which the fatty acid (FA) substrate should be presented to FAP has not been addressed. Using palmitic acid embedded in phospholipid liposomes, phospholipid-stabilized microemulsions, and mixed micelles, we show that FAP displays a preference for FAs present in liposomes and at the surface of microemulsions. The kinetics of adsorption onto phospholipid and galactolipid monomolecular films further suggests the ability of FAP to bind to and penetrate into membranes, with a higher affinity in the presence of FAs. The FAP structure reveals a potential interfacial recognition site with clusters of hydrophobic and basic residues surrounding the active site entrance. The resulting dipolar moment suggests the orientation of FAP at negatively charged interfaces. These findings provide important clues about the mode of action of FAP and the development of FAP-based bioconversion processes.
Collapse
Affiliation(s)
- Cyril Aselmeyer
- Aix Marseille Université, CNRS, UMR 7281 Bioénergétique et Ingénierie des Protéines, 13009 Marseille, France.,CEA, CNRS, Aix Marseille Université, Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), UMR 7265, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Bertrand Légeret
- CEA, CNRS, Aix Marseille Université, Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), UMR 7265, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Anaïs Bénarouche
- Aix Marseille Université, CNRS, UMR 7281 Bioénergétique et Ingénierie des Protéines, 13009 Marseille, France
| | - Damien Sorigué
- CEA, CNRS, Aix Marseille Université, Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), UMR 7265, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Goetz Parsiegla
- Aix Marseille Université, CNRS, UMR 7281 Bioénergétique et Ingénierie des Protéines, 13009 Marseille, France
| | - Fred Beisson
- CEA, CNRS, Aix Marseille Université, Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), UMR 7265, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Frédéric Carrière
- Aix Marseille Université, CNRS, UMR 7281 Bioénergétique et Ingénierie des Protéines, 13009 Marseille, France
| |
Collapse
|
47
|
Albarrán‐Velo J, Gotor‐Fernández V, Lavandera I. Markovnikov Wacker‐Tsuji Oxidation of Allyl(hetero)arenes and Application in a One‐Pot Photo‐Metal‐Biocatalytic Approach to Enantioenriched Amines and Alcohols. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jesús Albarrán‐Velo
- Departamento de Química Orgánica e Inorgánica Universidad de Oviedo Avenida Julián Clavería 8 33006 Oviedo Spain
| | - Vicente Gotor‐Fernández
- Departamento de Química Orgánica e Inorgánica Universidad de Oviedo Avenida Julián Clavería 8 33006 Oviedo Spain
| | - Iván Lavandera
- Departamento de Química Orgánica e Inorgánica Universidad de Oviedo Avenida Julián Clavería 8 33006 Oviedo Spain
| |
Collapse
|
48
|
Li Y, Yuan B, Sun Z, Zhang W. C–H bond functionalization reactions enabled by photobiocatalytic cascades. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
49
|
Yi D, Bayer T, Badenhorst CPS, Wu S, Doerr M, Höhne M, Bornscheuer UT. Recent trends in biocatalysis. Chem Soc Rev 2021; 50:8003-8049. [PMID: 34142684 PMCID: PMC8288269 DOI: 10.1039/d0cs01575j] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Indexed: 12/13/2022]
Abstract
Biocatalysis has undergone revolutionary progress in the past century. Benefited by the integration of multidisciplinary technologies, natural enzymatic reactions are constantly being explored. Protein engineering gives birth to robust biocatalysts that are widely used in industrial production. These research achievements have gradually constructed a network containing natural enzymatic synthesis pathways and artificially designed enzymatic cascades. Nowadays, the development of artificial intelligence, automation, and ultra-high-throughput technology provides infinite possibilities for the discovery of novel enzymes, enzymatic mechanisms and enzymatic cascades, and gradually complements the lack of remaining key steps in the pathway design of enzymatic total synthesis. Therefore, the research of biocatalysis is gradually moving towards the era of novel technology integration, intelligent manufacturing and enzymatic total synthesis.
Collapse
Affiliation(s)
- Dong Yi
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Thomas Bayer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Christoffel P. S. Badenhorst
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Shuke Wu
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Mark Doerr
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Matthias Höhne
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| |
Collapse
|
50
|
González‐Granda S, Lavandera I, Gotor‐Fernández V. Alcohol Dehydrogenases and N‐Heterocyclic Carbene Gold(I) Catalysts: Design of a Chemoenzymatic Cascade towards Optically Active β,β‐Disubstituted Allylic Alcohols. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sergio González‐Granda
- Organic and Inorganic Chemistry Department University of Oviedo Avenida Julián Clavería 8 33006 Oviedo Spain
| | - Iván Lavandera
- Organic and Inorganic Chemistry Department University of Oviedo Avenida Julián Clavería 8 33006 Oviedo Spain
| | - Vicente Gotor‐Fernández
- Organic and Inorganic Chemistry Department University of Oviedo Avenida Julián Clavería 8 33006 Oviedo Spain
| |
Collapse
|