1
|
Furota S, Kaneko M, Tsujimura S, Takeshita D, Nakamichi Y, Igarashi K, Nobu MK, Yoshikawa M, Asahina K, Fukaya C, Ishitsuka T, Shimada K. Bidirectional electro-enzymatic reaction of coenzyme F 420 using benzyl viologen and F 420-dependent sulfite reductase. Bioelectrochemistry 2025; 164:108922. [PMID: 39892156 DOI: 10.1016/j.bioelechem.2025.108922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/12/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Coenzyme F420 is recognized as a crucial electron carrier in methane-generating metabolism but, beyond this, has garnered significant attention for its role in diverse microbial physiologies and relevance in industrial, medical, and environmental applications. However, one limitation of current application of F420 is the necessity of chemical electron donors for its reduction. In this study, an electrochemical reaction system was designed to facilitate electron transfer between the electrode and F420 using F420-dependent sulfite reductase (Fsr) as the catalyst and benzyl viologen (BV) as the redox mediator. Photometric analysis and cyclic potential scanning demonstrated that the occurrence of bidirectional (reversible) electrochemical oxidation and reduction of F420 in this system depended on the electrode potential. The formal redox potential of F420 in this system was -540 mV vs. Ag|AgCl|sat. KCl, which aligned with values previously determined using biochemical assays.
Collapse
Affiliation(s)
- Satoshi Furota
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan.
| | - Masanori Kaneko
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
| | - Seiya Tsujimura
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan; Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-5358, Japan
| | - Daijiro Takeshita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Yusuke Nakamichi
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagami-yama, Higashihiroshima, Hiroshima 739-0046, Japan
| | - Kensuke Igarashi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517, Japan
| | - Masaru K Nobu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan; Institute for Extra-cutting-edge Science and Technology Avant-grade Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Miho Yoshikawa
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
| | - Kenta Asahina
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
| | - Chie Fukaya
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
| | - Toshie Ishitsuka
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
| | - Kazuma Shimada
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan; Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-5358, Japan
| |
Collapse
|
2
|
Richter I, Hasan M, Kramer JW, Wein P, Krabbe J, Wojtas KP, Stinear TP, Pidot SJ, Kloss F, Hertweck C, Lackner G. Deazaflavin metabolite produced by endosymbiotic bacteria controls fungal host reproduction. THE ISME JOURNAL 2024; 18:wrae074. [PMID: 38691425 PMCID: PMC11104420 DOI: 10.1093/ismejo/wrae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/16/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
The endosymbiosis between the pathogenic fungus Rhizopus microsporus and the toxin-producing bacterium Mycetohabitans rhizoxinica represents a unique example of host control by an endosymbiont. Fungal sporulation strictly depends on the presence of endosymbionts as well as bacterially produced secondary metabolites. However, an influence of primary metabolites on host control remained unexplored. Recently, we discovered that M. rhizoxinica produces FO and 3PG-F420, a derivative of the specialized redox cofactor F420. Whether FO/3PG-F420 plays a role in the symbiosis has yet to be investigated. Here, we report that FO, the precursor of 3PG-F420, is essential to the establishment of a stable symbiosis. Bioinformatic analysis revealed that the genetic inventory to produce cofactor 3PG-F420 is conserved in the genomes of eight endofungal Mycetohabitans strains. By developing a CRISPR/Cas-assisted base editing strategy for M. rhizoxinica, we generated mutant strains deficient in 3PG-F420 (M. rhizoxinica ΔcofC) and in both FO and 3PG-F420 (M. rhizoxinica ΔfbiC). Co-culture experiments demonstrated that the sporulating phenotype of apo-symbiotic R. microsporus is maintained upon reinfection with wild-type M. rhizoxinica or M. rhizoxinica ΔcofC. In contrast, R. microsporus is unable to sporulate when co-cultivated with M. rhizoxinica ΔfbiC, even though the fungus was observed by super-resolution fluorescence microscopy to be successfully colonized. Genetic and chemical complementation of the FO deficiency of M. rhizoxinica ΔfbiC led to restoration of fungal sporulation, signifying that FO is indispensable for establishing a functional symbiosis. Even though FO is known for its light-harvesting properties, our data illustrate an important role of FO in inter-kingdom communication.
Collapse
Affiliation(s)
- Ingrid Richter
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Thuringia, Germany
| | - Mahmudul Hasan
- Junior Research Group Synthetic Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Thuringia, Germany
| | - Johannes W Kramer
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Thuringia, Germany
| | - Philipp Wein
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Thuringia, Germany
| | - Jana Krabbe
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Thuringia, Germany
| | - K Philip Wojtas
- Transfer Group Anti-Infectives, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Thuringia, Germany
| | - Timothy P Stinear
- Department of Microbiology and Immunology, Doherty Institute, University of Melbourne, 3010 Melbourne, Victoria, Australia
| | - Sacha J Pidot
- Department of Microbiology and Immunology, Doherty Institute, University of Melbourne, 3010 Melbourne, Victoria, Australia
| | - Florian Kloss
- Transfer Group Anti-Infectives, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Thuringia, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Thuringia, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743 Jena, Thuringia, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Thuringia, Germany
| | - Gerald Lackner
- Junior Research Group Synthetic Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Thuringia, Germany
- Chair of Biochemistry of Microorganisms, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95326 Kulmbach, Bavaria, Germany
| |
Collapse
|
3
|
Last D, Hasan M, Rothenburger L, Braga D, Lackner G. High-yield production of coenzyme F 420 in Escherichia coli by fluorescence-based screening of multi-dimensional gene expression space. Metab Eng 2022; 73:158-167. [PMID: 35863619 DOI: 10.1016/j.ymben.2022.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/08/2022] [Revised: 07/04/2022] [Accepted: 07/14/2022] [Indexed: 10/17/2022]
Abstract
Coenzyme F420 is involved in bioprocesses such as biosynthesis of antibiotics by streptomycetes, prodrug activation in Mycobacterium tuberculosis, and methanogenesis in archaea. F420-dependent enzymes also attract interest as biocatalysts in organic chemistry. However, as only low F420 levels are produced in microorganisms, F420 availability is a serious bottleneck for research and application. Recent advances in our understanding of the F420 biosynthesis enabled heterologous overproduction of F420 in Escherichia coli, but the yields remained moderate. To address this issue, we rationally designed a synthetic operon for F420 biosynthesis in E. coli. However, it still led to the production of low amounts of F420 and undesired side-products. In order to strongly improve yield and purity, a screening approach was chosen to interrogate the gene expression-space of a combinatorial library based on diversified promotors and ribosome binding sites. The whole pathway was encoded by a two-operon construct. The first module ("core") addressed parts of the riboflavin biosynthesis pathway and FO synthase for the conversion of GTP to the stable F420 intermediate FO. The enzymes of the second module ("decoration") were chosen to turn FO into F420. The final construct included variations of T7 promoter strengths and ribosome binding site activity to vary the expression ratio for the eight genes involved in the pathway. Fluorescence-activated cell sorting was used to isolate clones of this library displaying strong F420-derived fluorescence. This approach yielded the highest titer of coenzyme F420 produced in the widely used organism E. coli so far. Production in standard LB medium offers a highly effective and simple production process that will facilitate basic research into unexplored F420-dependent bioprocesses as well as applications of F420-dependent enzymes in biocatalysis.
Collapse
Affiliation(s)
- Daniel Last
- Junior Research Group Synthetic Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Mahmudul Hasan
- Junior Research Group Synthetic Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Linda Rothenburger
- Core Facility Flow Cytometry, Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstr. 11, 07745, Jena, Germany
| | - Daniel Braga
- Junior Research Group Synthetic Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Gerald Lackner
- Junior Research Group Synthetic Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstr. 11a, 07745, Jena, Germany.
| |
Collapse
|
4
|
Diversification by CofC and Control by CofD Govern Biosynthesis and Evolution of Coenzyme F 420 and Its Derivative 3PG-F 420. mBio 2022; 13:e0350121. [PMID: 35038903 PMCID: PMC8764529 DOI: 10.1128/mbio.03501-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/17/2022] Open
Abstract
Coenzyme F420 is a microbial redox cofactor that mediates diverse physiological functions and is increasingly used for biocatalytic applications. Recently, diversified biosynthetic routes to F420 and the discovery of a derivative, 3PG-F420, were reported. 3PG-F420 is formed via activation of 3-phospho-d-glycerate (3-PG) by CofC, but the structural basis of substrate binding, its evolution, as well as the role of CofD in substrate selection remained elusive. Here, we present a crystal structure of the 3-PG-activating CofC from Mycetohabitans sp. B3 and define amino acids governing substrate specificity. Site-directed mutagenesis enabled bidirectional switching of specificity and thereby revealed the short evolutionary trajectory to 3PG-F420 formation. Furthermore, CofC stabilized its product, thus confirming the structure of the unstable molecule and revealing its binding mode. The CofD enzyme was shown to significantly contribute to the selection of related intermediates to control the specificity of the combined biosynthetic CofC/D step. These results imply the need to change the design of combined CofC/D activity assays. Taken together, this work presents novel mechanistic and structural insights into 3PG-F420 biosynthesis and evolution and opens perspectives for the discovery and enhanced biotechnological production of coenzyme F420 derivatives in the future. IMPORTANCE The microbial cofactor F420 is crucial for processes like methanogenesis, antibiotics biosynthesis, drug resistance, and biocatalysis. Recently, a novel derivative of F420 (3PG-F420) was discovered, enabling the production and use of F420 in heterologous hosts. By analyzing the crystal structure of a CofC homolog whose substrate choice leads to formation of 3PG-F420, we defined amino acid residues governing the special substrate selectivity. A diagnostic residue enabled reprogramming of the substrate specificity, thus mimicking the evolution of the novel cofactor derivative. Furthermore, a labile reaction product of CofC was revealed that has not been directly detected so far. CofD was shown to provide another layer of specificity of the combined CofC/D reaction, thus controlling the initial substrate choice of CofC. The latter finding resolves a current debate in the literature about the starting point of F420 biosynthesis in various organisms.
Collapse
|
5
|
Drenth J, Yang G, Paul CE, Fraaije MW. A Tailor-Made Deazaflavin-Mediated Recycling System for Artificial Nicotinamide Cofactor Biomimetics. ACS Catal 2021; 11:11561-11569. [PMID: 34557329 PMCID: PMC8453485 DOI: 10.1021/acscatal.1c03033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/06/2021] [Revised: 08/22/2021] [Indexed: 12/13/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD) and its 2'-phosphorylated form NADP are crucial cofactors for a large array of biocatalytically important redox enzymes. Their high cost and relatively poor stability, however, make them less attractive electron mediators for industrial processes. Nicotinamide cofactor biomimetics (NCBs) are easily synthesized, are inexpensive, and are also generally more stable than their natural counterparts. A bottleneck for the application of these artificial hydride carriers is the lack of efficient cofactor recycling methods. Therefore, we engineered the thermostable F420:NADPH oxidoreductase from Thermobifida fusca (Tfu-FNO), by structure-inspired site-directed mutagenesis, to accommodate the unnatural N1 substituents of eight NCBs. The extraordinarily low redox potential of the natural cofactor F420H2 was then exploited to reduce these NCBs. Wild-type enzyme had detectable activity toward all selected NCBs, with K m values in the millimolar range and k cat values ranging from 0.09 to 1.4 min-1. Saturation mutagenesis at positions Gly-29 and Pro-89 resulted in mutants with up to 139 times higher catalytic efficiencies. Mutant G29W showed a k cat value of 4.2 s-1 toward 1-benzyl-3-acetylpyridine (BAP+), which is similar to the k cat value for the natural substrate NADP+. The best Tfu-FNO variants for a specific NCB were then used for the recycling of catalytic amounts of these nicotinamides in conversion experiments with the thermostable ene-reductase from Thermus scotoductus (TsOYE). We were able to fully convert 10 mM ketoisophorone with BAP+ within 16 h, using F420 or its artificial biomimetic FOP (FO-2'-phosphate) as an efficient electron mediator and glucose-6-phosphate as an electron donor. The generated toolbox of thermostable and NCB-dependent Tfu-FNO variants offers powerful cofactor regeneration biocatalysts for the reduction of several artificial nicotinamide biomimetics at both ambient and high temperatures. In fact, to our knowledge, this enzymatic method seems to be the best-performing NCB-recycling system for BNAH and BAPH thus far.
Collapse
Affiliation(s)
- Jeroen Drenth
- Molecular
Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Guang Yang
- Molecular
Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Caroline E. Paul
- Department
of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Marco W. Fraaije
- Molecular
Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| |
Collapse
|
6
|
Grinter R, Greening C. Cofactor F420: an expanded view of its distribution, biosynthesis and roles in bacteria and archaea. FEMS Microbiol Rev 2021; 45:fuab021. [PMID: 33851978 PMCID: PMC8498797 DOI: 10.1093/femsre/fuab021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/05/2021] [Accepted: 04/11/2021] [Indexed: 12/11/2022] Open
Abstract
Many bacteria and archaea produce the redox cofactor F420. F420 is structurally similar to the cofactors FAD and FMN but is catalytically more similar to NAD and NADP. These properties allow F420 to catalyze challenging redox reactions, including key steps in methanogenesis, antibiotic biosynthesis and xenobiotic biodegradation. In the last 5 years, there has been much progress in understanding its distribution, biosynthesis, role and applications. Whereas F420 was previously thought to be confined to Actinobacteria and Euryarchaeota, new evidence indicates it is synthesized across the bacterial and archaeal domains, as a result of extensive horizontal and vertical biosynthetic gene transfer. F420 was thought to be synthesized through one biosynthetic pathway; however, recent advances have revealed variants of this pathway and have resolved their key biosynthetic steps. In parallel, new F420-dependent biosynthetic and metabolic processes have been discovered. These advances have enabled the heterologous production of F420 and identified enantioselective F420H2-dependent reductases for biocatalysis. New research has also helped resolve how microorganisms use F420 to influence human and environmental health, providing opportunities for tuberculosis treatment and methane mitigation. A total of 50 years since its discovery, multiple paradigms associated with F420 have shifted, and new F420-dependent organisms and processes continue to be discovered.
Collapse
Affiliation(s)
- Rhys Grinter
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Chris Greening
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
7
|
Halling PJ. Kinetics of enzyme-catalysed desymmetrisation of prochiral substrates: product enantiomeric excess is not always constant. Beilstein J Org Chem 2021; 17:873-884. [PMID: 33968260 PMCID: PMC8077619 DOI: 10.3762/bjoc.17.73] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/01/2021] [Accepted: 04/07/2021] [Indexed: 11/28/2022] Open
Abstract
The kinetics of enzymatic desymmetrisation were analysed for the most common kinetic mechanisms: ternary complex ordered (prochiral ketone reduction); ping-pong second (ketone amination, diol esterification, desymmetrisation in the second half reaction); ping-pong first (diol ester hydrolysis) and ping-pong both (prochiral diacids). For plausible values of enzyme kinetic parameters, the product enantiomeric excess (ee) can decline substantially as the reaction proceeds to high conversion. For example, an ee of 0.95 at the start of the reaction can decline to less than 0.5 at 95% of equilibrium conversion, but for different enzyme properties it will remain almost unchanged. For most mechanisms a single function of multiple enzyme rate constants (which can be termed ee decline parameter, eeDP) accounts for the major effect on the tendency for the ee to decline. For some mechanisms, the concentrations or ratios of the starting materials have an important influence on the fall in ee. For the application of enzymatic desymmetrisation it is important to study if and how the product ee declines at high conversion.
Collapse
Affiliation(s)
- Peter J Halling
- WestCHEM, Dept Pure & Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, Scotland, UK
| |
Collapse
|
8
|
Martin C, Tjallinks G, Trajkovic M, Fraaije MW. Facile Stereoselective Reduction of Prochiral Ketones by using an F 420 -dependent Alcohol Dehydrogenase. Chembiochem 2021; 22:156-159. [PMID: 32935896 PMCID: PMC7820951 DOI: 10.1002/cbic.202000651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/15/2020] [Indexed: 12/18/2022]
Abstract
Effective procedures for the synthesis of optically pure alcohols are highly valuable. A commonly employed method involves the biocatalytic reduction of prochiral ketones. This is typically achieved by using nicotinamide cofactor-dependent reductases. In this work, we demonstrate that a rather unexplored class of enzymes can also be used for this. We used an F420 -dependent alcohol dehydrogenase (ADF) from Methanoculleus thermophilicus that was found to reduce various ketones to enantiopure alcohols. The respective (S) alcohols were obtained in excellent enantiopurity (>99 % ee). Furthermore, we discovered that the deazaflavoenzyme can be used as a self-sufficient system by merely using a sacrificial cosubstrate (isopropanol) and a catalytic amount of cofactor F420 or the unnatural cofactor FOP to achieve full conversion. This study reveals that deazaflavoenzymes complement the biocatalytic toolbox for enantioselective ketone reductions.
Collapse
Affiliation(s)
- Caterina Martin
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 4GroningenThe Netherlands
| | - Gwen Tjallinks
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 4GroningenThe Netherlands
| | - Milos Trajkovic
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 4GroningenThe Netherlands
| | - Marco W. Fraaije
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 4GroningenThe Netherlands
| |
Collapse
|