1
|
Lee M, Byun WG, Son S, Park SB. Development of a molecular glue-based Lin28 degrader to regulate cellular proliferation and stemness. Chem Commun (Camb) 2024; 60:12525-12528. [PMID: 39324213 DOI: 10.1039/d4cc03614j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Let-7 microRNAs (miRNAs) regulate cellular processes including stemness and proliferation. Lin28, an RNA-binding protein, controls let-7 miRNA biogenesis and is a key factor in maintaining stem cell properties. We developed SB1349, a novel molecular glue-based degrader targeting Lin28. SB1349 induces Lin28 degradation through a proteasome-dependent pathway, enhances let-7 miRNA levels, and downregulates oncogenes c-Myc and IMP1. SB1349 also promotes the differentiation in neuroblastoma cells, highlighting its potential as a therapeutic agent for various diseases.
Collapse
Affiliation(s)
- Minha Lee
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul, 08826, Korea.
| | - Wan Gi Byun
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul, 08826, Korea.
| | - Sumin Son
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul, 08826, Korea.
| | - Seung Bum Park
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
2
|
Singh V, Singh A, Liu AJ, Fuchs SY, Sharma AK, Spiegelman VS. RNA Binding Proteins as Potential Therapeutic Targets in Colorectal Cancer. Cancers (Basel) 2024; 16:3502. [PMID: 39456596 PMCID: PMC11506615 DOI: 10.3390/cancers16203502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
RNA-binding proteins (RBPs) play critical roles in regulating post-transcriptional gene expression, managing processes such as mRNA splicing, stability, and translation. In normal intestine, RBPs maintain the tissue homeostasis, but when dysregulated, they can drive colorectal cancer (CRC) development and progression. Understanding the molecular mechanisms behind CRC is vital for developing novel therapeutic strategies, and RBPs are emerging as key players in this area. This review highlights the roles of several RBPs, including LIN28, IGF2BP1-3, Musashi, HuR, and CELF1, in CRC. These RBPs regulate key oncogenes and tumor suppressor genes by influencing mRNA stability and translation. While targeting RBPs poses challenges due to their complex interactions with mRNAs, recent advances in drug discovery have identified small molecule inhibitors that disrupt these interactions. These inhibitors, which target LIN28, IGF2BPs, Musashi, CELF1, and HuR, have shown promising results in preclinical studies. Their ability to modulate RBP activity presents a new therapeutic avenue for treating CRC. In conclusion, RBPs offer significant potential as therapeutic targets in CRC. Although technical challenges remain, ongoing research into the molecular mechanisms of RBPs and the development of selective, potent, and bioavailable inhibitors should lead to more effective treatments and improved outcomes in CRC.
Collapse
Affiliation(s)
- Vikash Singh
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (V.S.)
| | - Amandeep Singh
- Department of Pharmacology, Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (A.S.); (A.K.S.)
| | - Alvin John Liu
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (V.S.)
| | - Serge Y. Fuchs
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Arun K. Sharma
- Department of Pharmacology, Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (A.S.); (A.K.S.)
| | - Vladimir S. Spiegelman
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (V.S.)
| |
Collapse
|
3
|
Goebel GL, Giannino N, Lampe P, Qiu X, Schloßhauer JL, Imig J, Sievers S, Wu P. Profiling Cellular Morphological Changes Induced by Dual-Targeting PROTACs of Aurora Kinase and RNA-Binding Protein YTHDF2. Chembiochem 2024; 25:e202400183. [PMID: 38837838 DOI: 10.1002/cbic.202400183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Proteolysis targeting chimeras (PROTACs) are new chemical modalities that degrade proteins of interest, including established kinase targets and emerging RNA-binding proteins (RBPs). Whereas diverse sets of biochemical, biophysical and cellular assays are available for the evaluation and optimizations of PROTACs in understanding the involved ubiquitin-proteasome-mediated degradation mechanism and the structure-degradation relationship, a phenotypic method profiling the cellular morphological changes is rarely used. In this study, first, we reported the only examples of PROTACs degrading the mRNA-binding protein YTHDF2 via screening of multikinase PROTACs. Second, we reported the profiling of cellular morphological changes of the dual kinase- and RBP-targeting PROTACs using the unbiased cell painting assay (CPA). The CPA analysis revealed the high biosimilarity with the established aurora kinase cluster and annotated aurora kinase inhibitors, which reflected the association between YTHDF2 and the aurora kinase signaling network. Broadly, the results demonstrated that the cell painting assay can be a straightforward and powerful approach to evaluate PROTACs. Complementary to the existing biochemical, biophysical and cellular assays, CPA provided a new perspective in characterizing PROTACs at the cellular morphology.
Collapse
Affiliation(s)
- Georg L Goebel
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, Dortmund, 44227, Germany
| | - Nicole Giannino
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
| | - Philipp Lampe
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Compound Management and Screening Center, Otto-Hahn Str. 15, Dortmund, 44227, Germany
| | - Xiaqiu Qiu
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, Dortmund, 44227, Germany
| | - Jeffrey L Schloßhauer
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
| | - Jochen Imig
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
| | - Sonja Sievers
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Compound Management and Screening Center, Otto-Hahn Str. 15, Dortmund, 44227, Germany
| | - Peng Wu
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, Dortmund, 44227, Germany
| |
Collapse
|
4
|
Raja R, Sundararaj R, Kandasamy R. Identification of small molecule inhibitors against Lin28/let-7 to suppress tumor progression and its alleviation role in LIN28-dependent glucose metabolism. Med Oncol 2024; 41:118. [PMID: 38630184 DOI: 10.1007/s12032-024-02350-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/04/2024] [Indexed: 04/19/2024]
Abstract
The reciprocal suppression of an RNA-binding protein LIN28 (human abnormal cell lineage 28) and miRNA Let-7 (Lethal 7) is considered to have a prime role in hepatocellular carcinoma (HCC). Though targeting this inhibition interaction is effective for therapeutics, it causes other unfavorable effects on glucose metabolism and increased insulin resistance. Hence, this study aims to identify small molecules targeting Lin28/let-7 interaction along with additional potency to improve insulin sensitivity. Of 22,14,996 small molecules screened by high throughput virtual screening, 6 molecules, namely 41354, 1558, 12437, 23837, 15710, and 8319 were able to block the LIN28 interaction with let-7 and increase the insulin sensitivity via interacting with PPARγ (peroxisome proliferator-activated receptors γ). MM-GBSA (Molecular Mechanics-Generalized Born Surface Area) analysis is used to re-score the binding affinity of docked complexes. Upon further analysis, it is also seen that these molecules have superior ADME (Absorption, Distribution, Metabolism, and Excretion) properties and form stable complexes with the targets for a significant period in a biologically simulated environment (Molecular Dynamics simulation) for 100 ns. From our results, we hypothesize that these identified 6 small molecules can be potential candidates for HCC treatment and the glucose metabolic disorder caused by the HCC treatment.
Collapse
Affiliation(s)
- Rachanaa Raja
- Centre for Excellence in Nanobio Translational Research, Department of Pharmaceutical Technology, University College of Engineering, Anna University (BIT Campus), Tiruchirappalli, Tamil Nadu, India
| | - Rajamanikandan Sundararaj
- Centre for Drug Discovery, Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - Ruckmani Kandasamy
- Centre for Excellence in Nanobio Translational Research, Department of Pharmaceutical Technology, University College of Engineering, Anna University (BIT Campus), Tiruchirappalli, Tamil Nadu, India.
| |
Collapse
|
5
|
Borgelt L, Hohnen L, Pallesen JS, Hommen P, Goebel GL, Bosica F, Liu Y, O’Mahony G, Wu P. N-Biphenyl Pyrrolinones and Dibenzofurans as RNA-Binding Protein LIN28 Inhibitors Disrupting the LIN28- Let-7 Interaction. ACS Med Chem Lett 2023; 14:1707-1715. [PMID: 38116413 PMCID: PMC10726440 DOI: 10.1021/acsmedchemlett.3c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/27/2023] [Accepted: 11/08/2023] [Indexed: 12/21/2023] Open
Abstract
The RNA-binding protein LIN28 is a regulator of miRNA let-7 biogenesis. Inhibitors of LIN28 are highly sought after given the central role that LIN28 plays in tumorigenesis and development of cancer stem cells as well as LIN28's association with poor clinical prognosis. Although LIN28 inhibitors of different scaffolds have been reported, the potential of most LIN28 inhibiting small molecules was not fully explored since very limited structure-activity relationship (SAR) studies have been performed. We previously identified trisubstituted pyrrolinones as a new class of LIN28 inhibitors disrupting the LIN28-let-7 interaction. Here, we performed extensive SAR by evaluating 95 small molecules and identified new trisubstituted pyrrolinones featuring either an N-biphenyl or N-dibenzofuran substituent, overthrowing the existing conclusion that a salicylic acid moiety is indispensable for activity. Exchange of the negatively charged salicylic acid moiety in LIN28 inhibitors with a heterocyclic substituent is beneficial for membrane permeability, leading to increased activity in a cellular assay, and will potentially reduce toxicity.
Collapse
Affiliation(s)
- Lydia Borgelt
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Otto-Hahn Str. 15, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Otto-Hahn Str. 11, Dortmund 44227, Germany
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn
Str. 6, Dortmund 44227, Germany
| | - Lisa Hohnen
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Otto-Hahn Str. 15, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Otto-Hahn Str. 11, Dortmund 44227, Germany
- Faculty
of Chemistry and Biochemistry, Ruhr-University
Bochum, Universitätsstr.
150, Bochum 44801, Germany
| | - Jakob S. Pallesen
- Medicinal
Chemistry, Research and Early Development, Cardiovascular, Renal and
Metabolism, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Mölndal, Sweden
| | - Pascal Hommen
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Otto-Hahn Str. 15, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Otto-Hahn Str. 11, Dortmund 44227, Germany
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn
Str. 6, Dortmund 44227, Germany
| | - Georg L. Goebel
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Otto-Hahn Str. 15, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Otto-Hahn Str. 11, Dortmund 44227, Germany
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn
Str. 6, Dortmund 44227, Germany
| | - Francesco Bosica
- Medicinal
Chemistry, Research and Early Development, Cardiovascular, Renal and
Metabolism, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Mölndal, Sweden
| | - Yang Liu
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Otto-Hahn Str. 15, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Otto-Hahn Str. 11, Dortmund 44227, Germany
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn
Str. 6, Dortmund 44227, Germany
| | - Gavin O’Mahony
- Medicinal
Chemistry, Research and Early Development, Cardiovascular, Renal and
Metabolism, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Mölndal, Sweden
| | - Peng Wu
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Otto-Hahn Str. 15, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Otto-Hahn Str. 11, Dortmund 44227, Germany
| |
Collapse
|
6
|
Borgelt L, Huang F, Hohnen L, Qiu X, Goebel GL, Hommen P, Wu P. Spirocyclic Chromenopyrazole Inhibitors Disrupting the Interaction between the RNA-Binding Protein LIN28 and Let-7. Chembiochem 2023; 24:e202300168. [PMID: 37129525 DOI: 10.1002/cbic.202300168] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/03/2023]
Abstract
Small-molecule inhibitors of the RNA-binding and regulating protein LIN28 have the potential to be developed as chemical probes for biological perturbation and as therapeutic candidates. Reported small molecules disrupting the interaction between LIN28 and let-7 miRNA suffer from moderate to weak inhibitory activity and flat structure-activity relationship, which hindered the development of next-generation LIN28 inhibitors that warrant further evaluations. We report herein the identification of new LIN28 inhibitors utilizing a spirocyclization strategy based on a chromenopyrazole scaffold. Representative compounds 2-5 showed potent in vitro inhibitory activity against LIN28-let-7 interaction and single-digit micromolar potency in inhibiting the proliferation of LIN28-expressing JAR cancer cells. The spirocyclic compound 5 incorporated a position that is amenable for functional group appendage and further structural modifications. The binding mode of compound 5 with the LIN28 cold shock domain was rationalized via a molecular docking analysis.
Collapse
Affiliation(s)
- Lydia Borgelt
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 15, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, Dortmund, 44227, Germany
| | - Fubao Huang
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 15, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
| | - Lisa Hohnen
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 15, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstr. 150, Bochum, 44780, Germany
| | - Xiaqiu Qiu
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 15, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, Dortmund, 44227, Germany
| | - Georg L Goebel
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 15, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, Dortmund, 44227, Germany
| | - Pascal Hommen
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 15, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, Dortmund, 44227, Germany
| | - Peng Wu
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 15, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
| |
Collapse
|