1
|
Mennen RH, Oldenburger MM, Piersma AH. Endoderm and mesoderm derivatives in embryonic stem cell differentiation and their use in developmental toxicity testing. Reprod Toxicol 2021; 107:44-59. [PMID: 34861400 DOI: 10.1016/j.reprotox.2021.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 02/06/2023]
Abstract
Embryonic stem cell differentiation models have increasingly been applied in non-animal test systems for developmental toxicity. After the initial focus on cardiac differentiation, attention has also included an array of neuro-ectodermal differentiation routes. Alternative differentiation routes in the mesodermal and endodermal germ lines have received less attention. This review provides an inventory of achievements in the latter areas of embryonic stem cell differentiation, with a view to possibilities for their use in non-animal test systems in developmental toxicology. This includes murine and human stem cell differentiation models, and also gains information from the field of stem cell use in regenerative medicine. Endodermal stem cell derivatives produced in vitro include hepatocytes, pancreatic cells, lung epithelium, and intestinal epithelium, and mesodermal derivatives include cardiac muscle, osteogenic, vascular and hemopoietic cells. This inventory provides an overview of studies on the different cell types together with biomarkers and culture conditions that stimulate these differentiation routes from embryonic stem cells. These models may be used to expand the spectrum of embryonic stem cell based new approach methodologies in non-animal developmental toxicity testing.
Collapse
Affiliation(s)
- R H Mennen
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands.
| | | | - A H Piersma
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
2
|
Gooraninejad S, Hoveizi E, Hushmandi K, Gooraninejad S, Tabatabaei SRF. Small Molecule Differentiate PDX1-Expressing Cells Derived from Human Endometrial Stem Cells on PAN Electrospun Nanofibrous Scaffold: Applications for the Treatment of Diabetes in Rat. Mol Neurobiol 2020; 57:3969-3978. [PMID: 32632606 DOI: 10.1007/s12035-020-02007-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/26/2020] [Indexed: 12/30/2022]
Abstract
In this study, we designed an engineered tissue and transplanted it to an animal model, trying to take an effective step toward meeting the needs of diabetic patients. Here, human endometrial cells were differentiated into PDX1-expressing cells using a small molecule of Y-27632 on polyacrylonitrile (PAN) electrospun scaffolds and transplanted into diabetic rats. PAN nanofibers were made by electrospinning. RT-PCR and immunocytochemical analysis were performed to express pancreatic precursor (PP) genes. The differentiated cells were then transplanted into the abdominal cavity of diabetic rats with Streptozotocin. In another group of rats, differentiated cells were injected through the tail. Blood glucose was measured 7, 14, and 28 days after transplantation, and rat weight was also measured. The results showed that the expression of PP markers including Sox-17, Ngn3, Pdx1, and NKx2.2 genes was significantly increased in differentiated cells compared to the control group. In diabetic rats receiving differentiated cells, both transplanted and injected, glucose concentration as well as body weight improved compared to the control group. Rats receiving transplants in the peritoneum had a lower blood glucose concentration than those in the cell receiving group by injection, and the cell receiving group in the form of injections was more effective in increasing the body weight of rats than in the other groups. According to the results of the study, the transplantation of PP from endometrium using PAN scaffolding at the site of peritoneum could be recommended for the treatment of diabetes, although further studies are needed to provide a complete cure.
Collapse
Affiliation(s)
- Saad Gooraninejad
- Department of Clinical Science, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Elham Hoveizi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Kiavash Hushmandi
- DVM Graduate, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sina Gooraninejad
- DVM Graduate, Faculty of Veterinary Medicine, Islamic Azad Branch, University of Shushtar, Shushtar, Iran
| | - Seyed Reza Fatemi Tabatabaei
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
3
|
Ghorbani-Dalini S, Azarpira N, Sangtarash MH, Soleimanpour-Lichaei HR, Yaghobi R, Lorzadeh S, Sabet A, Sarshar M, Al-Abdullah IH. Optimization of activin-A: a breakthrough in differentiation of human induced pluripotent stem cell into definitive endoderm. 3 Biotech 2020; 10:215. [PMID: 32355589 DOI: 10.1007/s13205-020-02215-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 04/18/2020] [Indexed: 01/09/2023] Open
Abstract
The first step in differentiation of pluripotent stem cell toward endoderm-derived cell/organ is differentiation to definitive endoderm (DE) which is the central issue in developmental biology. Based on several evidences, we hypothesized that activin-A optimization as well as replacement of fetal bovine serum (FBS) with knockout serum replacement (KSR) is important for differentiation of induced pluripotent stem cell (iPSC) line into DE. Therefore, a stepwise differentiation protocol was applied on R1-hiPSC1 cell line. At first, activin-A concentration (30, 50, 70 and 100 ng/ml) was optimized. Then, substitution of FBS with KSR was evaluated across four treatment groups. The amount of differentiation of iPSC toward DE was determined by quantitative gene expression analyses of pluripotency (NANOG and OCT4), definitive endoderm (SOX17 and FOXA2) and endoderm-derived organs (PDX1, NEUROG3, and PAX6). Based on gene expression analyses, the more decrease in concentrations of activin-A can increase the differentiation of iPSC into DE, therefore, 30 ng/ml activin-A was chosen as the best concentration for the differentiation of R1-hiPSC1 line toward endoderm-derived organ. Moreover, complete replacement of FBS with gradually increased KSR improved the differentiation of iPSC toward DE. For this reason, the addition of 0% KSR at day 1, 0.2% at day 2 and 2% for the next 3 days was the best optimal protocol of the differentiation of iPSC toward DE. Overall, our results demonstrate that optimization of activin-A is important for differentiation of iPSC line. Furthermore, the replacement of FBS with KSR can improve the efficiency of iPSC differentiation toward DE.
Collapse
Affiliation(s)
| | - Negar Azarpira
- 1Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Hamid Reza Soleimanpour-Lichaei
- 3Department of Stem Cells and Regenerative Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ramin Yaghobi
- 1Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahrokh Lorzadeh
- 1Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alice Sabet
- 1Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Meysam Sarshar
- 4Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory Affiliated to Institute Pasteur Italia-Cenci Bolognetti Foundation, 00185 Rome, Italy
- 5Microbiology Research Center (MRC), Pasteur Institute of Iran, 1316943551 Tehran, Iran
| | - Ismail H Al-Abdullah
- 6Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, USA
| |
Collapse
|
4
|
Khoobi MM, Naddaf H, Hoveizi E, Mohammadi T. Silymarin effect on experimental bone defect repair in rat following implantation of the electrospun PLA/carbon nanotubes scaffold associated with Wharton's jelly mesenchymal stem cells. J Biomed Mater Res A 2020; 108:1944-1954. [PMID: 32323447 DOI: 10.1002/jbm.a.36957] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/19/2020] [Accepted: 03/28/2020] [Indexed: 01/11/2023]
Abstract
In this study, the ability of silymarin to heal rat calvarial bone critical defects with mesenchymal stem cells isolated from human Wharton's jelly (HWJMSC) cultured on the electrospun scaffold of poly (lactic acid)/carbon nanotube (PLA/CNT) has been examined. In this study, 20 adult male Wistar rats were divided into four groups of five each. Under general anesthesia, 8 mm defects were created in the calvarial bone of the rats. Then, study groups were defined as no treatment group, the scaffold alone, the scaffold and HWJMSCs, and the scaffold/cells plus oral silymarin, respectively. The histomorphometric study was performed using H&E staining and Goldner's Masson trichrome as specific staining. The results of this study showed that the electrospun PLA/CNT scaffold is a biocompatible scaffold and HWJMSCs can considerably attach and proliferate on this scaffold, and the scaffold itself is also a suitable option for improving the bone repair process. The results of the histomorphometric analysis also showed a significantly higher amount of recently formed bone in the silymarin group plus scaffold/cells compared to the scaffold and cell group alone (p < .05). Utilizing silymarin plus HWJMSCs cultured on PLA/CNT scaffold can be used as a suitable method for the process of osteogenesis and bone repair.
Collapse
Affiliation(s)
- Mohammad Mohsen Khoobi
- Department of Clinical Sciences, Faculty of Veterinary, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Hadi Naddaf
- Department of Clinical Sciences, Faculty of Veterinary, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Elham Hoveizi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Tayebeh Mohammadi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| |
Collapse
|
5
|
Hoveizi E, Mohammadi T. Differentiation of endometrial stem cells into insulin-producing cells using signaling molecules and zinc oxide nanoparticles, and three-dimensional culture on nanofibrous scaffolds. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:101. [PMID: 31473826 DOI: 10.1007/s10856-019-6301-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/17/2019] [Indexed: 06/10/2023]
Abstract
Diabetes mellitus is the most common metabolic disorder with a high mortality and morbidity rate. A new promising strategy to treat DM is pancreatic tissue engineering. We described a 3D culture system accompanied by signaling factors to differentiate hEnSCs into IPCs in the presence of nZnO. We isolated EnSCs and cultured it in DMEM/F12 medium. Nanofibrous PLA/Cs scaffold was prepared through the electrospinning method. The morphological properties of the scaffolds and cells were evaluated by SEM. MTT assay was used to investigate the metabolic activity of the hEnSCs cultured on the scaffolds and a four-stage protocol was applied to differentiate hEnSCs. The differentiated cells were tested for pancreatic markers by immunocytochemistry, qRT-PCR and DTZ staining. The results of this study revealed that hEnSCs cultured on PLA/Cs scaffold and treated with nZnO can efficiently differentiate into IPCs. The examination of differentiated cell morphology showed their near similarity with pancreatic islet cells, and DTZ staining emphasized the presence of insulin granules inside their cytoplasm. Moreover, qRT-PCR and immunofluorescent staining results showed the efficient expression of specific gene markers of IPCs in resultant differentiated cells. Moreover, PLA/CS and nZnO were able to provide a good nanoenvironment for the differentiation of hEnSCs into IPCS the in presence of other molecules.
Collapse
Affiliation(s)
- Elham Hoveizi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Tayebeh Mohammadi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Department of Basic Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| |
Collapse
|
6
|
Hoveizi E, Tavakol S, Shirian S, Sanamiri K. Electrospun Nanofibers for Diabetes: Tissue Engineering and Cell-Based Therapies. Curr Stem Cell Res Ther 2019; 14:152-168. [PMID: 30338744 DOI: 10.2174/1574888x13666181018150107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/11/2018] [Accepted: 09/05/2018] [Indexed: 02/08/2023]
Abstract
Diabetes mellitus is an autoimmune disease which causes loss of insulin secretion producing hyperglycemia by promoting progressive destruction of pancreatic β cells. An ideal therapeutic approach to manage diabetes mellitus is pancreatic β cells replacement. The aim of this review article was to evaluate the role of nanofibrous scaffolds and stem cells in the treatment of diabetes mellitus. Various studies have pointed out that application of electrospun biomaterials has considerably attracted researchers in the field of tissue engineering. The principles of cell therapy for diabetes have been reviewed in the first part of this article, while the usability of tissue engineering as a new therapeutic approach is discussed in the second part.
Collapse
Affiliation(s)
- Elham Hoveizi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.,Stem Cells and Transgenic Technology Research Center (STTRC), Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sadegh Shirian
- Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran.,Shiraz Molecular Research Center, Dr. Daneshbod Pathology Lab, Shiraz, Iran
| | - Khadije Sanamiri
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| |
Collapse
|
7
|
Hoveizi E, Ebrahimi‐Barough S. Embryonic stem cells differentiated into neuron‐like cells using SB431542 small molecule on nanofibrous PLA/CS/Wax scaffold. J Cell Physiol 2019; 234:19565-19573. [DOI: 10.1002/jcp.28554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 03/13/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Elham Hoveizi
- Department of Biology, Faculty of Science Shahid Chamran University of Ahvaz Ahvaz Iran
| | - Somayeh Ebrahimi‐Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
8
|
Hoveizi E, Tavakol S. Therapeutic potential of human mesenchymal stem cells derived beta cell precursors on a nanofibrous scaffold: An approach to treat diabetes mellitus. J Cell Physiol 2018; 234:10196-10204. [PMID: 30387142 DOI: 10.1002/jcp.27689] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/09/2018] [Indexed: 12/31/2022]
Abstract
Diabetes mellitus is an autoimmune and chronic disorder that is rapidly expanding worldwide due to increasing obesity. In the current study, we were able to design a reliable 3-dimensional differentiation process of human Wharton's jelly mesenchymal stem cells into pancreatic beta cell precursors (PBCPs) and detected that transplanted PBCPs could improve hyperglycemia in a diabetes-induced model in mice. Polylactic acid/chitosan nanofibrous scaffold was prepared using an electrospinning method. Quantitative real-time reverse transcription-polymerase chain reaction and immunocytochemistry analysis were carried out to assess pancreatic marker expression in the differentiated cells. PBCPs were transplanted under the kidney capsule of diabetic mice that induced streptozotocin injection 14 days before the transplantation. Moreover, an intraperitoneal glucose tolerance test (ipGTT) was carried out 2 and 4 weeks after the transplantation to measure the reaction to a sudden increase of the blood glucose level in the transplanted animals. The results indicated that the expression of SRY (sex determining region Y)-box (Sox17), forkhead box A2 (FoxA2), pancreatic and duodenal homeobox 1 (Pdx1), neurogenin 3 (Ngn3), hepatic nuclear factor 4, alpha (Hnf4α), and NK2 homeobox 2 (Nkx2.2) were increased significantly in the differentiated cells compared with that of the control group. In the current study, the diabetic disease was confirmed by measuring blood glucose and proved by conducting some other behavioral tests. After the PBCPs transplantation in a diabetic model, the ipGTT and hyperglycemia investigation during the determinant times confirmed the disease's significant improvement in the experimental models. In this study, some preclinical data suggested that the transplantation of PBCPs associated with appropriate nanofiber scaffold can be utilized for the treatment of diabetes models. In addition, studies are required to elucidate the molecular mechanism of PBCPs acting in diabetes models before being used for patients with diabetes.
Collapse
Affiliation(s)
- Elham Hoveizi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.,Stem Cells and Transgenic Technology Research Center (STTRC), Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Elham H, Mahmoud H. The Effect of Pancreas Islet-Releasing Factors on the Direction of Embryonic Stem Cells Towards Pdx1 Expressing Cells. Appl Biochem Biotechnol 2018; 186:371-383. [DOI: 10.1007/s12010-018-2733-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 03/12/2018] [Indexed: 11/24/2022]
|
10
|
Elham H, Fardin F, Mahmod H. The roles of the co-culture of mEScs with pancreatic islets and liver stromal cells in the differentiation of definitive endoderm cells. Biologicals 2017; 45:9-14. [DOI: 10.1016/j.biologicals.2016.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 12/09/2022] Open
|
11
|
|