1
|
LCMT1 indicates poor prognosis and is essential for cell proliferation in hepatocellular carcinoma. Transl Oncol 2022; 27:101572. [PMID: 36401967 PMCID: PMC9673118 DOI: 10.1016/j.tranon.2022.101572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/28/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most malignant type of cancers. Leuci carboxyl methyltransferase 1 (LCMT1) is a protein methyltransferase that plays an improtant regulatory role in both normal and cancer cells. The aim of this study is to evaluate the expression pattern and clinical significance of LCMT1 in HCC. METHODS The expression pattern and clinical relevance of LCMT1 were determined using the Gene Expression Omnibus (GEO) database, the Cancer Genome Atlas (TCGA) program, and our datasets. Gain-of-function and loss-of-function studies were employed to investigate the cellular functions of LCMT1 in vitro and in vivo. Quantitative real-time polymerase chain reaction (RT-PCR) analysis, western blotting, enzymatic assay, and high-performance liquid chromatography were applied to reveal the underlying molecular functions of LCMT1. RESULTS LCMT1 was upregulated in human HCC tissues, which correlated with a "poor" prognosis. The siRNA-mediated knockdown of LCMT1 inhibited glycolysis, promoted mitochondrial dysfunction, and increased intracellular pyruvate levels by upregulating the expression of alani-neglyoxylate and serine-pyruvate aminotransferase (AGXT). The overexpression of LCMT1 showed the opposite results. Silencing LCMT1 inhibited the proliferation of HCC cells in vitro and reduced the growth of tumor xenografts in mice. Mechanistically, the effect of LCMT1 on the proliferation of HCC cells was partially dependent on PP2A. CONCLUSIONS Our data revealed a novel role of LCMT1 in the proliferation of HCC cells. In addition, we provided novel insights into the effects of glycolysis-related pathways on the LCMT1regulated progression of HCC, suggesting LCMT1 as a novel therapeutic target for HCC therapy.
Collapse
|
2
|
Ting T, Yiwen C, Jianquan C, Chao L, Shengjing X, Min Z, Fang C. PP2Acα regulates epidermal cell proliferation via the EGFR/AKT/mTOR pathway in psoriasis-like skin lesions caused by PPP2CA deficiency. Exp Dermatol 2022; 31:1154-1164. [PMID: 35298048 DOI: 10.1111/exd.14567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022]
Abstract
Psoriasis, a common skin disease, endangers human physiological and mental health; however, its pathogenesis remains unclear. Keratinocyte proliferation is a typical pathological characteristic of psoriasis. Serine/threonine protein phosphatase 2A (PP2A) is one of the most important phosphatases for maintaining normal phosphorylation levels in humans. PP2Acα is the alpha subtype of the PP2A C subunit (encoded by PPP2CA), which maintains the catalytic functions of PP2A. Epidermal growth factor receptor (EGFR) is activated by phosphorylation (p-EGFR) to regulate the downstream signaling pathway to promote epidermal cell proliferation. Previous studies have found that PPP2CA induced epidermal hyperplasia, keratinization, and other pathological phenomena similar to those in mouse models of psoriasis. The present study showed that PP2Acα negatively regulated EGFR phosphorylation and epidermal cell proliferation, and EGFR inhibitors could alleviate PP2Acα by inhibiting epidermal cell proliferation. This study further examined the effect of mechanisms on epidermal cell proliferation and the downstream signaling pathway of EGFR using molecular technological methods to explore new ideas for treating psoriasis.
Collapse
Affiliation(s)
- Tao Ting
- Department of Spleen and Stomach, Jiangsu Province Hospital of Chinese Medicine
| | - Chen Yiwen
- Department of Dermatology, The Affiliated Jiangning Hospital of Nanjing Medical University District, Nanjing City, China
| | - Chen Jianquan
- Central Laboratory, The Affiliated Jiangning Hospital of Nanjing Medical University District, Nanjing City, China
| | - Lian Chao
- Central Laboratory, The Affiliated Jiangning Hospital of Nanjing Medical University District, Nanjing City, China
| | - Xu Shengjing
- Department of Dermatology, The Affiliated Jiangning Hospital of Nanjing Medical University District, Nanjing City, China
| | - Zhang Min
- Department of Dermatology, The Affiliated Jiangning Hospital of Nanjing Medical University District, Nanjing City, China
| | - Chao Fang
- Department of Dermatology, The Affiliated Jiangning Hospital of Nanjing Medical University District, Nanjing City, China.,Central Laboratory, The Affiliated Jiangning Hospital of Nanjing Medical University District, Nanjing City, China
| |
Collapse
|
3
|
Xu Y, Wei L, Tang S, Shi Q, Wu B, Yang X, Zou Y, Wang X, Ao Q, Meng L, Wei X, Zhang N, Li Y, Lan C, Chen M, Li X, Lu C. Regulation PP2Ac methylation ameliorating autophagy dysfunction caused by Mn is associated with mTORC1/ULK1 pathway. Food Chem Toxicol 2021; 156:112441. [PMID: 34363881 DOI: 10.1016/j.fct.2021.112441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 01/18/2023]
Abstract
Manganese (Mn) exposure leads to autophagy dysfunction and causes neurodegenerative diseases such as Parkinson's syndrome and Alzheimer's disease. However, the mechanism of neurotoxicity of Mn has been less clear. The methylation of the protein phosphatase 2A catalytic subunit determines the dephosphorylation activity of protein phosphatase and plays an important role in autophagy regulation. In this investigation, we established a model of Mn (0-2000 μmol/L) exposure to N2a cells for 12 h, used the PPME-1 inhibitor ABL-127, and constructed an LCMT1-overexpressing N2a cell line. We also regulated the PP2Ac methylation level and explored the effect of PP2Ac methylation on Mn-induced (0-1000 μmol/L) N2a cellular autophagy. Our results showed that Mn > 500 μmol/L induced N2a cell damage and increased oxidative stress. Moreover, Mn modulated autophagy in N2a cells by downregulating PP2Ac methylation, which regulated mTORC1 signaling pathway activation. Both ABL-127 and LCMT1 overexpression can upregulate PP2Ac methylation in parallel with ameliorating N2a cell abnormal autophagy induced by Mn, Briefly, the upregulation of PP2Ac methylation can ameliorate the autophagy disorder of N2a by Mn and effectively alleviate Mn-induced cytotoxicity and oxidative stress, indicating that regulation of autophagy is a protective strategy against Mn-induced neurotoxicity.
Collapse
Affiliation(s)
- Yilu Xu
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Lancheng Wei
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Shen Tang
- School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine, Nanning, 530021, China
| | - Qianqian Shi
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Bin Wu
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Xiaobo Yang
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Yunfeng Zou
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Xinhang Wang
- School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine, Nanning, 530021, China
| | - Qingqing Ao
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Ling Meng
- School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Xuejing Wei
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Ning Zhang
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Yunqing Li
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Chunhua Lan
- School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Muting Chen
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Xiyi Li
- School of Public Health, Guangxi Medical University, Nanning, 530021, China.
| | - Cailing Lu
- School of Public Health, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
4
|
Ying KE, Feng W, Ying WZ, Sanders PW. Cellular antioxidant mechanisms control immunoglobulin light chain-mediated proximal tubule injury. Free Radic Biol Med 2021; 171:80-90. [PMID: 33989758 PMCID: PMC8217262 DOI: 10.1016/j.freeradbiomed.2021.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 12/27/2022]
Abstract
A major cause of morbidity and mortality in multiple myeloma is kidney injury from overproduction of monoclonal immunoglobulin light chains (FLC). FLC can induce damage through the production of hydrogen peroxide, which activates pro-inflammatory and pro-apoptotic pathways. The present study focused on catalase, a highly conserved antioxidant enzyme that degrades hydrogen peroxide. Initial findings were that FLC increased hydrogen peroxide levels but also decreased catalase levels and activity in proximal tubule epithelium. In order to clarify, we showed that the phosphatidylinositol 3-kinase inhibitor, LY294002, inhibited FLC-induced Akt-mediated deactivation of Forkhead box O class 3a (FoxO3a) and increased catalase activity in proximal tubule cells. Augmented catalase activity decreased FLC-mediated production of hydrogen peroxide as well as the associated increase in High Mobility Group Box 1 (HMGB1) protein release and caspase-3 activity. Coincubation of cells with FLC and an allosteric activator of Sirtuin 1 (SIRT1) was also sufficient to increase catalase activity and promote similar cytoprotective effects. Our studies confirmed that the mechanism of downregulation of catalase by FLC involved deactivation of FoxO3a and inhibition of SIRT1. Mechanistic understanding of catalase regulation allows for future treatments that target pathways that increase catalase in the setting of proximal tubule injury from FLC.
Collapse
Affiliation(s)
- Kai Er Ying
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294-0007, USA
| | - Wenguang Feng
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294-0007, USA
| | - Wei-Zhong Ying
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294-0007, USA
| | - Paul W Sanders
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294-0007, USA; Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294-0007, USA; Department of Veterans Affairs Medical Center, Birmingham, AL, 35233, USA.
| |
Collapse
|
5
|
Wang X, Tang S, Qin F, Liu Y, Liang Z, Cai H, Mo L, Xiao D, Guo S, Ouyang Y, Sun B, Lu C, Li X. Proteomics and phosphoproteomics study of LCMT1 overexpression and oxidative stress: overexpression of LCMT1 arrests H 2O 2-induced lose of cells viability. Redox Rep 2020; 24:1-9. [PMID: 30898057 PMCID: PMC6748586 DOI: 10.1080/13510002.2019.1595332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Objectives: Protein phosphatase 2A (PP2A), a major serine/threonine
phosphatase, is also known to be a target of ROS. The methylation of PP2A can be
catalyzed by leucine carboxyl methyltransferase-1 (LCMT1), which regulates PP2A
activity and substrate specificity. Methods: In the previous study, we have showed that LCMT1-dependent
PP2Ac methylation arrests H2O2-induced cell oxidative
stress damage. To explore the possible protective mechanism, we performed
iTRAQ-based comparative quantitative proteomics and phosphoproteomics studies of
H2O2-treated vector control and LCMT1-overexpressing
cells. Results: A total of 4480 non-redundant proteins and 3801 unique
phosphopeptides were identified by this means. By comparing the
H2O2-regulated proteins in LCMT1-overexpressing and
vector control cells, we found that these differences were mainly related to
protein phosphorylation, gene expression, protein maturation, the cytoskeleton
and cell division. Further investigation of LCMT1 overexpression-specific
regulated proteins under H2O2 treatment supported the idea
that LCMT1 overexpression induced ageneral dephosphorylation of proteins and
indicated increased expression of non-erythrocytic hemoglobin, inactivation of
MAPK3 and regulation of proteins related to Rho signal transduction, which were
known to be linked to the regulation of the cytoskeleton. Discussion: These data provide proteomics and phosphoproteomics
insights into the association of LCMT1-dependent PP2Ac methylation and oxidative
stress and indirectly indicate that the methylation of PP2A plays an important
role against oxidative stress.
Collapse
Affiliation(s)
- Xinhang Wang
- a School of Preclinical Medicine , Guangxi Medical University , Nanning , People's Republic of China
| | - Shen Tang
- a School of Preclinical Medicine , Guangxi Medical University , Nanning , People's Republic of China
| | - Fu Qin
- b School of Public Health, Guangxi Medical University , Nanning , People's Republic of China.,c Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases , Guangxi Medical University , Nanning , People's Republic of China
| | - Yuyang Liu
- b School of Public Health, Guangxi Medical University , Nanning , People's Republic of China.,c Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases , Guangxi Medical University , Nanning , People's Republic of China
| | - Ziwei Liang
- b School of Public Health, Guangxi Medical University , Nanning , People's Republic of China.,c Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases , Guangxi Medical University , Nanning , People's Republic of China
| | - Haiqing Cai
- b School of Public Health, Guangxi Medical University , Nanning , People's Republic of China.,c Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases , Guangxi Medical University , Nanning , People's Republic of China
| | - Laiming Mo
- a School of Preclinical Medicine , Guangxi Medical University , Nanning , People's Republic of China
| | - Deqiang Xiao
- b School of Public Health, Guangxi Medical University , Nanning , People's Republic of China
| | - Songcao Guo
- b School of Public Health, Guangxi Medical University , Nanning , People's Republic of China
| | - Yiqiang Ouyang
- d Laboratory Animal Centre , Guangxi Medical University , Nanning , People's Republic of China
| | - Bin Sun
- b School of Public Health, Guangxi Medical University , Nanning , People's Republic of China.,c Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases , Guangxi Medical University , Nanning , People's Republic of China
| | - Cailing Lu
- b School of Public Health, Guangxi Medical University , Nanning , People's Republic of China.,c Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases , Guangxi Medical University , Nanning , People's Republic of China
| | - Xiyi Li
- b School of Public Health, Guangxi Medical University , Nanning , People's Republic of China.,c Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases , Guangxi Medical University , Nanning , People's Republic of China
| |
Collapse
|
6
|
Colina F, Carbó M, Meijón M, Cañal MJ, Valledor L. Low UV-C stress modulates Chlamydomonas reinhardtii biomass composition and oxidative stress response through proteomic and metabolomic changes involving novel signalers and effectors. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:110. [PMID: 32577129 PMCID: PMC7305600 DOI: 10.1186/s13068-020-01750-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/11/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND The exposure of microalgae and plants to low UV-C radiation dosages can improve their biomass composition and stress tolerance. Despite UV-C sharing these effects with UV-A/B but at much lower dosages, UV-C sensing and signal mechanisms are still mostly unknown. Thus, we have described and integrated the proteometabolomic and physiological changes occurring in Chlamydomonas reinhardtii-a simple Plantae model-into the first 24 h after a short and low-intensity UV-C irradiation in order to reconstruct the microalgae response system to this stress. RESULTS The microalgae response was characterized by increased redox homeostasis, ROS scavenging and protein damage repair/avoidance elements. These processes were upregulated along with others related to the modulation of photosynthetic electron flux, carbon fixation and C/N metabolism. These changes, attributed to either direct UV-C-, ROS- or redox unbalances-associated damage, trigger a response process involving novel signaling intermediaries and effectors such as the translation modulator FAP204, a PP2A-like protein and a novel DYRK kinase. These elements were found linked to the modulation of Chlamydomonas biomass composition (starch accumulation) and proliferation, within an UV-C response probably modulated by different epigenetic factors. CONCLUSION Chosen multiomics integration approach was able to describe many fast changes, including biomass composition and ROS stress tolerance, as a response to a low-intensity UV-C stress. Moreover, the employed omics and systems biology approach placed many previously unidentified protein and metabolites at the center of these changes. These elements would be promising targets for the characterization of this stress response in microalgae and plants and the engineering of more productive microalgae strains.
Collapse
Affiliation(s)
- Francisco Colina
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| | - María Carbó
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| | - Mónica Meijón
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| | - María Jesús Cañal
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| |
Collapse
|
7
|
Sekiguchi T, Furuno N, Ishii T, Hirose E, Sekiguchi F, Wang Y, Kobayashi H. RagA, an mTORC1 activator, interacts with a hedgehog signaling protein, WDR35/IFT121. Genes Cells 2019; 24:151-161. [DOI: 10.1111/gtc.12663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Takeshi Sekiguchi
- Department of Molecular Biology, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Nobuaki Furuno
- Laboratory for Amphibian Biology, Graduate School of Science Hiroshima University Higashihiroshima Japan
| | - Takashi Ishii
- Department of BiochemistryFukuoka Dental College Fukuoka Japan
| | - Eiji Hirose
- Faculty of Health Promotional Sciences Tokoha University Kitaku, Shizuoka Japan
| | - Fumiko Sekiguchi
- Department of Molecular Biology, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Yonggang Wang
- Department of Molecular Biology, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Hideki Kobayashi
- Department of Human Nutrition, Faculty of Contemporary Life ScienceChugoku‐Gakuen University Okayama Japan
| |
Collapse
|