1
|
Soldatov V, Venediktov A, Belykh A, Piavchenko G, Naimzada MD, Ogneva N, Kartashkina N, Bushueva O. Chaperones vs. oxidative stress in the pathobiology of ischemic stroke. Front Mol Neurosci 2024; 17:1513084. [PMID: 39723236 PMCID: PMC11668803 DOI: 10.3389/fnmol.2024.1513084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
As many proteins prioritize functionality over constancy of structure, a proteome is the shortest stave in the Liebig's barrel of cell sustainability. In this regard, both prokaryotes and eukaryotes possess abundant machinery supporting the quality of the proteome in healthy and stressful conditions. This machinery, namely chaperones, assists in folding, refolding, and the utilization of client proteins. The functions of chaperones are especially important for brain cells, which are highly sophisticated in terms of structural and functional organization. Molecular chaperones are known to exert beneficial effects in many brain diseases including one of the most threatening and widespread brain pathologies, ischemic stroke. However, whether and how they exert the antioxidant defense in stroke remains unclear. Herein, we discuss the chaperones shown to fight oxidative stress and the mechanisms of their antioxidant action. In ischemic stroke, during intense production of free radicals, molecular chaperones preserve the proteome by interacting with oxidized proteins, regulating imbalanced mitochondrial function, and directly fighting oxidative stress. For instance, cells recruit Hsp60 and Hsp70 to provide proper folding of newly synthesized proteins-these factors are required for early ischemic response and to refold damaged polypeptides. Additionally, Hsp70 upregulates some dedicated antioxidant pathways such as FOXO3 signaling. Small HSPs decrease oxidative stress via attenuation of mitochondrial function through their involvement in the regulation of Nrf- (Hsp22), Akt and Hippo (Hsp27) signaling pathways as well as mitophagy (Hsp27, Hsp22). A similar function has also been proposed for the Sigma-1 receptor, contributing to the regulation of mitochondrial function. Some chaperones can prevent excessive formation of reactive oxygen species whereas Hsp90 is suggested to be responsible for pro-oxidant effects in ischemic stroke. Finally, heat-resistant obscure proteins (Hero) are able to shield client proteins, thus preventing their possible over oxidation.
Collapse
Affiliation(s)
- Vladislav Soldatov
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
| | - Artem Venediktov
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Andrei Belykh
- Pathophysiology Department, Kursk State Medical University, Kursk, Russia
- Research Institute of General Pathology, Kursk State Medical University, Kursk, Russia
| | - Gennadii Piavchenko
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Mukhammad David Naimzada
- Research Institute of Experimental Medicine, Kursk State Medical University, Kursk, Russia
- Laboratory of Public Health Indicators Analysis and Health Digitalization, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Nastasya Ogneva
- Scientific Center of Biomedical Technologies, Federal Medical and Biological Agency of Russia, Moscow, Russia
| | - Natalia Kartashkina
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Olga Bushueva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russia
| |
Collapse
|
2
|
Yaqubi S, Karimian M. Stem cell therapy as a promising approach for ischemic stroke treatment. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 6:100183. [PMID: 38831867 PMCID: PMC11144755 DOI: 10.1016/j.crphar.2024.100183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/23/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Ischemia as the most common type of stroke is the main cause of death and disability in the world. However, there are few therapeutic approaches to treat ischemic stroke. The common approach to the treatment of ischemia includes surgery-cum-chemical drugs. Surgery and chemical drugs are used to remove blood clots to prevent the deterioration of the nervous system. Given the surgical hazards and the challenges associated with chemical drugs, these cannot be considered safe approaches to the treatment of brain ischemia. Besides surgery-cum-chemical drugs, different types of stem cells including mesenchymal stem cells and neurological stem cells have been considered to treat ischemic stroke. Therapeutic approaches utilizing stem cells to treat strokes are promising because of their neuroprotective and regenerative benefits. However, the mechanisms by which the transplanted stem cells perform their precisely actions are unknown. The purpose of this study is to critically review stem cell-based therapeutic approaches for ischemia along with related challenges.
Collapse
Affiliation(s)
- Sahar Yaqubi
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
3
|
Hejnova L, Hronova A, Drastichova Z, Novotny J. Long-term administration of morphine specifically alters the level of protein expression in different brain regions and affects the redox state. Open Life Sci 2024; 19:20220858. [PMID: 38681734 PMCID: PMC11049758 DOI: 10.1515/biol-2022-0858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 05/01/2024] Open
Abstract
We investigated the changes in redox state and protein expression in selected parts of the rat brain induced by a 4 week administration of morphine (10 mg/kg/day). We found a significant reduction in lipid peroxidation that mostly persisted for 1 week after morphine withdrawal. Morphine treatment led to a significant increase in complex II in the cerebral cortex (Crt), which was accompanied by increased protein carbonylation, in contrast to the other brain regions studied. Glutathione levels were altered differently in the different brain regions after morphine treatment. Using label-free quantitative proteomic analysis, we found some specific changes in protein expression profiles in the Crt, hippocampus, striatum, and cerebellum on the day after morphine withdrawal and 1 week later. A common feature was the upregulation of anti-apoptotic proteins and dysregulation of the extracellular matrix. Our results indicate that the tested protocol of morphine administration has no significant toxic effect on the rat brain. On the contrary, it led to a decrease in lipid peroxidation and activation of anti-apoptotic proteins. Furthermore, our data suggest that long-term treatment with morphine acts specifically on different brain regions and that a 1 week drug withdrawal is not sufficient to normalize cellular redox state and protein levels.
Collapse
Affiliation(s)
- Lucie Hejnova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Anna Hronova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Zdenka Drastichova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
4
|
Panos LD, Bargiotas P, Arnold M, Hadjigeorgiou G, Panos GD. Revolutionizing Stroke Recovery: Unveiling the Promise of Stem Cell Therapy. Drug Des Devel Ther 2024; 18:991-1006. [PMID: 38567255 PMCID: PMC10986404 DOI: 10.2147/dddt.s460998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
Stem cells, renowned for their unique regenerative capabilities, present significant hope in treating stroke, a major cause of disability globally. This review offers a detailed analysis of stem cell applications in stroke (ischemic and hemorrhagic) recovery. It examines therapies based on autologous (patient-derived), allogeneic (donor-derived), and Granulocyte-Colony Stimulating Factor (G-CSF) based stem cells, focusing on cell types such as Mesenchymal Stem/Stromal Cells (MSCs), Bone Marrow Mononuclear Stem Cells (BMMSCs), and Neural Stem/Progenitor Cells (NSCs). The paper compiles clinical trial data to evaluate their effectiveness and safety and addresses the ethical concerns of these innovative treatments. By explaining the mechanisms of stem cell-induced neurological repair, this review underscores stem cells' potential in revolutionizing stroke rehabilitation and suggests avenues for future research.
Collapse
Affiliation(s)
- Leonidas D Panos
- Department of Neurology, Bern University Hospital Inselspital, Bern, Switzerland
- Department of Neurology, School of Medicine, University of Cyprus, Nicosia, Cyprus
| | - Panagiotis Bargiotas
- Department of Neurology, School of Medicine, University of Cyprus, Nicosia, Cyprus
| | - Marcel Arnold
- Department of Neurology, Bern University Hospital Inselspital, Bern, Switzerland
| | | | - Georgios D Panos
- Department of Ophthalmology, Queen’s Medical Centre, Nottingham University Hospitals (NUH), Nottingham, UK
- Division of Ophthalmology and Visual Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
5
|
Qiao H, Xu Q, Xu Y, Zhao Y, He N, Tang J, Zhao J, Liu Y. Molecular chaperones in stroke-induced immunosuppression. Neural Regen Res 2023; 18:2638-2644. [PMID: 37449602 DOI: 10.4103/1673-5374.373678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Stroke-induced immunosuppression is a process that leads to peripheral suppression of the immune system after a stroke and belongs to the central nervous system injury-induced immunosuppressive syndrome. Stroke-induced immunosuppression leads to increased susceptibility to post-stroke infections, such as urinary tract infections and stroke-associated pneumonia, worsening prognosis. Molecular chaperones are a large class of proteins that are able to maintain proteostasis by directing the folding of nascent polypeptide chains, refolding misfolded proteins, and targeting misfolded proteins for degradation. Various molecular chaperones have been shown to play roles in stroke-induced immunosuppression by modulating the activity of other molecular chaperones, cochaperones, and their associated pathways. This review summarizes the role of molecular chaperones in stroke-induced immunosuppression and discusses new approaches to restore host immune defense after stroke.
Collapse
Affiliation(s)
- Haoduo Qiao
- Department of Neurosurgery, Xiangya Hospital, Central South University; Department of Pathophysiology, Xiangya School of Medicine, Central South University; Sepsis Translational Medicine Key Laboratory of Hunan Province; National Medicine Functional Experimental Teaching Center, Changsha, Hunan Province, China
| | - Qing Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University; Department of Pathophysiology, Xiangya School of Medicine, Central South University; Sepsis Translational Medicine Key Laboratory of Hunan Province; National Medicine Functional Experimental Teaching Center, Changsha, Hunan Province, China
| | - Yunfei Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University; Department of Pathophysiology, Xiangya School of Medicine, Central South University; Sepsis Translational Medicine Key Laboratory of Hunan Province; National Medicine Functional Experimental Teaching Center, Changsha, Hunan Province, China
| | - Yao Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University; Department of Pathophysiology, Xiangya School of Medicine, Central South University; Sepsis Translational Medicine Key Laboratory of Hunan Province; National Medicine Functional Experimental Teaching Center, Changsha, Hunan Province, China
| | - Nina He
- Department of Neurosurgery, Xiangya Hospital, Central South University; Department of Pathophysiology, Xiangya School of Medicine, Central South University; Sepsis Translational Medicine Key Laboratory of Hunan Province; National Medicine Functional Experimental Teaching Center, Changsha, Hunan Province, China
| | - Jie Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jie Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University; Department of Pathophysiology, Xiangya School of Medicine, Central South University; Sepsis Translational Medicine Key Laboratory of Hunan Province; National Medicine Functional Experimental Teaching Center, Changsha, Hunan Province, China
| | - Ying Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University; Department of Pathophysiology, Xiangya School of Medicine, Central South University; Sepsis Translational Medicine Key Laboratory of Hunan Province; National Medicine Functional Experimental Teaching Center, Changsha, Hunan Province, China
| |
Collapse
|
6
|
Talukder M, Bi SS, Lv MW, Ge J, Zhang C, Li JL. Involvement of the heat shock response (HSR) regulatory pathway in cadmium-elicited cerebral damage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:106648-106659. [PMID: 37730984 DOI: 10.1007/s11356-023-29880-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/10/2023] [Indexed: 09/22/2023]
Abstract
The heat shock response (HSR) is a cellular protective mechanism that is characterized by the induction of heat shock transcription factors (HSFs) and heat shock proteins (HSPs) in response to diverse cellular and environmental stressors, including cadmium (Cd). However, little is known about the relationship between the damaging effects of Cd and the HSR pathway in the chicken cerebrum following Cd exposure. To explore whether Cd exposure elicits cerebral damage and triggers the HSR pathway, chicks were exposed to Cd in the daily diet at different concentrations (35, 70, or 140 mg/kg feed) for 90 days, while a control group was fed the standard diet without Cd. Histopathological examination of cerebral tissue from Cd-exposed chickens showed neuronal damage, as evidenced by swelling and degeneration of neurons, loss of neurons, and capillary damage. Cd exposure significantly increased mRNA expression of HSF1, HSF2, and HSF3, and mRNA and protein expression of three major stress-inducible HSPs (HSP60, HSP70, and HSP90). Moreover, Cd exposure differentially modulated mRNA expression of small HSP (sHSPs), most notably reducing expression of HSP27 (HSPB1). Furthermore, Cd exposure increased TUNEL-positive neuronal apoptotic cells and up-regulated protein expression of caspase-1, caspase-8, caspase-3, and p53, leading to apoptosis. Taken together, these data demonstrate that activation of the HSR and apoptotic pathways by Cd exposure is involved in Cd-elicited cerebral damage in the chicken. Synopsis for the graphical abstract Cadmium (Cd)-induced neuronal damage triggers the heat shock response (HSR) by activating heat shock transcription factors (HSFs) and subsequent induction of major heat shock proteins (notably, HSP60, HSP70, and HSP90). Moreover, Cd exposure activates caspase-1, caspase-8, caspase-3, and p53 protein, thereby resulting in neuronal apoptosis in the chicken brain.
Collapse
Affiliation(s)
- Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Shao-Shuai Bi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, 237012, People's Republic of China
| | - Mei-Wei Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, Henan, People's Republic of China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
7
|
Hino C, Chan G, Jordaan G, Chang SS, Saunders JT, Bashir MT, Hansen JE, Gera J, Weisbart RH, Nishimura RN. Cellular protection from H 2O 2 toxicity by Fv-Hsp70: protection via catalase and gamma-glutamyl-cysteine synthase. Cell Stress Chaperones 2023; 28:429-439. [PMID: 37171750 PMCID: PMC10352194 DOI: 10.1007/s12192-023-01349-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/13/2023] Open
Abstract
Heat shock proteins (HSPs), especially Hsp70 (HSPA1), have been associated with cellular protection from various cellular stresses including heat, hypoxia-ischemia, neurodegeneration, toxins, and trauma. Endogenous HSPs are often synthesized in direct response to these stresses but in many situations are inadequate in protecting cells. The present study addresses the transduction of Hsp70 into cells providing protection from acute oxidative stress by H2O2. The recombinant Fv-Hsp70 protein and two mutant Fv-Hsp70 proteins minus the ATPase domain and minus the ATPase and terminal lid domains were tested at 0.5 and 1.0 μM concentrations after two different concentrations of H2O2 treatment. All three recombinant proteins protected SH-SY5Y cells from acute H2O2 toxicity. This data indicated that the protein binding domain was responsible for cellular protection. In addition, experiments pretreating cells with inhibitors of antioxidant proteins catalase and gamma-glutamylcysteine synthase (GGCS) before H2O2 resulted in cell death despite treatment with Fv-Hsp70, implying that both enzymes were protected from acute oxidative stress after treatment with Fv-Hsp70. This study demonstrates that Fv-Hsp70 is protective in our experiments primarily by the protein-binding domain. The Hsp70 terminal lid domain was also not necessary for protection.
Collapse
Affiliation(s)
- Chris Hino
- Dept. of Internal Medicine, Loma Linda School of Medicine, Loma Linda, CA, 92350, USA
- VA Greater Los Angeles Healthcare System, North Hills, Los Angeles, CA, 91343, USA
| | - Grace Chan
- VA Greater Los Angeles Healthcare System, North Hills, Los Angeles, CA, 91343, USA
| | - Gwen Jordaan
- VA Greater Los Angeles Healthcare System, North Hills, Los Angeles, CA, 91343, USA
| | - Sophia S Chang
- VA Greater Los Angeles Healthcare System, North Hills, Los Angeles, CA, 91343, USA
| | - Jacquelyn T Saunders
- VA Greater Los Angeles Healthcare System, North Hills, Los Angeles, CA, 91343, USA
| | - Mohammad T Bashir
- VA Greater Los Angeles Healthcare System, North Hills, Los Angeles, CA, 91343, USA
- Dept. of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - James E Hansen
- VA Greater Los Angeles Healthcare System, North Hills, Los Angeles, CA, 91343, USA
- Dept. of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Joseph Gera
- VA Greater Los Angeles Healthcare System, North Hills, Los Angeles, CA, 91343, USA
- Dept. of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Richard H Weisbart
- VA Greater Los Angeles Healthcare System, North Hills, Los Angeles, CA, 91343, USA
- Dept. of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Robert N Nishimura
- VA Greater Los Angeles Healthcare System, North Hills, Los Angeles, CA, 91343, USA.
- Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
8
|
Kobayashi K, Omatsu N, Han L, Shan-Ni L, Nishimura T. Early effects of lipoteichoic acid from Staphylococcus aureus on milk production-related signaling pathways in mouse mammary epithelial cells. Exp Cell Res 2022; 420:113352. [PMID: 36108712 DOI: 10.1016/j.yexcr.2022.113352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/04/2022]
Abstract
Staphylococcus aureus causes subclinical mastitis; lipoteichoic acid (LTA) from S. aureus causes mastitis-like adverse effects on milk production by mammary epithelial cells (MECs). Here, we investigated the early effects of LTA from S. aureus on mouse MECs using a culture model, in which MECs produced milk components and formed less permeable tight junctions (TJs). In MECs of this model, Toll-like receptor 2 (receptor for LTA), was localized on the apical membrane, similar to MECs in lactating mammary glands. LTA weakened the TJ barrier within 1 h, concurrently with localization changes of claudin 4. LTA treatment for 24 h increased αS1-casein and decreased β-casein levels. In MECs exposed to LTA, the activation level of signal transducer and activator of transcription 5 (major transcriptional factor for milk production) was low. LTA activated signaling pathways related to cell survival (extracellular signal-regulated kinase, heat shock protein 27, and Akt) and inflammation (p38, c-Jun N-terminal kinase, and nuclear factor κB). Thus, LTA caused abnormalities in casein production and weakened the TJs by affecting multiple signaling pathways in MECs. LTA-induced changes in signaling pathways were not uniform in all MECs. Such complex and semi-negative actions of LTA may contribute to subclinical mastitis caused by S. aureus.
Collapse
Affiliation(s)
- Ken Kobayashi
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan.
| | - Naoki Omatsu
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan.
| | - Liang Han
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan.
| | - Lu Shan-Ni
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan.
| | - Takanori Nishimura
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan.
| |
Collapse
|
9
|
Li X, Ren X, Zhang Y, Ding L, Huo M, Li Q. Fabry disease: Mechanism and therapeutics strategies. Front Pharmacol 2022; 13:1025740. [PMID: 36386210 PMCID: PMC9643830 DOI: 10.3389/fphar.2022.1025740] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/10/2022] [Indexed: 12/04/2022] Open
Abstract
Fabry disease is a monogenic disease characterized by a deficiency or loss of the α-galactosidase A (GLA). The resulting impairment in lysosomal GLA enzymatic activity leads to the pathogenic accumulation of enzymatic substrate and, consequently, the progressive appearance of clinical symptoms in target organs, including the heart, kidney, and brain. However, the mechanisms involved in Fabry disease-mediated organ damage are largely ambiguous and poorly understood, which hinders the development of therapeutic strategies for the treatment of this disorder. Although currently available clinical approaches have shown some efficiency in the treatment of Fabry disease, they all exhibit limitations that need to be overcome. In this review, we first introduce current mechanistic knowledge of Fabry disease and discuss potential therapeutic strategies for its treatment. We then systemically summarize and discuss advances in research on therapeutic approaches, including enzyme replacement therapy (ERT), gene therapy, and chaperone therapy, as well as strategies targeting subcellular compartments, such as lysosomes, the endoplasmic reticulum, and the nucleus. Finally, the future development of potential therapeutic strategies is discussed based on the results of mechanistic studies and the limitations associated with these therapeutic approaches.
Collapse
Affiliation(s)
- Xi Li
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiangyi Ren
- Core Facilities of West China Hospital, Sichuan University, Chengdu, China
| | - Yabing Zhang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Lin Ding
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Minfeng Huo
- Shanghai Tenth People’s Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Qian Li, ; Minfeng Huo,
| | - Qian Li
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Qian Li, ; Minfeng Huo,
| |
Collapse
|
10
|
Basaki M, Keykavusi K, Sahraiy N, Akbari G, Hejazi M. Small Heat Shock Protein's Gene Expression Response to Iron Oxide Nanoparticles in the Brain. Biol Trace Elem Res 2022; 200:1791-1798. [PMID: 34189677 DOI: 10.1007/s12011-021-02761-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
Small heat shock proteins (SHSPs) are conserved proteins that participate in many cellular functions like preventing protein aggregation and stress response. However, their role in responding to nanoparticles (NPs) has not yet been explained. We used a chicken embryo model to investigate the effects of two different forms of iron oxide-NPs (IONPs) on the mRNA expression of HSPB1, HSPB5, HSPB8, and HSPB9 in cerebral tissue. Two hundred-ten fertilized eggs were randomly divided into seven groups (30 eggs/group; 10 eggs/replicate). Three groups received 100 ppm, 250 ppm, and 500 ppm of Fe2O3-NPs, respectively. Three other groups received 100 ppm, 250 ppm, and 500 ppm of Fe3O4-NPs, respectively, and one group remained untreated as a control. The NPs were given by in ovo method (0.3 ml/egg) only once on the first day of the embryonic period. Samples from cerebrums were collected on day 20 for gene expression analyses. HSPB1, HSPB5, HSPB8, and HSPB9 were all expressed in both normal and IONPs exposed cerebrums. SHSPs tested were differentially expressed in response to various concentrations of IONPs. The highest expression levels in response to Fe2O3-NPs and Fe3O4-NPs were observed for HSPB5 and HSPB9, respectively. The greatest gene expression changes due to the Fe2O3-NPs and Fe3O4-NPs exposure observed for HSPB1 and HSPB5, respectively. The results suggest a protective cellular mechanism against IONPs through SHSPs and recommend that expression profiling of SHSPs be included in the study of nanotoxicity.
Collapse
Affiliation(s)
- Mehdi Basaki
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, 5166616471, Tabriz, Iran.
| | - Kamran Keykavusi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, 5166616471, Tabriz, Iran
| | - Nazila Sahraiy
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, 5166616471, Tabriz, Iran
| | - Ghasem Akbari
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, 5166616471, Tabriz, Iran
| | - Marzieh Hejazi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, 5166616471, Tabriz, Iran
| |
Collapse
|
11
|
Liu WC, Chuang HC, Chou CL, Lee YH, Chiu YJ, Wang YL, Chiu HW. Cigarette Smoke Exposure Increases Glucose-6-phosphate Dehydrogenase, Autophagy, Fibrosis, and Senescence in Kidney Cells In Vitro and In Vivo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5696686. [PMID: 35387262 PMCID: PMC8977288 DOI: 10.1155/2022/5696686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022]
Abstract
Cigarette smoke (CS) is a risk factor for chronic obstructive pulmonary disease. We attempted to investigate fully the possible effects of CS on kidney cells. We found that the viability of a human kidney proximal tubular epithelial cell line (HK-2 cells) was decreased after treatment with CS extract (CSE). In particular, the effects of CSE at low concentrations did not change the expression of apoptosis and necrosis. Furthermore, CSE increased autophagy- and fibrosis-related proteins in HK-2 cells. Senescence-related proteins and the senescence-associated secretory phenotype (SASP) increased after HK-2 cells were treated with CSE. In addition, both RNA sequencing and gene set enrichment analysis data revealed that glucose-6-phosphate dehydrogenase (G6PD) in the reactive oxygen species (ROS) pathway is responsible for the changes in CSE-treated HK-2 cells. CSE increased G6PD expression and its activity. Moreover, the inhibition of G6PD activity increased senescence in HK-2 cells. The inhibition of autophagy reinforced senescence in the CSE-treated cells. In a mouse model of CS exposure, CS caused kidney damage, including tubular injury and glomerulosclerosis. CS increased fibrosis, autophagy, and G6PD expression in kidney tissue sections. In conclusion, CS induced G6PD expression, autophagy, fibrosis, and senescence in kidney cells. G6PD has a protective role in CS-induced nephrotoxicity.
Collapse
Affiliation(s)
- Wen-Chih Liu
- Division of Nephrology, Department of Internal Medicine, Taipei Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Chu-Lin Chou
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Hsin Kuo Min Hospital, Taipei Medical University, Taoyuan City, Taiwan
| | - Yu-Hsuan Lee
- Department of Cosmeceutics, China Medical University, Taichung, Taiwan
| | - Yu-Jhe Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yung-Li Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hui-Wen Chiu
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| |
Collapse
|
12
|
Improper Proteostasis: Can It Serve as Biomarkers for Neurodegenerative Diseases? Mol Neurobiol 2022; 59:3382-3401. [PMID: 35305242 DOI: 10.1007/s12035-022-02775-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/19/2022] [Indexed: 10/18/2022]
Abstract
Cells synthesize new proteins after multiple molecular decisions. Damage of existing proteins, accumulation of abnormal proteins, and basic requirement of new proteins trigger protein quality control (PQC)-based alternative strategies to cope against proteostasis imbalance. Accumulation of misfolded proteins is linked with various neurodegenerative disorders. However, how deregulated components of this quality control system and their lack of general mechanism-based long-term changes can serve as biomarkers for neurodegeneration remains largely unexplored. Here, our article summarizes the chief findings, which may facilitate the search of novel and relevant proteostasis mechanism-based biomarkers associated with neuronal disorders. Understanding the abnormalities of PQC coupled molecules as possible biomarkers can help to determine neuronal fate and their contribution to the aetiology of several nervous system disorders.
Collapse
|
13
|
Knockdown of circRNA-Memo1 Reduces Hypoxia/Reoxygenation Injury in Human Brain Endothelial Cells Through miRNA-17-5p/SOS1 Axis. Mol Neurobiol 2022; 59:2085-2097. [PMID: 35041140 DOI: 10.1007/s12035-022-02743-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/09/2022] [Indexed: 12/23/2022]
Abstract
Circ-Memo1 has been proved to be upregulated in ischemia-reperfusion induced acute injury of kidney tissues. However, the potential role of circ-Memo1 in cerebral hypoxia/reoxygenation (H/R) injury is still unclear.Blood samples were collected from 25 ischemic stroke patients and 25 healthy controls. To construct the H/R model, human brain microvascular endothelial cells (HBMVECs) were cultured under the hypoxic condition, followed by reoxygenation. Cell viability was analyzed by MTT assay. Flow cytometry was carried out to examine cell apoptosis. The level of malondialdehyde (MDA) and the activity of superoxide dismutase (SOD) were measured by MDA and SOD assay kits, respectively. The levels of TNF-α, IL-1β, and IL-6 were determined by enzyme-linked immunosorbent assay (ELISA). Dual-luciferase reporter gene detection was employed to verify the binding relationships between circ-Memo1, miR-17-5p, and SOS1.Circ-Memo1 and SOS1 expressions were increased, and miR-17-5p expression was reduced in ischemic stroke patients. Circ-Memo1 silencing promoted cell viability, inhibited the activation of ERK/NF-κB signaling pathway, reduced oxidative stress and inflammatory response, and inhibited cell apoptosis. Moreover, miR-17-5p functioned as the sponge of circ-Memo1, and SOS1 was identified as the target of miR-17-5p. The protective effect of circ-Memo1 knockdown on cell injury after H/R treatment was weakened by miR-17-5p inhibition.Knockdown of circ-Memo1 alleviated H/R injury of HBMVEC cells by regulating the miR-17-5p/SOS1 axis, indicating that circ-Memo1 might be a potential treatment target for cerebral H/R injury.
Collapse
|
14
|
G-Protein-Coupled Receptors and Ischemic Stroke: a Focus on Molecular Function and Therapeutic Potential. Mol Neurobiol 2021; 58:4588-4614. [PMID: 34120294 DOI: 10.1007/s12035-021-02435-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/18/2021] [Indexed: 01/22/2023]
Abstract
In ischemic stroke, there is only one approved drug, tissue plasminogen activator, to be used in clinical conditions for thrombolysis. New neuroprotective therapies for ischemic stroke are desperately needed. Several targets and pathways have been shown to confer neuroprotective effects in ischemic stroke. G-protein-coupled receptors (GPCRs) are one of the most frequently targeted receptors for developing novel therapeutics for central nervous system disorders. GPCRs are a large family of cell surface receptors that response to a wide variety of extracellular stimuli. GPCRs are involved in a wide range of physiological and pathological processes. More than 90% of the identified non-sensory GPCRs are expressed in the brain, where they play important roles in regulating mood, pain, vision, immune responses, cognition, and synaptic transmission. There is also good evidence that GPCRs are implicated in the pathogenesis of stroke. This review narrates the pathophysiological role and possible targeted therapy of GPCRs in ischemic stroke.
Collapse
|
15
|
Khaibullina A, Almeida LEF, Kamimura S, Zerfas PM, Smith ML, Vogel S, Wakim P, Vasconcelos OM, Quezado MM, Horkayne-Szakaly I, Quezado ZMN. Sickle cell disease mice have cerebral oxidative stress and vascular and white matter abnormalities. Blood Cells Mol Dis 2021; 86:102493. [PMID: 32927249 PMCID: PMC7686096 DOI: 10.1016/j.bcmd.2020.102493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023]
Abstract
Strokes are feared complications of sickle cell disease (SCD) and yield significant neurologic and neurocognitive deficits. However, even without detectable strokes, SCD patients have significant neurocognitive deficits in domains of learning and memory, processing speed and executive function. In these cases, mechanisms unrelated to major cerebrovascular abnormalities likely underlie these deficits. While oxidative stress and stress-related signaling pathways play a role in SCD pathophysiology, their role in cerebral injury remains unknown. We have shown that Townes and BERK SCD mice, while not having strokes, recapitulate neurocognitive deficits reported in humans. We hypothesized that cognitive deficits in SCD mice are associated with cerebral oxidative stress. We showed that SCD mice have increased levels of reactive oxygen species, protein carbonylation, and lipid peroxidation in hippocampus and cortex, thus suggesting increased cerebral oxidative stress. Further, cerebral oxidative stress was associated with caspase-3 activity alterations and vascular endothelial abnormalities, white matter changes, and disruption of the blood brain barrier, similar to those reported after ischemic/oxidative injury. Additionally, after repeated hypoxia/reoxygenation exposure, homozygous Townes had enhanced microglia activation. Our findings indicate that oxidative stress and stress-induced tissue damage is increased in susceptible brain regions, which may, in turn, contribute to neurocognitive deficits in SCD mice.
Collapse
Affiliation(s)
- Alfia Khaibullina
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Luis E F Almeida
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Sayuri Kamimura
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Patricia M Zerfas
- Office of Research Services, Office of the Director, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Meghann L Smith
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Sebastian Vogel
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Paul Wakim
- Biostatistics and Clinical Epidemiology Service, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Olavo M Vasconcelos
- Neuromuscular Clinic, Electromyography Laboratory, Intraoperative Neurophysiology Monitoring Sections, Veterans Health Administration Medical Center, Virginia Commonwealth University, Richmond, VA 23249, United States of America
| | - Martha M Quezado
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Iren Horkayne-Szakaly
- Neuropathology and Ophthalmic Pathology, Joint Pathology Center, Defense Health Agency, Silver Spring, MD 20910, United States of America
| | - Zenaide M N Quezado
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States of America.
| |
Collapse
|
16
|
Sun X, Liu H, Sun Z, Zhang B, Wang X, Liu T, Pan T, Gao Y, Jiang X, Li H. Acupuncture protects against cerebral ischemia-reperfusion injury via suppressing endoplasmic reticulum stress-mediated autophagy and apoptosis. Mol Med 2020; 26:105. [PMID: 33167857 PMCID: PMC7653860 DOI: 10.1186/s10020-020-00236-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/26/2020] [Indexed: 02/08/2023] Open
Abstract
Background Acupuncture treatment possesses the neuroprotection potential to attenuate cerebral ischemia–reperfusion (I/R) injury. Endoplasmic reticulum (ER) stress has been suggested to be involved in the pathogenic mechanism of cerebral I/R injury. Whether acupuncture protects against cerebral I/R injury via regulating ER stress remains unclear. This study aimed to evaluate the role of ER stress in the neuroprotection of acupuncture against cerebral I/R injury and its underlying mechanisms. Methods Cerebral I/R injury was induced by middle cerebral artery occlusion (MCAO) in rats. Acupuncture was carried out at Baihui (GV 20), and Qubin (GB7) acupoints in rats immediately after reperfusion. The infarct volumes, neurological score, ER stress, autophagy and apoptosis were determined. Results Acupuncture treatment decreased infarct volume, neurological score and suppressed ER stress via inactivation of ATF-6, PERK, and IRE1 pathways in MCAO rats. Attributing to ER stress suppression, 4-PBA (ER stress inhibitor) promoted the beneficial effect of acupuncture against cerebral I/R injury. Whereas, ER stress activator tunicamycin significantly counteracted the neuroprotective effects of acupuncture. In addition, acupuncture restrained autophagy via regulating ER stress in MCAO rats. Finally, ER stress took part in the neuroprotective effect of acupuncture against apoptosis in cerebral I/R injury. Conclusions Our findings suggest that acupuncture offers neuroprotection against cerebral I/R injury, which is attributed to repressing ER stress-mediated autophagy and apoptosis.
Collapse
Affiliation(s)
- Xiaowei Sun
- Department of Acupuncture and Moxibustion, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Hao Liu
- Department of Acupuncture and Moxibustion, Tongde Hospital of Zhejiang Province, Zhejiang Institute of Traditional Chinese Medicine, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Zhongren Sun
- Key Laboratory of Acupuncture Clinical Neurobiology (Encephalopathy), Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Beng Zhang
- Department of Acupuncture and Moxibustion, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, People's Republic of China
| | - Xinyu Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Tingting Liu
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Tingting Pan
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Ying Gao
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Xicheng Jiang
- Department of Synopsis of the Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, People's Republic of China.
| | - Hongtao Li
- Department of Orthopaedics and Traumatology, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 26 Heping Road, Harbin, 150040, Heilongjiang, People's Republic of China.
| |
Collapse
|
17
|
Vahidinia Z, Karimian M, Joghataei MT. Neurosteroids and their receptors in ischemic stroke: From molecular mechanisms to therapeutic opportunities. Pharmacol Res 2020; 160:105163. [DOI: 10.1016/j.phrs.2020.105163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 01/09/2023]
|