1
|
Fogel MA, Anwar S, Broberg C, Browne L, Chung T, Johnson T, Muthurangu V, Taylor M, Valsangiacomo-Buechel E, Wilhelm C. Society for Cardiovascular Magnetic Resonance/European Society of Cardiovascular Imaging/American Society of Echocardiography/Society for Pediatric Radiology/North American Society for Cardiovascular Imaging Guidelines for the use of cardiovascular magnetic resonance in pediatric congenital and acquired heart disease : Endorsed by The American Heart Association. J Cardiovasc Magn Reson 2022; 24:37. [PMID: 35725473 PMCID: PMC9210755 DOI: 10.1186/s12968-022-00843-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/12/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular magnetic resonance (CMR) has been utilized in the management and care of pediatric patients for nearly 40 years. It has evolved to become an invaluable tool in the assessment of the littlest of hearts for diagnosis, pre-interventional management and follow-up care. Although mentioned in a number of consensus and guidelines documents, an up-to-date, large, stand-alone guidance work for the use of CMR in pediatric congenital 36 and acquired 35 heart disease endorsed by numerous Societies involved in the care of these children is lacking. This guidelines document outlines the use of CMR in this patient population for a significant number of heart lesions in this age group and although admittedly, is not an exhaustive treatment, it does deal with an expansive list of many common clinical issues encountered in daily practice.
Collapse
Affiliation(s)
- Mark A Fogel
- Departments of Pediatrics (Cardiology) and Radiology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Shaftkat Anwar
- Department of Pediatrics (Cardiology) and Radiology, The University of California-San Francisco School of Medicine, San Francisco, USA
| | - Craig Broberg
- Division of Cardiovascular Medicine, Oregon Health and Sciences University, Portland, USA
| | - Lorna Browne
- Department of Radiology, University of Colorado, Denver, USA
| | - Taylor Chung
- Department of Radiology and Biomedical Imaging, The University of California-San Francisco School of Medicine, San Francisco, USA
| | - Tiffanie Johnson
- Department of Pediatrics (Cardiology), Indiana University School of Medicine, Indianapolis, USA
| | - Vivek Muthurangu
- Department of Pediatrics (Cardiology), University College London, London, UK
| | - Michael Taylor
- Department of Pediatrics (Cardiology), University of Cincinnati School of Medicine, Cincinnati, USA
| | | | - Carolyn Wilhelm
- Department of Pediatrics (Cardiology), University Hospitals-Cleveland, Cleaveland, USA
| |
Collapse
|
2
|
Fogel MA, Anwar S, Broberg C, Browne L, Chung T, Johnson T, Muthurangu V, Taylor M, Valsangiacomo-Buechel E, Wilhelm C. Society for Cardiovascular Magnetic Resonance/European Society of Cardiovascular Imaging/American Society of Echocardiography/Society for Pediatric Radiology/North American Society for Cardiovascular Imaging Guidelines for the Use of Cardiac Magnetic Resonance in Pediatric Congenital and Acquired Heart Disease: Endorsed by The American Heart Association. Circ Cardiovasc Imaging 2022; 15:e014415. [PMID: 35727874 PMCID: PMC9213089 DOI: 10.1161/circimaging.122.014415] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/12/2022] [Indexed: 01/15/2023]
Abstract
Cardiovascular magnetic resonance has been utilized in the management and care of pediatric patients for nearly 40 years. It has evolved to become an invaluable tool in the assessment of the littlest of hearts for diagnosis, pre-interventional management and follow-up care. Although mentioned in a number of consensus and guidelines documents, an up-to-date, large, stand-alone guidance work for the use of cardiovascular magnetic resonance in pediatric congenital 36 and acquired 35 heart disease endorsed by numerous Societies involved in the care of these children is lacking. This guidelines document outlines the use of cardiovascular magnetic resonance in this patient population for a significant number of heart lesions in this age group and although admittedly, is not an exhaustive treatment, it does deal with an expansive list of many common clinical issues encountered in daily practice.
Collapse
Affiliation(s)
- Mark A. Fogel
- Departments of Pediatrics (Cardiology) and Radiology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA, (M.A.F.)
- Division of Cardiology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA, (M.A.F.)
| | - Shaftkat Anwar
- Department of Pediatrics (Cardiology) and Radiology, The University of California-San Francisco School of Medicine, San Francisco, USA, (S.A.)
| | - Craig Broberg
- Division of Cardiovascular Medicine, Oregon Health and Sciences University, Portland, USA, (C.B.)
| | - Lorna Browne
- Department of Radiology, University of Colorado, Denver, USA, (L.B.)
| | - Taylor Chung
- Department of Radiology and Biomedical Imaging, The University of California-San Francisco School of Medicine, San Francisco, USA, (T.C.)
| | - Tiffanie Johnson
- Department of Pediatrics (Cardiology), Indiana University School of Medicine, Indianapolis, USA, (T.J.)
| | - Vivek Muthurangu
- Department of Pediatrics (Cardiology), University College London, London, UK, (V.M.)
| | - Michael Taylor
- Department of Pediatrics (Cardiology), University of Cincinnati School of Medicine, Cincinnati, USA, (M.T.)
| | | | - Carolyn Wilhelm
- Department of Pediatrics (Cardiology), University Hospitals-Cleveland, Cleaveland, USA (C.W.)
| |
Collapse
|
3
|
Pushparajah K. Non-invasive Imaging in the Evaluation of Cardiac Shunts for Interventional Closure. Front Cardiovasc Med 2021; 8:651726. [PMID: 34222361 PMCID: PMC8253251 DOI: 10.3389/fcvm.2021.651726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
Multimodality imaging provides important information to guide patient selection and pre-procedural decision making for shunt lesions in CHD. While echocardiography, CT, and CMR are well-established, 3D printing and now virtual reality imaging are beginning to show promise.
Collapse
Affiliation(s)
- Kuberan Pushparajah
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, United Kingdom.,Department of Paediatric Cardiology, Evelina London Children's Hospital, London, United Kingdom
| |
Collapse
|
4
|
Thomson JDR, Krasemann T. No room at the inn? Pulmonary artery stent implantation and the fate of the bronchus. EUROINTERVENTION 2020; 15:1123-1124. [PMID: 31951211 DOI: 10.4244/eijv15i13a209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- John D R Thomson
- Department of Congenital Cardiology, Yorkshire Heart Centre, Leeds, United Kingdom
| | | |
Collapse
|
5
|
Tailored Optimization of Pediatric Body MR Angiography for Successful Outcomes in Thoracic Applications. AJR Am J Roentgenol 2020; 214:1031-1041. [DOI: 10.2214/ajr.19.22253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Krings GJ, van der Stelt F, Molenschot MMC, Breur JMPJ. Oval stenting in left pulmonary artery stenosis: a novel double balloon technique to prevent airway compression in single ventricle. EUROINTERVENTION 2020; 15:1209-1215. [PMID: 30834894 DOI: 10.4244/eij-d-18-01079] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
AIMS Left pulmonary artery (LPA) stenosis is common in patients with cavopulmonary connections. Stent implantation is the treatment of choice but may be complicated or contraindicated by left main bronchus (LMB) compression due to limited retro-aortic space after a Damus-Kaye-Stansel (DKS) or Norwood operation. This study describes a novel double balloon technique of LPA stenting in patients at risk of LMB compression. METHODS AND RESULTS A cohort study was performed in 11 patients who underwent LPA stenting with an oval stent technique between 2015 and 2018. Retro-aortic anatomy was evaluated periprocedurally by three-dimensional rotational angiography (3DRA). Pre-existing LMB compression was demonstrated by 3DRA in seven out of eight patients who had undergone previous LPA stenting and in one patient without stenting. Primary ovalisation with immediate stent implantation on double balloons was performed in one patient. Ten patients had secondary ovalisation with single balloon stent implantation followed by the double balloon technique for ovalisation. The procedures were successful in all patients and guaranteed LMB patency without increasing pre-existing compression. CONCLUSIONS The 3DRA-guided oval stent technique with double balloon inflation is successful in treating LPA stenosis after a DKS or Norwood operation in patients at risk of bronchial compression, guaranteeing LMB patency without increasing pre-existing compression.
Collapse
Affiliation(s)
- Gregor J Krings
- Department of Paediatric Cardiology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, the Netherlands
| | | | | | | |
Collapse
|
7
|
Kourtidou S, Jones MR, Moore RA, Tretter JT, Ollberding NJ, Crotty EJ, Rattan MS, Fleck RJ, Taylor MD. mDixon ECG-gated 3-dimensional cardiovascular magnetic resonance angiography in patients with congenital cardiovascular disease. J Cardiovasc Magn Reson 2019; 21:52. [PMID: 31391061 PMCID: PMC6686451 DOI: 10.1186/s12968-019-0554-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 06/14/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cardiovascular magnetic resonance (CMR) angiography (CMRA) is an important non-invasive imaging tool for congenital heart disease (CHD) and aortopathy patients. The conventional 3D balanced steady-state free precession (bSSFP) sequence is often confounded by imaging artifacts. We sought to compare the respiratory navigated and electrocardiogram (ECG) gated modified Dixon (mDixon) CMRA sequence to conventional non-gated dynamic multi-phase contrast enhanced CMRA (CE-CMRA) and bSSFP across a variety of diagnoses. METHODS We included 24 patients with CHD or aortopathy with CMR performed between September 2017 to December 2017. Each patient had undergone CE-CMRA, followed by a bSSFP and mDixon angiogram. Patients with CMR-incompatible implants or contraindications to contrast were excluded. The studies were rated according to image quality at a scale from 1 (poor) to 4 (excellent) based on diagnostic adequacy, artifact burden, vascular border delineation, myocardium-blood pool contrast, and visualization of pulmonary and systemic veins and coronaries. Contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR) and quantitative vascular measurements were compared between the two gated sequences. Bland-Altman plots were generated to compare paired measures. RESULTS All scans were diagnostically adequate. Mean (SD) quality scores were 3.4 (0.7) for the mDixon, 3.2 (0.5) for the bSSFP and 3.4 (0.5) for the CE-CMRA. Qualitatively, the intracardiac anatomy and myocardium-blood pool definition were better in the bSSFP; however, mDixon images showed enhanced vessel wall sharpness with less blurring surrounding the anatomical borders distally. Coronary origins were identified in all cases. Pulmonary veins were visualized in 92% of mDixon sequences, 75% of bSSFP and 96% of CE-CMRA. Similarly, neck veins were identified in 92, 83 and 96% respectively. Artifacts prevented vascular measurement in 6/192 (3%) and 4/192 (2%) of total vascular measurements for the mDixon and bSSFP, respectively. However, the size of signal void and field distortion were significantly worse in the latter, particularly for flow and metal induced artifacts. CONCLUSION In patients with congenital heart disease, ECG gated mDixon angiography yields high fidelity vascular images including better delineation of head and neck vasculature and pulmonary veins and fewer artifacts than the comparable bSSFP sequence. It should be considered as the preferred strategy for successful CHD imaging in patients with valve stenosis, vascular stents, or metallic implants.
Collapse
Affiliation(s)
- Soultana Kourtidou
- Weil Cornell Medicine, Department of Pediatrics, Pediatric Cardiology, 525 East 68th St, F-677, New York, NY 10065 USA
| | - Marty R. Jones
- St. David’s Medical Center, 919 East 32nd Street, Austin, TX 78705 USA
| | - Ryan A. Moore
- The Heart Institute, Department of Pediatrics, David’s Medical Center, 919 East 32nd Street, Austin, TX 78705 USA
| | - Justin T. Tretter
- The Heart Institute, Department of Pediatrics, David’s Medical Center, 919 East 32nd Street, Austin, TX 78705 USA
| | - Nicholas J. Ollberding
- Division of Biostatistics and Epidemiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229 USA
| | - Eric J. Crotty
- Department of Radiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229 USA
| | - Mantosh S. Rattan
- Department of Radiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229 USA
| | - Robert J. Fleck
- Department of Radiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229 USA
| | - Michael D. Taylor
- The Heart Institute, Department of Pediatrics, David’s Medical Center, 919 East 32nd Street, Austin, TX 78705 USA
| |
Collapse
|
8
|
Custom tailoring of medical implants for pulmonary artery bifurcation stenosis. Int J Cardiol 2019; 284:82-83. [DOI: 10.1016/j.ijcard.2018.11.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 11/21/2018] [Accepted: 11/27/2018] [Indexed: 11/22/2022]
|
9
|
Catheter, MRI and CT Imaging in Newborns with Pulmonary Atresia with Ventricular Septal Defect and Aortopulmonary Collaterals: Quantifying the Risks of Radiation Dose and Anaesthetic Time. Pediatr Cardiol 2018; 39:1308-1314. [PMID: 29744658 PMCID: PMC6153876 DOI: 10.1007/s00246-018-1895-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/02/2018] [Indexed: 12/01/2022]
Abstract
A comprehensive understanding of the native pulmonary blood supply is crucial in newborns with pulmonary atresia with ventricular septal defect and aortopulmonary collaterals (PA/VSD/MAPCA). We sought to describe the accuracy in terms of identifying native pulmonary arteries, radiation dose and anaesthetic time associated with multi-modality imaging in these patients, prior to their first therapeutic intervention. Furthermore, we wanted to evaluate the cumulative radiations dose and anaesthetic time over the study period. Patients with PA/VSD/MAPCA diagnosed at < 100 days between 2004 and 2014 were identified. Cumulative radiation dose and anaesthetic times were calculated, with imaging results compared with intraoperative findings. We then calculated the cumulative risks to date for all surviving children. Of 19 eligible patients, 2 had echocardiography only prior to first intervention. The remaining 17 patients underwent 13 MRIs, 4 CT scans and 13 cardiac catheterization procedures. The mean radiation dose was 169 mGy cm2 (47-461 mGy cm2), and mean anaesthetic time was 111 min (33-185 min). 3 children had MRI only with no radiation exposure, and one child had CT only with no anaesthetic. Early cross-sectional imaging allowed for delayed catheterisation, but without significantly reducing radiation burden or anaesthetic time. The maximum cumulative radiation dose was 8022 mGy cm2 in a 6-year-old patient and 1263 min of anaesthetic at 5 years. There is the potential to generate very high radiation doses and anaesthetic times from diagnostic imaging alone in these patients. As survival continues to improve in many congenital heart defects, the important risks of serial diagnostic imaging must be considered when planning long-term management.
Collapse
|
10
|
Yang MX, Yang ZG, Zhang Y, Shi K, Xu HY, Diao KY, Guo YK. Dual-source Computed Tomography for Evaluating Pulmonary Artery and Aorta in Pediatric Patients with Single Ventricle. Sci Rep 2017; 7:13398. [PMID: 29042577 PMCID: PMC5645343 DOI: 10.1038/s41598-017-11809-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/29/2017] [Indexed: 02/05/2023] Open
Abstract
To explore the accuracy of main pulmonary artery (MPA) and ascending aorta (AAO) image evaluation in pediatric patients with single ventricle (SV) by comparing dual-source computed tomography (DSCT) with echocardiography. Thirty-one children with SV were retrospectively enrolled. The stenosis, dilation, and location of MPA and AAO were independently evaluated by DSCT and echocardiography. The accompanying arterial malformations were also assessed by DSCT. For 17 patients undergoing cardiac catheterization, the DSCT-based diameters of MPA and AAO were correlated with their pressures as measured by catheterization. Referring to the surgical and catheterization findings, DSCT had better diagnostic performance in detecting the stenosis, dilation, and location of MPA and AAO with higher sensitivity than echocardiography (sensitivity, MPA: 88.0% vs. 80.0%, AAO: 100% vs. 66.7%, great arteries location: 95.7% vs. 95.2%). The correlations between diameters of MPA and AAO with their pressures were 0.399 (p = 0.04) and 0.611 (p = 0.01), respectively. In addition, DSCT detected 23 cases with patent ductus arteriosus, 26 systemic-to-pulmonary collaterals, 9 branch pulmonary distortions, and 4 coronary artery anomalies. DSCT is reliable for assessing the anatomic features of pulmonary artery and aorta in SV children, and provides comprehensive information for surgical strategy-making.
Collapse
Affiliation(s)
- Meng-Xi Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zhi-Gang Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China. .,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.
| | - Yi Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Ke Shi
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Hua-Yan Xu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Kai-Yue Diao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Ying-Kun Guo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China. .,Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
11
|
Greil G, Tandon AA, Silva Vieira M, Hussain T. 3D Whole Heart Imaging for Congenital Heart Disease. Front Pediatr 2017; 5:36. [PMID: 28289674 PMCID: PMC5327357 DOI: 10.3389/fped.2017.00036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/10/2017] [Indexed: 12/20/2022] Open
Abstract
Three-dimensional (3D) whole heart techniques form a cornerstone in cardiovascular magnetic resonance imaging of congenital heart disease (CHD). It offers significant advantages over other CHD imaging modalities and techniques: no ionizing radiation; ability to be run free-breathing; ECG-gated dual-phase imaging for accurate measurements and tissue properties estimation; and higher signal-to-noise ratio and isotropic voxel resolution for multiplanar reformatting assessment. However, there are limitations, such as potentially long acquisition times with image quality degradation. Recent advances in and current applications of 3D whole heart imaging in CHD are detailed, as well as future directions.
Collapse
Affiliation(s)
- Gerald Greil
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX, USA; Division of Pediatric Cardiology, Children's Medical Center Dallas, Dallas, TX, USA; Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Animesh Aashoo Tandon
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX, USA; Division of Pediatric Cardiology, Children's Medical Center Dallas, Dallas, TX, USA
| | - Miguel Silva Vieira
- Division of Imaging Sciences and Biomedical Engineering, King's College London , London , UK
| | - Tarique Hussain
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX, USA; Division of Pediatric Cardiology, Children's Medical Center Dallas, Dallas, TX, USA; Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| |
Collapse
|
12
|
Tandon A, Byrne N, Nieves Velasco Forte MDL, Zhang S, Dyer AK, Dillenbeck JM, Greil GF, Hussain T. Use of a semi-automated cardiac segmentation tool improves reproducibility and speed of segmentation of contaminated right heart magnetic resonance angiography. Int J Cardiovasc Imaging 2016; 32:1273-9. [PMID: 27173489 PMCID: PMC5562952 DOI: 10.1007/s10554-016-0906-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/02/2016] [Indexed: 10/21/2022]
Abstract
Three-dimensional printing has an increasing number of clinical applications in pediatric cardiology. Time required for dataset segmentation and conversion to stereolithography (STL) format remains a significant limitation. We investigated the impact of semi-automated cardiovascular-specific segmentation software on time and reproducibility of segmentation. Magnetic resonance angiograms (MRAs) of 19 patients undergoing intervention for right ventricular outflow lesions were segmented to demonstrate the right heart. STLs were created by two independent clinicians using semi-automated cardiovascular segmentation (SAS) and traditional manual segmentation (MS). Time was recorded and geometric STL disagreement was determined (0 % = no disagreement, 100 % = complete disagreement). MRA datasets were categorized as clean when only right heart structures were present in the MRA, or contaminated when left heart structures were also present and required removal. Eighteen (seven clean and 11 contaminated) cases were successfully segmented with both methods. Time to STL for clean datasets was faster with MS than SAS [median 209 s (IQR 192-252) vs. 296 s (272-317), p = 0.018] while contaminated datasets were faster with SAS [455 s (384-561) vs. 866 s (310-1429), p = 0.033]. Interobserver STL geometric disagreement was significantly lower using SAS than MS overall (0.70 ± 1.15 % vs. 1.31 ± 1.52 %, p = 0.030), and for the contaminated subset (0.81 ± 1.08 % vs. 1.75 ± 1.57 %, p = 0.036). Most geometric disagreement occurred at areas where left heart contamination was removed. Semi-automated segmentation was faster and more reproducible for contaminated datasets, while MS was faster but equally reproducible for clean datasets. Semi-automated segmentation methods are preferable for contaminated datasets and continued refinement of these tools should be supported.
Collapse
Affiliation(s)
- Animesh Tandon
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Pediatric Cardiology, Children's Medical Center Dallas, 1935 Medical District Drive, Dallas, TX, 75235, USA.
| | - Nicholas Byrne
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
- Medical Physics, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | | | - Song Zhang
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Adrian K Dyer
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Pediatric Cardiology, Children's Medical Center Dallas, 1935 Medical District Drive, Dallas, TX, 75235, USA
| | - Jeanne M Dillenbeck
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Pediatric Cardiology, Children's Medical Center Dallas, 1935 Medical District Drive, Dallas, TX, 75235, USA
| | - Gerald F Greil
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Pediatric Cardiology, Children's Medical Center Dallas, 1935 Medical District Drive, Dallas, TX, 75235, USA
| | - Tarique Hussain
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Pediatric Cardiology, Children's Medical Center Dallas, 1935 Medical District Drive, Dallas, TX, 75235, USA
| |
Collapse
|
13
|
Valverde I, Gomez G, Coserria JF, Suarez-Mejias C, Uribe S, Sotelo J, Velasco MN, Santos De Soto J, Hosseinpour AR, Gomez-Cia T. 3D printed models for planning endovascular stenting in transverse aortic arch hypoplasia. Catheter Cardiovasc Interv 2015; 85:1006-12. [PMID: 25557983 DOI: 10.1002/ccd.25810] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/19/2014] [Accepted: 12/25/2014] [Indexed: 11/12/2022]
Abstract
OBJECTIVES To evaluate whether three-dimensional (3D) printed models can be used to improve interventional simulation and planning in patients with aortic arch hypoplasia. BACKGROUND Stenting of a hypoplastic transverse arch is technically challenging, and complications such as stent migration and partial obstruction of the origin of the head and neck vessels are highly dependent on operator skills and expertise. METHODS Using magnetic resonance imaging (MRI) data, a 3D model of a repaired aortic coarctation of a 15-year-old boy with hypoplastic aortic arch was printed. Simulation of the endovascular stenting of the hypoplastic arch was carried out under fluoroscopic guidance in the 3D printed model, and subsequently in the patient. A Bland-Altman analysis was used to evaluate the agreement between measurements of aortic diameter in the 3D printed model and the patient's MRI and X-ray angiography. RESULTS The 3D printed model proved to be radio-opaque and allowed simulation of the stenting intervention. The assessment of optimal stent position, size, and length was found to be useful for the actual intervention in the patient. There was excellent agreement between the 3D printed model and both MRI and X-ray angiographic images (mean bias and standard deviation of 0.36 ± 0.45 mm). CONCLUSIONS 3D printed models accurately replicate patients' anatomy and are helpful in planning endovascular stenting in transverse arch hypoplasia. This opens a door for potential simulation applications of 3D models in the field of catheterization and cardiovascular interventions.
Collapse
Affiliation(s)
- Israel Valverde
- Paediatric Cardiology Unit, Hospital Virgen Del Rocio, Seville, Spain; Cardiovascular Pathology Unit, Institute of Biomedicine of Seville, IBIS, Hospital Virgen De Rocio/CSIC/University of Seville, Seville, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Valente AM, Cook S, Festa P, Ko HH, Krishnamurthy R, Taylor AM, Warnes CA, Kreutzer J, Geva T. Multimodality Imaging Guidelines for Patients with Repaired Tetralogy of Fallot: A Report from the American Society of Echocardiography. J Am Soc Echocardiogr 2014; 27:111-41. [DOI: 10.1016/j.echo.2013.11.009] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
15
|
Krasemann T, Morgan GJ. Catheter interventions for congenital heart disease with less and less radiation. Interv Cardiol 2013. [DOI: 10.2217/ica.13.65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
16
|
Which cardiovascular magnetic resonance planes and sequences provide accurate measurements of branch pulmonary artery size in children with right ventricular outflow tract obstruction? Int J Cardiovasc Imaging 2013; 30:329-38. [PMID: 24272287 DOI: 10.1007/s10554-013-0328-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 11/12/2013] [Indexed: 10/26/2022]
Abstract
Children with right ventricular outflow tract obstructive (RVOTO) lesions require precise quantification of pulmonary artery (PA) size for proper management of branch PA stenosis. We aimed to determine which cardiovascular magnetic resonance (CMR) sequences and planes correlated best with cardiac catheterization and surgical measurements of branch PA size. Fifty-five children with RVOTO lesions and biventricular circulation underwent CMR prior to; either cardiac catheterization (n = 30) or surgery (n = 25) within a 6 month time frame. CMR sequences included axial black blood, axial, coronal oblique and sagittal oblique cine balanced steady-state free precession (bSSFP), and contrast-enhanced magnetic resonance angiography (MRA) with multiplanar reformatting in axial, coronal oblique, sagittal oblique, and cross-sectional planes. Maximal branch PA and stenosis (if present) diameter were measured. Comparisons of PA size on CMR were made to reference methods: (1) catheterization measurements performed in the anteroposterior plane at maximal expansion, and (2) surgical measurement obtained from a maximal diameter sound which could pass through the lumen. The mean differences (Δ) and intra class correlation (ICC) were used to determine agreement between different modalities. CMR branch PA measurements were compared to the corresponding cardiac catheterization measurements in 30 children (7.6 ± 5.6 years). Reformatted MRA showed better agreement for branch PA measurement (ICC > 0.8) than black blood (ICC 0.4-0.6) and cine sequences (ICC 0.6-0.8). Coronal oblique MRA and maximal cross sectional MRA provided the best correlation of right PA (RPA) size with ICC of 0.9 (Δ -0.1 ± 2.1 mm and Δ 0.5 ± 2.1 mm). Maximal cross sectional MRA and sagittal oblique MRA provided the best correlate of left PA (LPA) size (Δ 0.1 ± 2.4 and Δ -0.7 ± 2.4 mm). For stenoses, the best correlations were from coronal oblique MRA of right pulmonary artery (RPA) (Δ -0.2 ± 0.8 mm, ICC 0.9) and sagittal oblique MRA of left pulmonary artery (LPA) (Δ 0.2 ± 1.1 mm, ICC 0.9). CMR PA measurements were compared to surgical measurements in 25 children (5.4 ± 4.8 years). All MRI sequences demonstrated good agreement (ICC > 0.8) with the best (ICC 0.9) from axial cine bSSFP for both RPA and LPA. Maximal cross sectional and angulated oblique reformatted MRA provide the best correlation to catheterization for measurement of branch PA's and stenosis diameter. This is likely due to similar angiographic methods based on reformatting techniques that transect the central axis of the arteries. Axial cine bSSFP CMR was the best surgically measured correlate of PA branch size due to this being a measure of stretched diameter. Knowledge of these differences provides more precise PA measurements and may aid catheter or surgical interventions for RVOTO lesions.
Collapse
|
17
|
Hussain T, Lossnitzer D, Bellsham-Revell H, Valverde I, Beerbaum P, Razavi R, Bell AJ, Schaeffter T, Botnar RM, Uribe SA, Greil GF. Three-dimensional Dual-Phase Whole-Heart MR Imaging: Clinical Implications for Congenital Heart Disease. Radiology 2012; 263:547-54. [DOI: 10.1148/radiol.12111700] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Dori Y, Sarmiento M, Glatz AC, Gillespie MJ, Jones VM, Harris MA, Whitehead KK, Fogel MA, Rome JJ. X-ray magnetic resonance fusion to internal markers and utility in congenital heart disease catheterization. Circ Cardiovasc Imaging 2011; 4:415-24. [PMID: 21536785 DOI: 10.1161/circimaging.111.963868] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND X-ray magnetic resonance fusion (XMRF) allows for use of 3D data during cardiac catheterization. However, to date, technical requirements have limited the use of this modality in clinical practice. We report on a new internal-marker XMRF method that we have developed and describe how we used XMRF during cardiac catheterization in congenital heart disease. METHODS AND RESULTS XMRF was performed in a phantom and in 23 patients presenting for cardiac catheterization who also needed cardiac MRI for clinical reasons. The registration process was performed in < 5 minutes per patient, with minimal radiation (0.004 to 0.024 mSv) and without contrast. Registration error was calculated in a phantom and in 8 patients using the maximum distance between angiographic and 3D model boundaries. In the phantom, the measured error in the anteroposterior projection had a mean of 1.15 mm (standard deviation, 0.73). The measured error in patients had a median of 2.15 mm (interquartile range, 1.65 to 2.56 mm). Internal markers included bones, airway, image artifact, calcifications, and the heart and vessel borders. The MRI data were used for road mapping in 17 of 23 (74%) cases and camera angle selection in 11 of 23 (48%) cases. CONCLUSIONS Internal marker-based registration can be performed quickly, with minimal radiation, without the need for contrast, and with clinically acceptable accuracy using commercially available software. We have also demonstrated several potential uses for XMRF in routine clinical practice. This modality has the potential to reduce radiation exposure and improve catheterization outcomes.
Collapse
Affiliation(s)
- Yoav Dori
- Department of Cardiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|