1
|
Gallinoro E, Paolisso P, Bertolone DT, Esposito G, Belmonte M, Leone A, Viscusi MM, Shumkova M, De Colle C, Degrieck I, Casselman F, Penicka M, Collet C, Sonck J, Wyffels E, Bartunek J, De Bruyne B, Vanderheyden M, Barbato E. Absolute coronary flow and microvascular resistance before and after transcatheter aortic valve implantation. EUROINTERVENTION 2024; 20:e1248-e1528. [PMID: 39374094 PMCID: PMC11443252 DOI: 10.4244/eij-d-24-00075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 07/22/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND Severe aortic stenosis (AS) is associated with left ventricular (LV) remodelling, likely causing alterations in coronary blood flow and microvascular resistance. AIMS We aimed to evaluate changes in absolute coronary flow and microvascular resistance in patients with AS undergoing transcatheter aortic valve implantation (TAVI). METHODS Consecutive patients with AS undergoing TAVI with non-obstructive coronary artery disease in the left anterior descending artery (LAD) were included. Absolute coronary flow (Q) and microvascular resistance (Rμ) were measured in the LAD using continuous intracoronary thermodilution at rest and during hyperaemia before and after TAVI, and at 6-month follow-up. Total myocardial mass and LAD-specific mass were quantified by echocardiography and cardiac computed tomography. Regional myocardial perfusion (QN) was calculated by dividing absolute flow by the subtended myocardial mass. RESULTS In 51 patients, Q and R were measured at rest and during hyperaemia before and after TAVI; in 20 (39%) patients, measurements were also obtained 6 months after TAVI. No changes occurred in resting and hyperaemic flow and resistance before and after TAVI nor after 6 months. However, at 6-month follow-up, a notable reverse LV remodelling resulted in a significant increase in hyperaemic perfusion (QN,hyper: 0.86 [interquartile range {IQR} 0.691.06] vs 1.20 [IQR 0.99-1.32] mL/min/g; p=0.008; pre-TAVI and follow-up, respectively) but not in resting perfusion (QN,rest: 0.34 [IQR 0.30-0.48] vs 0.47 [IQR 0.36-0.67] mL/min/g; p=0.06). CONCLUSIONS Immediately after TAVI, no changes occurred in absolute coronary flow or coronary flow reserve. Over time, the remodelling of the left ventricle is associated with increased hyperaemic perfusion.
Collapse
Affiliation(s)
- Emanuele Gallinoro
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
- Division of University Cardiology, IRCCS Galeazzi - Sant'Ambrogio Hospital, Milan, Italy
| | - Pasquale Paolisso
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
- Division of University Cardiology, IRCCS Galeazzi - Sant'Ambrogio Hospital, Milan, Italy
| | | | - Giuseppe Esposito
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Marta Belmonte
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Attilio Leone
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Michele Mattia Viscusi
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | | | | | - Ivan Degrieck
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
| | | | | | - Carlos Collet
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
| | - Jeroen Sonck
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
| | - Eric Wyffels
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
| | | | - Bernard De Bruyne
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
- Department of Cardiology, Lausanne University Hospital, Lausanne, Switzerland
| | | | - Emanuele Barbato
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Mahendiran T, Fawaz S, Viscusi M, Keulards D, Crooijmans C, Jansen TPJ, Everaars H, Gallinoro E, Candreva A, Bouisset F, Mizukami T, Bertolone D, Belmonte M, Seki R, Svanerud J, Sonck J, Wilgenhof A, Keeble TR, Damman P, Knaapen P, Collet C, Pijls NHJ, De Bruyne B. Simplification of continuous intracoronary thermodilution. EUROINTERVENTION 2024; 20:e1217-e1226. [PMID: 39374090 PMCID: PMC11443253 DOI: 10.4244/eij-d-24-00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/17/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND Continuous intracoronary thermodilution with saline allows for the accurate measurement of volumetric blood flow (Q) and absolute microvascular resistance (Rμ). However, this requires repositioning of the temperature sensor by the operator to measure the entry temperature of the saline infusate, denoted as Ti. AIMS We evaluated whether Ti could be predicted based on known parameters without compromising the accuracy of calculated Q. This would significantly simplify the technique and render it completely operator independent. METHODS In a derivation cohort of 371 patients with Q measured both at rest and during hyperaemia, multivariate linear regression was used to derive an equation for the prediction of Ti. Agreement between standard Q (calculated with measured Ti) and simplified Q (calculated with predicted Ti) was assessed in a validation cohort of 120 patients that underwent repeat Q measurements. The accuracy of simplified Q was assessed in a second validation cohort of 23 patients with [15O]H2O positron emission tomography (PET)-derived Q measurements. RESULTS Simplified Q exhibited strong agreement with standard Q (r=0.94, confidence interval [CI]: 0.93-0.95; intraclass correlation coefficient [ICC] 0.94, CI: 0.92-0.95; both p<0.001). Simplified Q exhibited excellent agreement with PET-derived Q (r=0.86, CI: 0.75-0.92; ICC=0.84, CI: 0.72-0.91; both p<0.001). Compared with standard Q, there were no statistically significant differences between correlation coefficients (p=0.29) or standard deviations of absolute differences with PET-derived Q (p=0.85). CONCLUSIONS Predicting Ti resulted in an excellent agreement with measured Ti for the assessment of coronary blood flow. It significantly simplifies continuous intracoronary thermodilution and renders absolute coronary flow measurements completely operator independent.
Collapse
Affiliation(s)
- Thabo Mahendiran
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
- Department of Cardiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Samer Fawaz
- Essex Cardiothoracic Centre, Mid and South Essex NHS Foundation Trust, Basildon, United Kingdom
| | | | - Danielle Keulards
- Department of Cardiology, Catharina Hospital, Eindhoven, the Netherlands
| | - Caïa Crooijmans
- Department of Cardiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tijn P J Jansen
- Department of Cardiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Henk Everaars
- Department of Cardiology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | | | | | | | | | | | | | - Ruiko Seki
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
| | | | - Jeroen Sonck
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
| | - Adriaan Wilgenhof
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Thomas R Keeble
- Essex Cardiothoracic Centre, Mid and South Essex NHS Foundation Trust, Basildon, United Kingdom
| | - Peter Damman
- Department of Cardiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Paul Knaapen
- Department of Cardiology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Carlos Collet
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
| | - Nico H J Pijls
- Department of Cardiology, Catharina Hospital, Eindhoven, the Netherlands
| | - Bernard De Bruyne
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
- Department of Cardiology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
3
|
Vrints C, Andreotti F, Koskinas KC, Rossello X, Adamo M, Ainslie J, Banning AP, Budaj A, Buechel RR, Chiariello GA, Chieffo A, Christodorescu RM, Deaton C, Doenst T, Jones HW, Kunadian V, Mehilli J, Milojevic M, Piek JJ, Pugliese F, Rubboli A, Semb AG, Senior R, Ten Berg JM, Van Belle E, Van Craenenbroeck EM, Vidal-Perez R, Winther S. 2024 ESC Guidelines for the management of chronic coronary syndromes. Eur Heart J 2024; 45:3415-3537. [PMID: 39210710 DOI: 10.1093/eurheartj/ehae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
|
4
|
Pompei G, Ganzorig N, Kotanidis CP, Alkhalil M, Collet C, Sinha A, Perera D, Beltrame J, Kunadian V. Novel diagnostic approaches and management of coronary microvascular dysfunction. Am J Prev Cardiol 2024; 19:100712. [PMID: 39161975 PMCID: PMC11332818 DOI: 10.1016/j.ajpc.2024.100712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/04/2024] [Accepted: 07/21/2024] [Indexed: 08/21/2024] Open
Abstract
The mechanism underlying ischaemic heart disease (IHD) has been primarily attributed to obstructive coronary artery disease (CAD). However, non-obstructive coronary arteries are identified in >50% of patients undergoing elective coronary angiography, recently leading to growing interest in the investigation and management of angina/ischaemia with non-obstructive coronary arteries (ANOCA/INOCA). INOCA is an umbrella term encompassing a multiple spectrum of possible pathogenetic entities, including coronary vasomotor disorders which consist of two major endotypes: coronary microvascular dysfunction (CMD) and vasospastic angina. Both conditions can coexist and be associated with concomitant obstructive CAD. Particularly, CMD refers to myocardial ischaemia due to reduced vasodilatory capacity of coronary microcirculation secondary to structural remodelling or impaired resting microvascular tone (functional) or a combination of both. CMD is not a benign condition and is more prevalent in women presenting with chronic coronary syndrome compared to men. In this setting, an impaired coronary flow reserve has been associated with increased risk of major adverse cardiovascular events. ANOCA/INOCA patients also experience impaired quality of life and associated increased healthcare costs. Therefore, research in this scenario has led to better definition, classification, and prognostic stratification based on the underlying pathophysiological mechanisms. The development and validation of non-invasive imaging modalities, invasive coronary vasomotor function testing and angiography-derived indices provide a comprehensive characterisation of CMD. The present narrative review aims to summarise current data relating to the diagnostic approach to CMD and provides details on the sequence that therapeutic management should follow.
Collapse
Affiliation(s)
- Graziella Pompei
- Translational and Clinical Research Institute, Faculty of Medical Sciences, NewcastleUniversity, Newcastle upon Tyne, UK
- Cardiovascular Institute, Azienda Ospedaliero-Universitaria di Ferrara, Cona, FE, Italy
| | - Nandine Ganzorig
- Translational and Clinical Research Institute, Faculty of Medical Sciences, NewcastleUniversity, Newcastle upon Tyne, UK
| | - Christos P. Kotanidis
- Translational and Clinical Research Institute, Faculty of Medical Sciences, NewcastleUniversity, Newcastle upon Tyne, UK
- Cardiothoracic Centre, Freeman Hospital, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom
| | - Mohammad Alkhalil
- Translational and Clinical Research Institute, Faculty of Medical Sciences, NewcastleUniversity, Newcastle upon Tyne, UK
- Cardiothoracic Centre, Freeman Hospital, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom
| | - Carlos Collet
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
| | - Aish Sinha
- School of Cardiovascular Medicine and Sciences, British Heart Foundation Centre of Excellence and National Institute for Health Research Biomedical Research Centre, King's College London, London, UK
| | - Divaka Perera
- School of Cardiovascular Medicine and Sciences, British Heart Foundation Centre of Excellence and National Institute for Health Research Biomedical Research Centre, King's College London, London, UK
| | - John Beltrame
- Basil Hetzel Institute for Translational Health Research, Adelaide Medical School, University of Adelaide and Royal Adelaide Hospital & The Queen Elizabeth Hospital, Adelaide, Australia
| | - Vijay Kunadian
- Translational and Clinical Research Institute, Faculty of Medical Sciences, NewcastleUniversity, Newcastle upon Tyne, UK
- Cardiothoracic Centre, Freeman Hospital, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
5
|
Collet C, Sakai K, Mizukami T, Ohashi H, Bouisset F, Caglioni S, van Hoe L, Gallinoro E, Bertolone DT, Pardaens S, Brouwers S, Storozhenko T, Seki R, Munhoz D, Tajima A, Buytaert D, Vanderheyden M, Wyffels E, Bartunek J, Sonck J, De Bruyne B. Vascular Remodeling in Coronary Microvascular Dysfunction. JACC Cardiovasc Imaging 2024:S1936-878X(24)00308-5. [PMID: 39269414 DOI: 10.1016/j.jcmg.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Approximately half of the patients with angina and nonobstructive coronary artery disease (ANOCA) have evidence of coronary microvascular dysfunction (CMD). OBJECTIVES This study aims to characterize patients with ANOCA by measuring their minimal microvascular resistance and to examine the pattern of vascular remodeling associated with these measurements. METHODS The authors prospectively included patients with ANOCA undergoing continuous thermodilution assessment. Lumen volume and vessel-specific myocardial mass were quantified using coronary computed tomography angiography (CTA). CMD was defined as coronary flow reserve <2.5 and high minimal microvascular resistance as >470 WU. RESULTS A total of 153 patients were evaluated; 68 had CMD, and 22 of them showed high microvascular resistance. In patients with CMD, coronary flow reserve was 1.9 ± 0.38 vs 3.2 ± 0.81 in controls (P < 0.001). Lumen volume was significantly correlated with minimal microvascular resistance (r = -0.59 [95% CI: -0.45 to -0.71]; P < 0.001). In patients with CMD and high microvascular resistance, lumen volume was 40% smaller than in controls (512.8 ± 130.3 mm3 vs 853.2 ± 341.2 mm3; P < 0.001). Epicardial lumen volume assessed by coronary CTA was independently associated with minimal microvascular resistance (P < 0.001). The predictive capacity of lumen volume from coronary CTA for detecting high microvascular resistance showed an area under the curve of 0.79 (95% CI: 0.69-0.88). CONCLUSIONS Patients with CMD and high minimal microvascular resistance have smaller epicardial vessels than those without CMD. Coronary CTA detected high minimal microvascular resistance with very good diagnostic capacity. Coronary CTA could potentially aid in the diagnostic pathway for patients with ANOCA.
Collapse
Affiliation(s)
- Carlos Collet
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium.
| | - Koshiro Sakai
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium; Department of Medicine, Division of Cardiology, Showa University School of Medicine, Tokyo, Japan
| | - Takuya Mizukami
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium; Division of Clinical Pharmacology, Department of Pharmacology, Showa University, Tokyo, Japan; Department of Cardiovascular Medicine, Gifu Heart Center, Gifu, Japan
| | - Hirofumi Ohashi
- Department of Cardiology, Aichi Medical University, Aichi, Japan
| | - Frederic Bouisset
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium; Department of Cardiology, Toulouse University Hospital, Toulouse, France
| | - Serena Caglioni
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium; Cardiology Unit, Azienda Ospedaliera Universitaria di Ferrara, Ferrara, Italy
| | | | - Emanuele Gallinoro
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium; IRCCS Galeazzi-Sant'Ambrogio Hospital, Division of University Cardiology, Milan, Italy
| | - Dario Tino Bertolone
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium; Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | | | - Sofie Brouwers
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium; Department of Experimental Pharmacology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Tatyana Storozhenko
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium; Department of Prevention and Treatment of Emergency Conditions, L.T. Malaya Therapy National Institute NAMSU, Kharkiv, Ukraine
| | - Ruiko Seki
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
| | - Daniel Munhoz
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium; Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Atomu Tajima
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium; Department of Cardiology, Aichi Medical University, Aichi, Japan
| | | | | | - Eric Wyffels
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
| | | | - Jeroen Sonck
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
| | - Bernard De Bruyne
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium; Department of Cardiology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
6
|
Scarsini R, Gallinoro E, Ancona MB, Portolan L, Paolisso P, Springhetti P, Della Mora F, Mainardi A, Belmonte M, Moroni F, Ferri LA, Bellini B, Russo F, Vella C, Bertolone DT, Pesarini G, Benfari G, Vanderheyden M, Montorfano M, De Bruyne B, Barbato E, Ribichini F. Characterisation of coronary microvascular dysfunction in patients with severe aortic stenosis undergoing TAVI. EUROINTERVENTION 2024; 20:e289-e300. [PMID: 37982178 PMCID: PMC10905195 DOI: 10.4244/eij-d-23-00735] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/27/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Microvascular resistance reserve (MRR) is a validated measure of coronary microvascular function independent of epicardial resistances. AIMS We sought to assess whether MRR is associated with adverse cardiac remodelling, a low-flow phenotype and extravalvular cardiac damage (EVCD) in patients with severe aortic stenosis (AS) undergoing transcatheter aortic valve implantation (TAVI). METHODS Invasive thermodilution-based assessment of the coronary microvascular function of the left anterior descending artery was performed in a prospective, multicentre cohort of patients undergoing TAVI. Coronary microvascular dysfunction (CMD) was defined as the lowest MRR tertile of the study cohort. Haemodynamic measurements were performed at baseline and then repeated immediately after TAVI. EVCD and markers of a low-flow phenotype were assessed with echocardiography. RESULTS A total of 134 patients were included in this study. Patients with low MRR were more frequently females, had a lower estimated glomerular filtration rate and a higher rate of atrial fibrillation. MRR was significantly lower in patients with advanced EVCD (median 1.80 [1.26-3.30] vs 2.50 [1.87-3.41]; p=0.038) and in low-flow, low-gradient AS (LF LG-AS) (median 1.85 [1.20-3.04] vs 2.50 [1.87-3.40]; p=0.008). Overall, coronary microvascular function tended to improve after TAVI and, in particular, MRR increased significantly after TAVI in the subgroup with low MRR at baseline. However, MRR was significantly impaired in 38 (28.4%) patients immediately after TAVI. Advanced EVCD (adjusted odds ratio 3.08 [1.22-7.76]; p=0.017) and a low-flow phenotype (adjusted odds ratio 3.36 [1.08-10.47]; p=0.036) were significant predictors of CMD. CONCLUSIONS In this observational, hypothesis-generating study, CMD was associated with extravalvular cardiac damage and a low-flow phenotype in patients with severe AS undergoing TAVI.
Collapse
Affiliation(s)
- Roberto Scarsini
- Division of Cardiology, Department of Medicine, University of Verona, Verona, Italy
| | - Emanuele Gallinoro
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
- Division of University Cardiology, IRCCS Galeazzi - Sant'Ambrogio Hospital, Milan, Italy
| | - Marco B Ancona
- Interventional Cardiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Leonardo Portolan
- Division of Cardiology, Department of Medicine, University of Verona, Verona, Italy
| | - Pasquale Paolisso
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Paolo Springhetti
- Division of Cardiology, Department of Medicine, University of Verona, Verona, Italy
| | - Francesco Della Mora
- Division of Cardiology, Department of Medicine, University of Verona, Verona, Italy
| | - Andrea Mainardi
- Division of Cardiology, Department of Medicine, University of Verona, Verona, Italy
| | - Marta Belmonte
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Francesco Moroni
- Interventional Cardiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca A Ferri
- Interventional Cardiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Barbara Bellini
- Interventional Cardiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Filippo Russo
- Interventional Cardiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ciro Vella
- Interventional Cardiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Dario Tino Bertolone
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Gabriele Pesarini
- Division of Cardiology, Department of Medicine, University of Verona, Verona, Italy
| | - Giovanni Benfari
- Division of Cardiology, Department of Medicine, University of Verona, Verona, Italy
| | | | - Matteo Montorfano
- Interventional Cardiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | | | - Emanuele Barbato
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Flavio Ribichini
- Division of Cardiology, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
7
|
Belmonte M, Gallinoro E, Pijls NHJ, Bertolone DT, Keulards DCJ, Viscusi MM, Storozhenko T, Mizukami T, Mahendiran T, Seki R, Fournier S, de Vos A, Adjedj J, Barbato E, Sonck J, Damman P, Keeble T, Fawaz S, Gutiérrez-Barrios A, Paradies V, Bouisset F, Kern MJ, Fearon WF, Collet C, De Bruyne B. Measuring Absolute Coronary Flow and Microvascular Resistance by Thermodilution: JACC Review Topic of the Week. J Am Coll Cardiol 2024; 83:699-709. [PMID: 38325996 DOI: 10.1016/j.jacc.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/01/2023] [Indexed: 02/09/2024]
Abstract
Diagnosing coronary microvascular dysfunction remains challenging, primarily due to the lack of direct measurements of absolute coronary blood flow (Q) and microvascular resistance (Rμ). However, there has been recent progress with the development and validation of continuous intracoronary thermodilution, which offers a simplified and validated approach for clinical use. This technique enables direct quantification of Q and Rμ, leading to precise and accurate evaluation of the coronary microcirculation. To ensure consistent and reliable results, it is crucial to follow a standardized protocol when performing continuous intracoronary thermodilution measurements. This document aims to summarize the principles of thermodilution-derived absolute coronary flow measurements and propose a standardized method for conducting these assessments. The proposed standardization serves as a guide to ensure the best practice of the method, enhancing the clinical assessment of the coronary microcirculation.
Collapse
Affiliation(s)
- Marta Belmonte
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium; Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Emanuele Gallinoro
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium; Cardiology Department, Galeazzi-Sant'Ambrogio Hospital, Milan, Italy
| | - Nico H J Pijls
- Department of Cardiology, Catharina Hospital, Eindhoven, the Netherlands.
| | | | - Danielle C J Keulards
- Department of Cardiology, Catharina Hospital, Eindhoven, the Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Michele Mattia Viscusi
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium; Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | | | | | - Thabo Mahendiran
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium; Department of Cardiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Ruiko Seki
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
| | - Stephane Fournier
- Department of Cardiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Annemiek de Vos
- Department of Cardiology, Catharina Hospital, Eindhoven, the Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Julien Adjedj
- Department of Cardiology, Institut Arnault Tzanck, Saint-Laurent-du-Var, France
| | - Emanuele Barbato
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Jeroen Sonck
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
| | - Peter Damman
- Department of Cardiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Thomas Keeble
- Essex Cardiothoracic Centre, Mid South Essex NHS Foundation Trust, Basildon, Essex, United Kingdom; Medical Technology Research Centre, Anglia Ruskin School of Medicine, Chelmsford, Essex, United Kingdom
| | - Samer Fawaz
- Essex Cardiothoracic Centre, Mid South Essex NHS Foundation Trust, Basildon, Essex, United Kingdom; Medical Technology Research Centre, Anglia Ruskin School of Medicine, Chelmsford, Essex, United Kingdom
| | - Alejandro Gutiérrez-Barrios
- Cardiology Department, Hospital Puerta del Mar, Cádiz, Spain; Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, Cádiz, Spain
| | - Valeria Paradies
- Department of Cardiology, Maasstad Hospital, Rotterdam, the Netherlands
| | | | - Morton J Kern
- Veteran's Administration Long Beach Health Care System, Long Beach, California, USA
| | - William F Fearon
- Department of Medicine, Division of Cardiology, Stanford Medical Center Palo Alto, Palo Alto, California, USA; VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Carlos Collet
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
| | - Bernard De Bruyne
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium; Department of Cardiology, Lausanne University Hospital, Lausanne, Switzerland.
| |
Collapse
|
8
|
Fawaz S, Munhoz D, Mahendiran T, Gallinoro E, Mizukami T, Khan SA, Simpson RFG, Svanerud J, Cook CM, Davies JR, Karamasis GV, De Bruyne B, Keeble TR. Assessing the Impact of Prolonged Averaging of Coronary Continuous Thermodilution Traces. Diagnostics (Basel) 2024; 14:285. [PMID: 38337801 PMCID: PMC10855808 DOI: 10.3390/diagnostics14030285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 02/12/2024] Open
Abstract
Continuous Thermodilution is a novel method of quantifying coronary flow (Q) in mL/min. To account for variability of Q within the cardiac cycle, the trace is smoothened with a 2 s moving average filter. This can sometimes be ineffective due to significant heart rate variability, ventricular extrasystoles, and deep inspiration, resulting in a fluctuating temperature trace and ambiguity in the location of the "steady state". This study aims to assess whether a longer moving average filter would smoothen any fluctuations within the continuous thermodilution traces resulting in improved interpretability and reproducibility on a test-retest basis. Patients with ANOCA underwent repeat continuous thermodilution measurements. Analysis of traces were performed at averages of 10, 15, and 20 s to determine the maximum acceptable average. The maximum acceptable average was subsequently applied as a moving average filter and the traces were re-analysed to assess the practical consequences of a longer moving average. Reproducibility was then assessed and compared to a 2 s moving average. Of the averages tested, only 10 s met the criteria for acceptance. When the data was reanalysed with a 10 s moving average filter, there was no significant improvement in reproducibility, however, it resulted in a 12% diagnostic mismatch. Applying a longer moving average filter to continuous thermodilution data does not improve reproducibility. Furthermore, it results in a loss of fidelity on the traces, and a 12% diagnostic mismatch. Overall, current practice should be maintained.
Collapse
Affiliation(s)
- Samer Fawaz
- Essex Cardiothoracic Centre, Basildon Hospital, Nether Mayne, Basildon SS16 5NL, UK
- Medical Technology Research Centre (MTRC), Anglia-Ruskin University, Chelmsford CM1 1SQ, UK
| | - Daniel Munhoz
- Cardiovascular Center Aalst, OLV Clinic, 9300 Aalst, Belgium
- Department of Advanced Biomedical Sciences, University Federico II, 80138 Naples, Italy
| | - Thabo Mahendiran
- Cardiovascular Center Aalst, OLV Clinic, 9300 Aalst, Belgium
- Lausanne University Hospital, 1005 Lausanne, Switzerland
| | - Emanuele Gallinoro
- Cardiovascular Center Aalst, OLV Clinic, 9300 Aalst, Belgium
- Division of University Cardiology, IRCCS Ospedale Galeazzi Sant’Ambrogio, 20157 Milan, Italy
| | - Takuya Mizukami
- Cardiovascular Center Aalst, OLV Clinic, 9300 Aalst, Belgium
- Division of Clinical Pharmacology, Department of Pharmacology, Showa University, Tokyo 142-0064, Japan
| | - Sarosh A. Khan
- Essex Cardiothoracic Centre, Basildon Hospital, Nether Mayne, Basildon SS16 5NL, UK
- Medical Technology Research Centre (MTRC), Anglia-Ruskin University, Chelmsford CM1 1SQ, UK
| | - Rupert F. G. Simpson
- Essex Cardiothoracic Centre, Basildon Hospital, Nether Mayne, Basildon SS16 5NL, UK
- Medical Technology Research Centre (MTRC), Anglia-Ruskin University, Chelmsford CM1 1SQ, UK
| | | | - Christopher M. Cook
- Essex Cardiothoracic Centre, Basildon Hospital, Nether Mayne, Basildon SS16 5NL, UK
- Medical Technology Research Centre (MTRC), Anglia-Ruskin University, Chelmsford CM1 1SQ, UK
| | - John R. Davies
- Essex Cardiothoracic Centre, Basildon Hospital, Nether Mayne, Basildon SS16 5NL, UK
- Medical Technology Research Centre (MTRC), Anglia-Ruskin University, Chelmsford CM1 1SQ, UK
| | - Grigoris V. Karamasis
- School of Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Bernard De Bruyne
- Cardiovascular Center Aalst, OLV Clinic, 9300 Aalst, Belgium
- Lausanne University Hospital, 1005 Lausanne, Switzerland
| | - Thomas R. Keeble
- Essex Cardiothoracic Centre, Basildon Hospital, Nether Mayne, Basildon SS16 5NL, UK
- Medical Technology Research Centre (MTRC), Anglia-Ruskin University, Chelmsford CM1 1SQ, UK
| |
Collapse
|
9
|
Paolisso P, Gallinoro E, Belmonte M, Bertolone DT, Bermpeis K, De Colle C, Shumkova M, Leone A, Caglioni S, Esposito G, Fabbricatore D, Moya A, Delrue L, Penicka M, De Bruyne B, Barbato E, Bartunek J, Vanderheyden M. Coronary Microvascular Dysfunction in Patients With Heart Failure: Characterization of Patterns in HFrEF Versus HFpEF. Circ Heart Fail 2024; 17:e010805. [PMID: 38108151 DOI: 10.1161/circheartfailure.123.010805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/18/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Coronary microvascular dysfunction (CMD) is involved in heart failure (HF) onset and progression, independently of HF phenotype and obstructive coronary artery disease. Invasive assessment of CMD might provide insights into phenotyping and prognosis of patients with HF. We aimed to assess absolute coronary flow, absolute microvascular resistance, myocardial perfusion, coronary flow reserve, and microvascular resistance reserve in patients with HF with preserved ejection fraction and HF with reduced ejection fraction (HFrEF). METHODS Single-center, prospective study of 56 consecutive patients with de novo HF with nonobstructive coronary artery disease divided into HF with preserved ejection fraction (n=21) and HFrEF (n=35). CMD was invasively assessed by continuous intracoronary thermodilution and defined as coronary flow reserve <2.5. Left ventricular and left anterior descending artery-related myocardial mass was quantified by echocardiography and coronary computed tomography angiography. Myocardial perfusion (mL/min per g) was calculated as the ratio between absolute coronary flow and left anterior descending artery-related mass. RESULTS Patients with HFrEF showed a higher left ventricular and left anterior descending artery-related myocardial mass compared with HF with preserved ejection fraction (P<0.010). Overall, 52% of the study population had CMD, with a similar prevalence between the 2 groups. In HFrEF, CMD was characterized by lower absolute microvascular resistance and higher absolute coronary flow at rest (functional CMD; P=0.002). CMD was an independent predictor of a lower rate of left ventricular reverse remodeling at follow-up. In patients with HF with preserved ejection fraction, CMD was mainly due to higher absolute microvascular resistance and lower absolute coronary flow during hyperemia (structural CMD; P≤0.030). CONCLUSIONS Continuous intracoronary thermodilution allows the definition and characterization of patterns with distinct CMD in patients with HF and could identify patients with HFrEF with a higher rate of left ventricular reverse remodeling at follow-up.
Collapse
Affiliation(s)
- Pasquale Paolisso
- Cardiovascular Center Aalst, OLV Hospital, Belgium (P.P., E.G., M.B., D.T.B., K.B., C.D.C., M.S., A.L., G.E., D.F., A.M., L.D., M.P., B.D.B., J.B., M.V.)
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Italy (P.P., M.B., D.T.B., C.D.C., A.L., G.E., D.F.)
| | - Emanuele Gallinoro
- Cardiovascular Center Aalst, OLV Hospital, Belgium (P.P., E.G., M.B., D.T.B., K.B., C.D.C., M.S., A.L., G.E., D.F., A.M., L.D., M.P., B.D.B., J.B., M.V.)
- Cardiology Unit, Galeazzi-Sant'Ambrogio Hospital, Scientific Institute for Research, Hospitalization, and Health Care (IRCCS), Milan, Italy (E.G.)
| | - Marta Belmonte
- Cardiovascular Center Aalst, OLV Hospital, Belgium (P.P., E.G., M.B., D.T.B., K.B., C.D.C., M.S., A.L., G.E., D.F., A.M., L.D., M.P., B.D.B., J.B., M.V.)
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Italy (P.P., M.B., D.T.B., C.D.C., A.L., G.E., D.F.)
| | - Dario Tino Bertolone
- Cardiovascular Center Aalst, OLV Hospital, Belgium (P.P., E.G., M.B., D.T.B., K.B., C.D.C., M.S., A.L., G.E., D.F., A.M., L.D., M.P., B.D.B., J.B., M.V.)
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Italy (P.P., M.B., D.T.B., C.D.C., A.L., G.E., D.F.)
| | - Konstantinos Bermpeis
- Cardiovascular Center Aalst, OLV Hospital, Belgium (P.P., E.G., M.B., D.T.B., K.B., C.D.C., M.S., A.L., G.E., D.F., A.M., L.D., M.P., B.D.B., J.B., M.V.)
| | - Cristina De Colle
- Cardiovascular Center Aalst, OLV Hospital, Belgium (P.P., E.G., M.B., D.T.B., K.B., C.D.C., M.S., A.L., G.E., D.F., A.M., L.D., M.P., B.D.B., J.B., M.V.)
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Italy (P.P., M.B., D.T.B., C.D.C., A.L., G.E., D.F.)
| | - Monika Shumkova
- Cardiovascular Center Aalst, OLV Hospital, Belgium (P.P., E.G., M.B., D.T.B., K.B., C.D.C., M.S., A.L., G.E., D.F., A.M., L.D., M.P., B.D.B., J.B., M.V.)
| | - Attilio Leone
- Cardiovascular Center Aalst, OLV Hospital, Belgium (P.P., E.G., M.B., D.T.B., K.B., C.D.C., M.S., A.L., G.E., D.F., A.M., L.D., M.P., B.D.B., J.B., M.V.)
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Italy (P.P., M.B., D.T.B., C.D.C., A.L., G.E., D.F.)
| | - Serena Caglioni
- Cardiology Unit, Azienda Ospedaliero Universitaria Di Ferrara, Italy (S.C.)
| | - Giuseppe Esposito
- Cardiovascular Center Aalst, OLV Hospital, Belgium (P.P., E.G., M.B., D.T.B., K.B., C.D.C., M.S., A.L., G.E., D.F., A.M., L.D., M.P., B.D.B., J.B., M.V.)
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Italy (P.P., M.B., D.T.B., C.D.C., A.L., G.E., D.F.)
| | - Davide Fabbricatore
- Cardiovascular Center Aalst, OLV Hospital, Belgium (P.P., E.G., M.B., D.T.B., K.B., C.D.C., M.S., A.L., G.E., D.F., A.M., L.D., M.P., B.D.B., J.B., M.V.)
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Italy (P.P., M.B., D.T.B., C.D.C., A.L., G.E., D.F.)
| | - Ana Moya
- Cardiovascular Center Aalst, OLV Hospital, Belgium (P.P., E.G., M.B., D.T.B., K.B., C.D.C., M.S., A.L., G.E., D.F., A.M., L.D., M.P., B.D.B., J.B., M.V.)
| | - Leen Delrue
- Cardiovascular Center Aalst, OLV Hospital, Belgium (P.P., E.G., M.B., D.T.B., K.B., C.D.C., M.S., A.L., G.E., D.F., A.M., L.D., M.P., B.D.B., J.B., M.V.)
| | - Martin Penicka
- Cardiovascular Center Aalst, OLV Hospital, Belgium (P.P., E.G., M.B., D.T.B., K.B., C.D.C., M.S., A.L., G.E., D.F., A.M., L.D., M.P., B.D.B., J.B., M.V.)
| | - Bernard De Bruyne
- Cardiovascular Center Aalst, OLV Hospital, Belgium (P.P., E.G., M.B., D.T.B., K.B., C.D.C., M.S., A.L., G.E., D.F., A.M., L.D., M.P., B.D.B., J.B., M.V.)
- Department of Cardiology, Lausanne University Hospital, Switzerland (B.D.B.)
| | - Emanuele Barbato
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Italy (E.B.)
| | - Jozef Bartunek
- Cardiovascular Center Aalst, OLV Hospital, Belgium (P.P., E.G., M.B., D.T.B., K.B., C.D.C., M.S., A.L., G.E., D.F., A.M., L.D., M.P., B.D.B., J.B., M.V.)
| | - Marc Vanderheyden
- Cardiovascular Center Aalst, OLV Hospital, Belgium (P.P., E.G., M.B., D.T.B., K.B., C.D.C., M.S., A.L., G.E., D.F., A.M., L.D., M.P., B.D.B., J.B., M.V.)
| |
Collapse
|
10
|
Gallinoro E, Bertolone DT, Mizukami T, Paolisso P, Bermpeis K, Munhoz D, Sakai K, Seki R, Ohashi H, Esposito G, Caglioni S, Mileva N, Leone A, Candreva A, Belmonte M, Storozhenko T, Viscusi MM, Vanderheyden M, Wyffels E, Bartunek J, Sonck J, Barbato E, Collet C, De Bruyne B. Continuous vs Bolus Thermodilution to Assess Microvascular Resistance Reserve. JACC Cardiovasc Interv 2023; 16:2767-2777. [PMID: 38030361 DOI: 10.1016/j.jcin.2023.09.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Coronary flow reserve (CFR) and microvascular resistance reserve (MRR) can, in principle, be derived by any method assessing coronary flow. OBJECTIVES The aim of this study was to compare CFR and MRR as derived by continuous (CFRcont and MRRcont) and bolus thermodilution (CFRbolus and MRRbolus). METHODS A total of 175 patients with chest pain and nonobstructive coronary artery disease were studied. Bolus and continuous thermodilution measurements were performed in the left anterior descending coronary artery. MRR was calculated as the ratio of CFR to fractional flow reserve and corrected for changes in systemic pressure. In 102 patients, bolus and continuous thermodilution measurements were performed in duplicate to assess test-retest reliability. RESULTS Mean CFRbolus was higher than CFRcont (3.47 ± 1.42 and 2.67 ± 0.81 [P < 0.001], mean difference 0.80, upper limit of agreement 3.92, lower limit of agreement -2.32). Mean MRRbolus was also higher than MRRcont (4.40 ± 1.99 and 3.22 ± 1.02 [P < 0.001], mean difference 1.2, upper limit of agreement 5.08, lower limit of agreement -2.71). The correlation between CFR and MRR values obtained using both methods was significant but weak (CFR, r = 0.28 [95% CI: 0.14-0.41]; MRR, r = 0.26 [95% CI: 0.16-0.39]; P < 0.001 for both). The precision of both CFR and MRR was higher when assessed using continuous thermodilution compared with bolus thermodilution (repeatability coefficients of 0.89 and 2.79 for CFRcont and CFRbolus, respectively, and 1.01 and 3.05 for MRRcont and MRRbolus, respectively). CONCLUSIONS Compared with bolus thermodilution, continuous thermodilution yields lower values of CFR and MRR accompanied by an almost 3-fold reduction of the variability in the measured results.
Collapse
Affiliation(s)
- Emanuele Gallinoro
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium; Division of University Cardiology, IRCCS Galeazzi - Sant'Ambrogio Hospital, Milan, Italy
| | - Dario Tino Bertolone
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium; Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Takuya Mizukami
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium; Division of Clinical Pharmacology, Department of Pharmacology, Showa University, Tokyo, Japan
| | - Pasquale Paolisso
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium; Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | | | - Daniel Munhoz
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
| | - Koshiro Sakai
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
| | - Ruiko Seki
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
| | | | - Giuseppe Esposito
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium; Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | | | - Niya Mileva
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
| | - Attilio Leone
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
| | - Alessandro Candreva
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium; Department of Cardiology, Zurich University Hospital, Zurich, Switzerland; PoliTo(BIO) Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | | | | | | | | | - Eric Wyffels
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
| | | | - Jeroen Sonck
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
| | - Emanuele Barbato
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium; Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Carlos Collet
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
| | - Bernard De Bruyne
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium; Department of Cardiology, Lausanne University Hospital, Lausanne, Switzerland.
| |
Collapse
|
11
|
Gallinoro E, Bertolone DT, Fernandez-Peregrina E, Paolisso P, Bermpeis K, Esposito G, Gomez-Lopez A, Candreva A, Mileva N, Belmonte M, Mizukami T, Fournier S, Vanderheyden M, Wyffels E, Bartunek J, Sonck J, Barbato E, Collet C, De Bruyne B. Reproducibility of bolus versus continuous thermodilution for assessment of coronary microvascular function in patients with ANOCA. EUROINTERVENTION 2023; 19:e155-e166. [PMID: 36809253 PMCID: PMC10242662 DOI: 10.4244/eij-d-22-00772] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/04/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND A bolus thermodilution-derived index of microcirculatory resistance (IMR) has emerged as the standard for assessing coronary microvascular dysfunction (CMD). Continuous thermodilution has recently been introduced as a tool to quantify absolute coronary flow and microvascular resistance directly. Microvascular resistance reserve (MRR) derived from continuous thermodilution has been proposed as a novel metric of microvascular function, which is independent of epicardial stenoses and myocardial mass. AIMS We aimed to assess the reproducibility of bolus and continuous thermodilution in assessing coronary microvascular function. METHODS Patients with angina and non-obstructive coronary artery disease (ANOCA) at angiography were prospectively enrolled. Bolus and continuous intracoronary thermodilution measurements were obtained in duplicate in the left anterior descending artery (LAD). Patients were randomly assigned in a 1:1 ratio to undergo either bolus thermodilution first or continuous thermodilution first. RESULTS A total of 102 patients were enrolled. The mean fractional flow reserve (FFR) was 0.86±0.06. Coronary flow reserve (CFR) calculated with continuous thermodilution (CFRcont) was significantly lower than bolus thermodilution-derived CFR (CFRbolus; 2.63±0.65 vs 3.29±1.17; p<0.001). CFRcont showed a higher reproducibility than CFRbolus (variability: 12.7±10.4% continuous vs 31.26±24.85% bolus; p<0.001). MRR showed a higher reproducibility than IMR (variability 12.4±10.1% continuous vs 24.2±19.3% bolus; p<0.001). No correlation was found between MRR and IMR (r=0.1, 95% confidence interval: -0.09 to 0.29; p=0.305). CONCLUSIONS In the assessment of coronary microvascular function, continuous thermodilution demonstrated significantly less variability on repeated measurements than bolus thermodilution.
Collapse
Affiliation(s)
- Emanuele Gallinoro
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Dario Tino Bertolone
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Turin, Italy
| | | | - Pasquale Paolisso
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Turin, Italy
| | | | - Giuseppe Esposito
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Turin, Italy
| | | | - Alessandro Candreva
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
- Department of Cardiology, Zurich University Hospital, Zurich, Switzerland
- Department of Mechanical and Aerospace Engineering, PolitoBIO Med Lab, Politecnico di Torino, Italy
| | - Niya Mileva
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
| | | | | | - Stephane Fournier
- Department of Cardiology, Lausanne University Hospital, Lausanne, Switzerland
| | | | - Eric Wyffels
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
| | | | - Jeroen Sonck
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
| | - Emanuele Barbato
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Turin, Italy
| | - Carlos Collet
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
| | - Bernard De Bruyne
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
- Department of Cardiology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
12
|
Kwan AC, Wei J, Ouyang D, Ebinger JE, Merz CNB, Berman D, Cheng S. Sex differences in contributors to coronary microvascular dysfunction. Front Cardiovasc Med 2023; 10:1085914. [PMID: 36760556 PMCID: PMC9902873 DOI: 10.3389/fcvm.2023.1085914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
Background Coronary microvascular dysfunction (CMD) has differences in prevalence and presentation between women and men; however, we have limited understanding about underlying contributors to sex differences in CMD. Myocardial perfusion reserve index (MPRI), as semi-quantitative measure of myocardial perfusion derived from cardiac magnetic resonance (CMR) imaging has been validated as a measure of CMD. We sought to understand the sex differences in the relations between the MPRI and traditional measures of cardiovascular disease by CMR. Methods A retrospective analysis of a single-center cohort of patients receiving clinical stress CMR from 2015 to 2022 was performed. Patients with calculated MPRI and no visible perfusion defects consistent with obstructive epicardial coronary disease were included. We compared associations between MPRI versus traditional cardiovascular risk factors and markers of cardiac structure/function in sex-stratified populations using univariable and multivariable regression models. Results A total of 229 patients [193 female, 36 male, median age 57 (47-67) years] were included in the analysis. In the female population, no traditional cardiovascular risk factors were associated with MPRI, whereas in the male population, diabetes (β: -0.80, p = 0.03) and hyperlipidemia (β: -0.76, p = 0.006) were both associated with reduced MPRI in multivariable models. Multivariable models revealed significant associations between reduced MPRI and increased ascending aortic diameter (β: -0.42, p = 0.005) and T1 times (β: -0.0056, p = 0.03) in the male population, and increased T1 times (β: -0.0037, p = 0.006) and LVMI (β: -0.022, p = 0.0003) in the female population. Conclusion The findings suggest different underlying pathophysiology of CMD in men versus women, with lower MPRI in male patients fitting a more "traditional" atherosclerotic profile.
Collapse
Affiliation(s)
- Alan C. Kwan
- Department of Cardiology, Smidt Heart Institute, Los Angeles, CA, United States
| | - Janet Wei
- Department of Cardiology, Smidt Heart Institute, Los Angeles, CA, United States
- Barbara Streisand Women’s Heart Institute, Los Angeles, CA, United States
| | - David Ouyang
- Department of Cardiology, Smidt Heart Institute, Los Angeles, CA, United States
| | - Joseph E. Ebinger
- Department of Cardiology, Smidt Heart Institute, Los Angeles, CA, United States
| | - C. Noel Bairey Merz
- Department of Cardiology, Smidt Heart Institute, Los Angeles, CA, United States
- Barbara Streisand Women’s Heart Institute, Los Angeles, CA, United States
| | - Daniel Berman
- Department of Cardiology, Smidt Heart Institute, Los Angeles, CA, United States
- Department of Imaging, Cedars Sinai Medical Center, Los Angeles, CA, United States
| | - Susan Cheng
- Department of Cardiology, Smidt Heart Institute, Los Angeles, CA, United States
| |
Collapse
|
13
|
Kiriyama H, Kiyosue A, Minatsuki S, Kawahara T, Katsushika S, Kamon T, Hirose K, Shinohara H, Miura M, Saito A, Kikuchi H, Kodera S, Hatano M, Ando J, Myojo M, Itoh N, Yamamoto K, Ikenouchi H, Takeda N, Komuro I. Potential value of saline-induced Pd/Pa ratio in patients with coronary artery stenosis. Front Cardiovasc Med 2023; 9:1001833. [PMID: 36684556 PMCID: PMC9853169 DOI: 10.3389/fcvm.2022.1001833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023] Open
Abstract
Background Fractional flow reserve (FFR) is the current gold standard for identifying myocardial ischemia in individuals with coronary artery stenosis. However, FFR is not penetrated as much worldwide due to time consumption, costs associated with adenosine, FFR-related discomfort, and complications. Resting physiological indexes may be widely accepted alternatives to FFR, while the discrepancies with FFR were found in up to 20% of lesions. The saline-induced Pd/Pa ratio (SPR) is a new simplified option for evaluating coronary stenosis. However, the clinical implication of SPR remains unclear. Objectives In the present study, we aimed to compare the accuracies of SPR and resting full-cycle ratio (RFR) and to investigate the incremental value of SPR in clinical practice. Methods In this multicenter prospective study, 112 coronary lesions (105 patients) were evaluated by SPR, RFR, and FFR. Results The overall median age was 71 years, and 84.8% were men. SPR was correlated more strongly with FFR than with RFR (r = 0.874 vs. 0.713, respectively; p < 0.001). Using FFR < 0.80 as the reference standard variable, the area under the receiver-operating characteristic (ROC) curve for SPR was superior to that of RFR (0.932 vs. 0.840, respectively; p = 0.009). Conclusion Saline-induced Pd/Pa ratio predicted FFR more accurately than RFR. SPR could be an alternative method for evaluating coronary artery stenosis and further investigation including elucidation of the mechanism of SPR is needed (225 words).
Collapse
Affiliation(s)
- Hiroyuki Kiriyama
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Arihiro Kiyosue
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Tokyo, Japan,Department of Cardiology, Moriyama Memorial Hospital, Tokyo, Japan
| | - Shun Minatsuki
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Tokyo, Japan,*Correspondence: Shun Minatsuki,
| | - Takuya Kawahara
- Biostatistics Division, Clinical Research Promotion Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Susumu Katsushika
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Tatsuya Kamon
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Kazutoshi Hirose
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Hiroki Shinohara
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Mizuki Miura
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Akihito Saito
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Hironobu Kikuchi
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Satoshi Kodera
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Masaru Hatano
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Jiro Ando
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Masahiro Myojo
- Department of Cardiology, Kanto Central Hospital of the Mutual Aid Association of Public School Teachers, Tokyo, Japan
| | - Nobuhiko Itoh
- Department of Cardiology, Kanto Central Hospital of the Mutual Aid Association of Public School Teachers, Tokyo, Japan
| | - Keisuke Yamamoto
- Department of Cardiology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Hiroshi Ikenouchi
- Department of Cardiology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Norifumi Takeda
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|