1
|
Ozgolet M, Kasapoglu MZ, Avcı E, Karasu S. Enhancing Gluten-Free Muffins with Milk Thistle Seed Proteins: Evaluation of Physicochemical, Rheological, Textural, and Sensory Characteristics. Foods 2024; 13:2542. [PMID: 39200469 PMCID: PMC11353771 DOI: 10.3390/foods13162542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
This study investigated the potential utilization of milk thistle seed protein (MTP) isolates in gluten-free muffins to enhance the protein quantity and technological attributes. MTP was employed to partially substitute a blend including equal amounts of rice flour and corn starch (RCS) at 3%, 6%, 9%, and 12%. The study encompassed a rheological assessment of muffin batters and physicochemical, textural, and sensory analyses of the muffins. The consistency coefficient (K) of muffin batters exhibited an increase with the incorporation of MTP, with all batters demonstrating shear-thinning behavior (n < 1). The dough samples exhibited solid-like characteristics attributed to G' > G″, indicative of their viscoelastic nature. The storage modulus (G') and loss modulus (G″) escalated with higher levels of MTP, suggesting an overall enhancement in dough viscoelasticity. The muffin containing wheat flour displayed the lowest hardness value, followed by MTP-added muffins at ratios of 12% and 9%. Additionally, MTP-added muffins exhibited greater springiness values than control samples without MTP (C2). However, the oxidative stability of MTP-added muffins was lower than the wheat control muffin (C1) and gluten-free control muffin. The protein content in muffins increased with MTP addition, reaching parity with wheat flour muffins at 6% MTP replacement. Sensory analysis revealed that substituting RCS with up to 6% MTP did not significantly alter the overall quality (p > 0.05), whereas higher MTP levels (9% and 12%) led to a decline in sensory attributes. Incorporating MTP at up to 6% yielded protein-enriched muffins with sensory characteristics comparable to the wheat flour muffin (C1). Furthermore, higher MTP additions (9% and 12%) conferred more favorable textural properties than the C2 muffin. However, the oxidative stability of the control muffins was found to be higher than that of MTP-added muffins. This study suggested that MTP could be a potential ingredient to increase the protein amount and specific volume of gluten-free muffins and to improve textural attributes such as springiness and hardness.
Collapse
Affiliation(s)
- Muhammed Ozgolet
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Davutpasa Campus, Esenler, Istanbul 34210, Turkey; (M.O.); (S.K.)
| | - Muhammed Zahid Kasapoglu
- Department of Nanotechnology, Institute of Nanotechnology and Biotechnology, Istanbul University-Cerrahpaşa, Avcılar, Istanbul 34320, Turkey
| | - Esra Avcı
- Istanbul Teknokent, Istanbul University-Cerrahpaşa, Teknokent Building, Avcılar, Istanbul 34320, Turkey;
| | - Salih Karasu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Davutpasa Campus, Esenler, Istanbul 34210, Turkey; (M.O.); (S.K.)
| |
Collapse
|
2
|
Kumar A, Singh N. Embracing nutritional, physical, pasting, textural, sensory and phenolic profile of functional muffins prepared by partial incorporation of lyophilized wheatgrass, fenugreek and basil microgreens juice powder. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4286-4295. [PMID: 38308402 DOI: 10.1002/jsfa.13314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 12/14/2023] [Accepted: 01/16/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND Muffins are delightful baked food products that have earned a prominent place in the daily diet of a majority of people around the world. The incorporation of microgreens juice powder (MJP) into muffins boosts their nutritional value. The influence of the incorporation of wheatgrass, fenugreek and basil MJP at 1.5% and 3.0% levels on the nutritional composition, physical properties, pasting, sensory, textural and phenolic profile of functional muffins was evaluated. RESULTS The results indicated a significant increase in the protein content, ash content, dietary fiber and total phenolic content of MJP incorporated muffins. The incorporation of MJP to the muffins led to a gradual reduction in the L*, a* and b* values. Baking characteristic such as bake loss decreased significantly as a result of MJP incorporation. Furthermore, the incorporation of various MJPs resulted in a significant decrease in the peak viscosity of the flour-MJP blends. Regarding texture, the hardness and chewiness of the muffins increased progressively with an increase in the level of MJP incorporation. The highest hardness (10.15 N) and chewiness (24.45 mJ) were noted for 3% fenugreek MJP incorporated muffins (FK 3.0). The sensory score of MJP incorporated muffins was acceptable and satisfactory. Additionally, 3% basil MJP incorporated muffins (BL 3.0) marked the dominant presence of majority of the detected phenolic acids such as ferulic acid, sinapic acid, chlorogenic acid, caffeic acid, quercetin, cinnamic acid, isothymosin and rosamarinic acid. The highest concentration of p-coumaric acid (11.95 mg kg-1), vanillic acid (26.07 mg kg-1) and kaempferol (8.04 mg kg-1) was recorded for FK 3.0 muffin. CONCLUSION MJP incorporated muffins revealed the pool of phenolic acids and the reduced bake loss is of industrial interest. The present study concludes that wheatgrass, fenugreek and basil MJP can be incorporated by up to 3% into baked products as a source of functional ingredients for health benefits. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Arun Kumar
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar, India
- Department of Food Science and Technology, Graphic Era Deemed to be University, Dehradun, India
| | - Narpinder Singh
- Department of Food Science and Technology, Graphic Era Deemed to be University, Dehradun, India
| |
Collapse
|
3
|
Gao Z, Wang G, Zhang J, Guo L, Zhao W. Psyllium Fibre Inclusion in Gluten-Free Buckwheat Dough Improves Dough Structure and Lowers Glycaemic Index of the Resulting Bread. Foods 2024; 13:767. [PMID: 38472879 DOI: 10.3390/foods13050767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 03/14/2024] Open
Abstract
The demand for gluten-free (GF) bread is steadily increasing. However, the production of GF bread with improved baking quality and enhanced nutritional properties remains a challenge. In this study, we investigated the effects of adding psyllium fibre (PSY) in varying proportions to buckwheat flour on the dough characteristics, bread quality, and starch digestion properties of GF bread. Our results demonstrate that incorporating PSY contributes to the formation of a gluten-like network structure in the dough, leading to an increase in the gas holding capacity from 83.67% to 98.50%. The addition of PSY significantly increased the specific volume of the bread from 1.17 mL/g to 3.16 mL/g. Bread containing PSY displayed superior textural characteristics and colour. Our study also revealed that the inclusion of PSY reduced the digestibility of starch in GF bread. These findings highlight the positive impact of incorporating PSY into GF bread, suggesting its potential in guiding the production of GF bread with a lower glycaemic index. This may be particularly beneficial for individuals seeking to regulate their blood sugar levels or adopt a low-glycaemic diet.
Collapse
Affiliation(s)
- Zihan Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Guangzhen Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jing Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lichun Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Djordjević M, Djordjević M, Starowicz M, Krupa-Kozak U. Plant-Based Antioxidants in Gluten-Free Bread Production: Sources, Technological and Sensory Aspects, Enhancing Strategies and Constraints. Antioxidants (Basel) 2024; 13:142. [PMID: 38397740 PMCID: PMC10886132 DOI: 10.3390/antiox13020142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
The recognized contribution of antioxidant compounds to overall health maintenance and spotted deficiencies in celiac patients' diets has driven more intensive research regarding antioxidant compounds' inclusion in gluten-free bread (GFB) production during the last decade. The presented review gathered information that provided insights into plant-based antioxidant sources which are applicable in GFB production through the resulting changes in the technological, sensory, and nutritional quality of the resulting antioxidant-enriched GFB. The influence of the bread-making process on the antioxidant compounds' content alteration and applied methods for their quantification in GFB matrices were also discussed, together with strategies for enhancing the antioxidant compounds' content, their bioaccessibility, and their bioavailability, highlighting the existing contradictions and constraints. The addition of plant-based antioxidant compounds generally improved the antioxidant content and activity of GFB, without a profound detrimental effect on its technological quality and sensory acceptability, and with the extent of the improvement being dependent on the source richness and the amount added. The determination of a pertinent amount and source of plant-based antioxidant material that will result in the production of GFB with desirable nutritional, sensory, and technological quality, as well as biological activity, remains a challenge to be combated by elucidation of the potential mechanism of action and by the standardization of quantification methods for antioxidant compounds.
Collapse
Affiliation(s)
- Marijana Djordjević
- Institute of Food Technology in Novi Sad, University of Novi Sad, Blvd. Cara Lazara 1, 21000 Novi Sad, Serbia;
| | - Miljana Djordjević
- Institute of Food Technology in Novi Sad, University of Novi Sad, Blvd. Cara Lazara 1, 21000 Novi Sad, Serbia;
| | - Małgorzata Starowicz
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10 Street, 10-748 Olsztyn, Poland; (M.S.); (U.K.-K.)
| | - Urszula Krupa-Kozak
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10 Street, 10-748 Olsztyn, Poland; (M.S.); (U.K.-K.)
| |
Collapse
|
5
|
Capriles VD, Valéria de Aguiar E, Garcia Dos Santos F, Fernández MEA, de Melo BG, Tagliapietra BL, Scarton M, Clerici MTPS, Conti AC. Current status and future prospects of sensory and consumer research approaches to gluten-free bakery and pasta products. Food Res Int 2023; 173:113389. [PMID: 37803727 DOI: 10.1016/j.foodres.2023.113389] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 10/08/2023]
Abstract
Sensory and consumer research performs a pivotal role in gluten-free (GF) food research and development due to consumer dissatisfaction about currently available products, despite the continued growth of this market and promising research developments. Nowadays, almost half of the original articles about GF products include sensory analysis. A current overview is needed to help both food scientists and industry indentify current trends and forward-looking approaches. This current review has gathered information concerning sensory and consumer research for GF bakery and pasta products, from studies published in the last decade, and then discusses future challenges in the light of recent advances. Among the promising approaches, projective techniques that collect data using social media can provide quick, spontaneous and direct opinions from GF consumers. They can also be used to evaluate trends and cross-cultural or global insights. Participatory methods have highlighted the importance of label information and may further explore the behavior of GF consumers in more realistic environments, as well as to evaluate the intrinsic GF food factors in GF consumer opinions, emotions, behavior and choices. This review details current issues occurring in sensory analysis of GF products, which still need to be resolved. The combination of affective and analytical methods allows for a better characterization of the samples and such sensory analysis of GF products in the future could guide product development and quality control, overcoming technological, nutritional, and shelf-life issues.
Collapse
Affiliation(s)
- Vanessa Dias Capriles
- Federal University of São Paulo (UNIFESP), Institute of Health and Society (Campus Baixada Santista), Department of Biosciences, Rua Silva Jardim, 136, CEP 11015-020 Santos, SP, Brazil.
| | - Etiene Valéria de Aguiar
- Federal University of São Paulo (UNIFESP), Institute of Health and Society (Campus Baixada Santista), Department of Biosciences, Rua Silva Jardim, 136, CEP 11015-020 Santos, SP, Brazil
| | - Fernanda Garcia Dos Santos
- Federal University of São Paulo (UNIFESP), Institute of Health and Society (Campus Baixada Santista), Department of Biosciences, Rua Silva Jardim, 136, CEP 11015-020 Santos, SP, Brazil
| | - Marión Elizabeth Aguilar Fernández
- Federal University of São Paulo (UNIFESP), Institute of Health and Society (Campus Baixada Santista), Department of Biosciences, Rua Silva Jardim, 136, CEP 11015-020 Santos, SP, Brazil
| | - Bruna Guedes de Melo
- University of Campinas (UNICAMP), School of Food Engineering, Department of Food Science and Nutrition, Campinas, SP, Brazil
| | - Bruna Lago Tagliapietra
- University of Campinas (UNICAMP), School of Food Engineering, Department of Food Science and Nutrition, Campinas, SP, Brazil
| | - Michele Scarton
- University of Campinas (UNICAMP), School of Food Engineering, Department of Food Science and Nutrition, Campinas, SP, Brazil
| | | | - Ana Carolina Conti
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (IBILCE), Department of Food Engineering and Technology, Rua Cristóvão Colombo, 2265, CEP 15054-000 São José do Rio Preto, SP, Brazil
| |
Collapse
|
6
|
Valorization of Common (Fagopyrum esculentum Moench.) and Tartary (Fagopyrum tataricum Gaertn.) Buckwheat in Gluten-Free Polenta Samples: Chemical-Physical and Sensory Characterization. Foods 2022; 11:foods11213442. [PMID: 36360055 PMCID: PMC9656078 DOI: 10.3390/foods11213442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/25/2022] Open
Abstract
In recent years, increasing attention has been addressed to buckwheat, an interesting minor crop with an excellent nutritional profile that contributes to the sustainability and biodiversity of the agri-food system. However, the high content of rutin and quercitin present in this pseudocereal can elicit undesirable sensory properties, such as bitterness and astringency, that can limit its exploitation in food formulations. The aim of the present study was to characterize six gluten-free porridge-type formulations (called polenta) prepared using corn and buckwheat flour. Specifically, polenta samples were prepared adding common (CB) or Tartary buckwheat (TB) flour at 20% (CB20; TB20), 30% (CB30; TB30), and 40% (CB40; TB40) to corn flour. Product characterization included sensory and instrumental analyses (electronic tongue, colorimeter, and Texture Analyzer). Products containing Tartary buckwheat were darker, firmer, and characterized by a higher intensity of bitter taste and astringency than those prepared with common buckwheat. In this context, the impact of buckwheat species seems to be more important at 30% and 40% levels, suggesting that lower additions may mask the differences between the species. The gathered information could support the food industry in re-formulating products with buckwheat. Finally, findings about the relationship between instrumental and sensory data might be exploited by the food industry to decide/choose what indices to use to characterize new formulations and/or new products.
Collapse
|