1
|
Pashmforosh M, Rajabi Vardanjani H, Khorsandi L, Shariati S, Mohtadi S, Khodayar MJ. Carvacrol protects rats against bleomycin-induced lung oxidative stress, inflammation, and fibrosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03273-7. [PMID: 38976045 DOI: 10.1007/s00210-024-03273-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 07/01/2024] [Indexed: 07/09/2024]
Abstract
The main objective of this study was to investigate the potential efficacy of carvacrol (CAR) in mitigating bleomycin (BLM)-induced pulmonary fibrosis (PF). Sixty-six male Wistar rats were assigned into two main groups of 7 and 21 days. They were divided into the subgroups of control, BLM, CAR 80 (only for the 21-day group), and CAR treatment groups. The CAR treatment groups received CAR (20, 40, and 80 mg/kg, orally) for 7 or 21 days after an instillation of BLM (5 mg/kg, intratracheally). Results indicated that BLM significantly increased total cell count in bronchoalveolar lavage fluid and the percentages of neutrophils and lymphocytes, and reduced the percentage of macrophages. CAR dose-dependently decreased total cell count and the percentage of neutrophils and lymphocytes. CAR significantly reduced thiobarbituric acid reactive substances and hydroxyproline levels and elevated the total thiol level and catalase, superoxide dismutase, and glutathione peroxidase activities in BLM-exposed rats. Furthermore, CAR decreased the transforming growth factor-β1, connective transforming growth factor, and tumor necrosis factor-α on days 7 and 21. BLM increased interferon-γ on day 7 but decreased its level on day 21. However, CAR reversed interferon-γ levels on days 7 and 21. Based on histopathological findings, BLM induced inflammation on days 7 and 21, but for induction of fibrosis, 21-day study showed more fibrotic injuries than the 7-day group. CAR showed the improvement of fibrotic injuries. The effect of CAR against BLM-induced pulmonary fibrosis is possibly due to its antioxidant, anti-inflammatory, and antifibrotic activity.
Collapse
Affiliation(s)
| | - Hossein Rajabi Vardanjani
- Department of Pharmacology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeedeh Shariati
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shokooh Mohtadi
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
2
|
Rnjak D, Batarilo Hađar M, Pelicarić D, Vukić T, Janković Makek M, Samaržija M, Hećimović A. Nintedanib treatment for bleomycin-induced lung injury - First report. Respir Med Case Rep 2023; 46:101921. [PMID: 37822763 PMCID: PMC10562906 DOI: 10.1016/j.rmcr.2023.101921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 09/07/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
Although the antineoplastic agent bleomycin is known for more than 50 years, its exact pharmacological and side-effect mechanisms remain incompletely understood. The major limitation of bleomycin therapy is the risk of pulmonary toxicity which can be diverse, and potentially fatal in 10% of patients. The optimal treatment for bleomycin lung toxicity has not been established and no clinical trials have been performed. Here we present first successful case report of nintedanib therapy in a patient with bleomycin-induced lung injury (BILI). The prevention, early diagnosis, and management of bleomycin pulmonary toxicities are essential, clinical trials are needed in this area.
Collapse
Affiliation(s)
- Dina Rnjak
- University Hospital Zagreb, Clinical Center for Pulmonary Diseases Jordanovac, Jordanovac 104, Zagreb, Croatia
| | - Martina Batarilo Hađar
- University Hospital Zagreb, Clinical Center for Pulmonary Diseases Jordanovac, Jordanovac 104, Zagreb, Croatia
| | - Dubravka Pelicarić
- University Hospital Zagreb, Clinical Center for Pulmonary Diseases Jordanovac, Jordanovac 104, Zagreb, Croatia
| | - Tea Vukić
- University Hospital Zagreb, Clinical Center for Pulmonary Diseases Jordanovac, Jordanovac 104, Zagreb, Croatia
| | - Mateja Janković Makek
- University Hospital Zagreb, Clinical Center for Pulmonary Diseases Jordanovac, Jordanovac 104, Zagreb, Croatia
- University of Zagreb, School of Medicine, Šalata 2, Zagreb, Croatia
| | - Miroslav Samaržija
- University Hospital Zagreb, Clinical Center for Pulmonary Diseases Jordanovac, Jordanovac 104, Zagreb, Croatia
- University of Zagreb, School of Medicine, Šalata 2, Zagreb, Croatia
| | - Ana Hećimović
- University Hospital Zagreb, Clinical Center for Pulmonary Diseases Jordanovac, Jordanovac 104, Zagreb, Croatia
- University of Zagreb, School of Medicine, Šalata 2, Zagreb, Croatia
| |
Collapse
|
3
|
Yadav S, Shah D, Dalai P, Agrawal-Rajput R. The tale of antibiotics beyond antimicrobials: Expanding horizons. Cytokine 2023; 169:156285. [PMID: 37393846 DOI: 10.1016/j.cyto.2023.156285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/02/2023] [Accepted: 06/24/2023] [Indexed: 07/04/2023]
Abstract
Antibiotics had proved to be a godsend for mankind since their discovery. They were once the magical solution to the vexing problem of infection-related deaths. German scientist Paul Ehrlich had termed salvarsan as the silver bullet to treatsyphilis.As time passed, the magic of newly discovered silver bullets got tarnished with raging antibiotic resistance among bacteria and associated side-effects. Still, antibiotics remain the primary line of treatment for bacterial infections. Our understanding of their chemical and biological activities has increased immensely with advancement in the research field. Non-antibacterial effects of antibiotics are studied extensively to optimise their safer, broad-range use. These non-antibacterial effects could be both useful and harmful to us. Various researchers across the globe including our lab are studying the direct/indirect effects and molecular mechanisms behind these non-antibacterial effects of antibiotics. So, it is interesting for us to sum up the available literature. In this review, we have briefed the possible reason behind the non-antibacterial effects of antibiotics, owing to the endosymbiotic origin of host mitochondria. We further discuss the physiological and immunomodulatory effects of antibiotics. We then extend the review to discuss molecular mechanisms behind the plausible use of antibiotics as anticancer agents.
Collapse
Affiliation(s)
- Shivani Yadav
- Immunology Lab, Department of Biotechnology and Bioengineering, Indian Institute of Advanced Research, Gandhinagar, India
| | - Dhruvi Shah
- Immunology Lab, Department of Biotechnology and Bioengineering, Indian Institute of Advanced Research, Gandhinagar, India
| | - Parmeswar Dalai
- Immunology Lab, Department of Biotechnology and Bioengineering, Indian Institute of Advanced Research, Gandhinagar, India
| | - Reena Agrawal-Rajput
- Immunology Lab, Department of Biotechnology and Bioengineering, Indian Institute of Advanced Research, Gandhinagar, India.
| |
Collapse
|
4
|
Bassil E, Singh H, Ahmed O, Parikh S. Case of ST-Elevation Myocardial Infarction in a 32-Year-Old Male Receiving Bleomycin, Etoposide, and Cisplatin Chemotherapy for Embryonal Carcinoma. Cureus 2023; 15:e40089. [PMID: 37425586 PMCID: PMC10327993 DOI: 10.7759/cureus.40089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
Myocardial infarction in young individuals has unique risk factors compared to the older population. Along with usual risk factors, one should explore causes such as recreational drug use, medication-induced myocardial infarction, and spontaneous coronary artery dissection. Here, we present the case of a 32-year-old male who presented with chest pain and was found to have complete thrombotic occlusion of the right coronary artery. He recently started receiving chemotherapy with bleomycin, etoposide, and cisplatin (PEB). In the absence of other risk factors and previous reports of similar cardiotoxicity with bleomycin, the patient was deemed to have an adverse effect from the chemotherapy regimen.
Collapse
Affiliation(s)
| | | | - Omair Ahmed
- Internal Medicine, Henry Ford Allegiance, Jackson, USA
| | - Shamik Parikh
- Internal Medicine, Henry Ford Allegiance, Jackson, USA
| |
Collapse
|
5
|
Muir T, Bertino G, Groselj A, Ratnam L, Kis E, Odili J, McCafferty I, Wohlgemuth WA, Cemazar M, Krt A, Bosnjak M, Zanasi A, Battista M, de Terlizzi F, Campana LG, Sersa G. Bleomycin electrosclerotherapy (BEST) for the treatment of vascular malformations. An International Network for Sharing Practices on Electrochemotherapy (InspECT) study group report. Radiol Oncol 2023; 57:141-149. [PMID: 37341196 DOI: 10.2478/raon-2023-0029] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/03/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Biomedical applications of electroporation are expanding out of the field of oncology into vaccination, treatment of arrhythmias and now in the treatment of vascular malformations. Bleomycin is a widely used sclerosing agent in the treatment of various vascular malformations. The application of electric pulses in addition to bleomycin enhances the effectiveness of the drug, as demonstrated by electrochemotherapy, which utilizes bleomycin in the treatment of tumors. The same principle is used in bleomycin electrosclerotherapy (BEST). The approach seems to be effective in the treatment of low-flow (venous and lymphatic) and, potentially, even high-flow (arteriovenous) malformations. Although there are only a few published reports to date, the surgical community is interested, and an increasing number of centers are applying BEST in the treatment of vascular malformations. Within the International Network for Sharing Practices on Electrochemotherapy (InspECT) consortium, a dedicated working group has been constituted to develop standard operating procedures for BEST and foster clinical trials. CONCLUSIONS By treatment standardization and successful completion of clinical trials demonstrating the effectiveness and safety of the approach, higher quality data and better clinical outcomes may be achieved.
Collapse
Affiliation(s)
- Tobian Muir
- Department of Reconstructive Plastic Surgery, James Cook University Hospital, Middlesbrough, United Kingdom
| | - Giulia Bertino
- Department of Otolaryngology Head Neck Surgery, University of Pavia, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo Foundation, Pavia, Italy
| | - Ales Groselj
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Lakshmi Ratnam
- Department of Interventional Radiology, St George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Erika Kis
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Joy Odili
- Department of Plastic Surgery, St. Georges University Hospitals NHS Trust, London, United Kingdom
| | - Ian McCafferty
- Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, United Kingdom
| | - Walter A Wohlgemuth
- Universitätsklinik und Poliklinik für Radiologie, Universitätsmedizin Halle, Halle, Germany
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Primorska, Slovenia
| | - Aljosa Krt
- Department of Otorhinolaryngology, Izola General Hospital, Izola, Slovenia
| | - Masa Bosnjak
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | | | | | | | - Luca G Campana
- Department of Surgery, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
6
|
Rex DAB, Dagamajalu S, Gouda MM, Suchitha GP, Chanderasekaran J, Raju R, Prasad TSK, Bhandary YP. A comprehensive network map of IL-17A signaling pathway. J Cell Commun Signal 2023; 17:209-215. [PMID: 35838944 PMCID: PMC9284958 DOI: 10.1007/s12079-022-00686-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 10/28/2022] Open
Abstract
Interleukin-17A (IL-17A) is one of the member of IL-17 family consisting of other five members (IL-17B to IL-17F). The Gamma delta (γδ) T cells and T helper 17 (Th17) cells are the major producers of IL-17A. Aberrant signaling by IL-17A has been implicated in the pathogenesis of several autoimmune diseases including idiopathic pulmonary fibrosis, acute lung injury, chronic airway diseases, and cancer. Activation of the IL-17A/IL-17 receptor A (IL-17RA) system regulates phosphoinositide 3-kinase/AKT serine/threonine kinase/mammalian target of rapamycin (PI3K/AKT/mTOR), mitogen-activated protein kinases (MAPKs) and activation of nuclear factor-κB (NF-κB) mediated signaling pathways. The IL-17RA activation orchestrates multiple downstream signaling cascades resulting in the release of pro-inflammatory cytokines such as interleukins (IL)-1β, IL-6, and IL-8, chemokines (C-X-C motif) and promotes neutrophil-mediated immune response. Considering the biomedical importance of IL-17A, we developed a pathway resource of signaling events mediated by IL-17A/IL-17RA in this study. The curation of literature data pertaining to the IL-17A system was performed manually by the NetPath criteria. Using data mined from the published literature, we describe an integrated pathway reaction map of IL-17A/IL-17RA consisting of 114 proteins and 68 reactions. That includes detailed information on IL-17A/IL-17RA mediated signaling events of 9 activation/inhibition events, 17 catalysis events, 3 molecular association events, 68 gene regulation events, 109 protein expression events, and 6 protein translocation events. The IL-17A signaling pathway map data is made freely accessible through the WikiPathways Database ( https://www.wikipathways.org/index.php/Pathway : WP5242).
Collapse
Affiliation(s)
- D. A. B. Rex
- grid.413027.30000 0004 1767 7704Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018 India
| | - Shobha Dagamajalu
- grid.413027.30000 0004 1767 7704Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018 India
| | - Mahesh Manjunath Gouda
- grid.13648.380000 0001 2180 3484Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg (UKE), Martinistrasse 52, 20251 Hamburg, Germany
| | - G. P. Suchitha
- grid.413027.30000 0004 1767 7704Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018 India
| | - Jaikanth Chanderasekaran
- Department of Pharmacology, School of Pharmacy and Technology Management, SVKM’S NMIMS University, Hyderabad, Telangana India
| | - Rajesh Raju
- grid.413027.30000 0004 1767 7704Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018 India
- grid.413027.30000 0004 1767 7704Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018 India
| | - T. S. Keshava Prasad
- grid.413027.30000 0004 1767 7704Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018 India
| | - Yashodhar Prabhakar Bhandary
- grid.413027.30000 0004 1767 7704Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018 India
| |
Collapse
|
7
|
Pushparaj PN, Rasool M, Naseer MI, Gauthaman K. Role of the antineoplastic drug bleomycin based on toxicogenomic-DNA damage inducing (TGx-DDI) genomic biomarkers data: A meta-analysis. Pak J Med Sci 2023; 39:423-429. [PMID: 36950431 PMCID: PMC10025729 DOI: 10.12669/pjms.39.2.7321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/08/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023] Open
Abstract
Objectives Accurately identifying the cellular, biomolecular, and toxicological functions of anticancer drugs help to decipher the potential risk of genotoxicity and other side effects. Here, we examined bleomycin for cellular, molecular and toxicological mechanisms using next-generation knowledge discovery (NGKD) tools. Methods This study was conducted at the Faculty of Applied Medical Sciences, King Abdulaziz University (KAU), Jeddah, Saudi Arabia in October 2022. We first analyzed the raw Toxicogenomic and DNA damage-inducing (TGx-DDI) gene expression data from Gene Expression Omnibus (GEO) (GSE196373) of TK6 cells treated with 10 µM bleomycin and TK6 cells treated with DMSO for four hours using the GEO2R tool based on the Linear Models for Microarray Analysis (limma) R packages to derive the differentially expressed genes (DEGs). Then, iPathwayGuide was used to determine differentially regulated signaling pathways, biological processes, cellular, molecular functions and upstream regulators (genes and miRNAs). Results Bleomycin differently regulates the p53 pathway, transcriptional dysregulation in cancer, FOXO pathway, viral carcinogenesis, and cancer pathways. The biological processes such as p53 class mediator signaling, intrinsic apoptotic signaling, DNA damage response, and DNA damage-induced intrinsic apoptotic signaling and molecular functions like ubiquitin protein transferase and p53 binding were differentially regulated by bleomycin. iPathwayGuide analysis showed that the p53 and its regulatory gene and microRNA networks induced by bleomycin. Conclusion Analysis of TGx-DDI data of bleomycin using NGKD tools provided information about toxicogenomics and other mechanisms. Integration of all "omics" based approaches is crucial for the development of translatable biomarkers for evaluating anticancer drugs for safety and efficacy.
Collapse
Affiliation(s)
- Peter Natesan Pushparaj
- Dr. Peter Natesan Pushparaj, PhD, Associate Professor, Center of Excellence in Genomic Medicine Research, Dept. of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmood Rasool
- Prof. Mahmood Rasool, PhD, Professor, Center of Excellence in Genomic Medicine Research, Dept. of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Imran Naseer
- Prof. Muhammad Imran Naseer, PhD, Professor, Center of Excellence in Genomic Medicine Research, Dept. of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kalamegam Gauthaman
- Prof. Dr. Kalamegam Gauthaman MBBS., PhD, Professor, Center for Transdisciplinary Research, Dept. of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India, Dept. of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Adini A, Ko VH, Puder M, Louie SM, Kim CF, Baron J, Matthews BD. PR1P, a VEGF-stabilizing peptide, reduces injury and inflammation in acute lung injury and ulcerative colitis animal models. Front Immunol 2023; 14:1168676. [PMID: 37187742 PMCID: PMC10175756 DOI: 10.3389/fimmu.2023.1168676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Acute Respiratory Distress Syndrome (ARDS) and Ulcerative Colitis (UC) are each characterized by tissue damage and uncontrolled inflammation. Neutrophils and other inflammatory cells play a primary role in disease progression by acutely responding to direct and indirect insults to tissue injury and by promoting inflammation through secretion of inflammatory cytokines and proteases. Vascular Endothelial Growth Factor (VEGF) is a ubiquitous signaling molecule that plays a key role in maintaining and promoting cell and tissue health, and is dysregulated in both ARDS and UC. Recent evidence suggests a role for VEGF in mediating inflammation, however, the molecular mechanism by which this occurs is not well understood. We recently showed that PR1P, a 12-amino acid peptide that binds to and upregulates VEGF, stabilizes VEGF from degradation by inflammatory proteases such as elastase and plasmin thereby limiting the production of VEGF degradation products (fragmented VEGF (fVEGF)). Here we show that fVEGF is a neutrophil chemoattractant in vitro and that PR1P can be used to reduce neutrophil migration in vitro by preventing the production of fVEGF during VEGF proteolysis. In addition, inhaled PR1P reduced neutrophil migration into airways following injury in three separate murine acute lung injury models including from lipopolysaccharide (LPS), bleomycin and acid. Reduced presence of neutrophils in the airways was associated with decreased pro-inflammatory cytokines (including TNF-α, IL-1β, IL-6) and Myeloperoxidase (MPO) in broncho-alveolar lavage fluid (BALF). Finally, PR1P prevented weight loss and tissue injury and reduced plasma levels of key inflammatory cytokines IL-1β and IL-6 in a rat TNBS-induced colitis model. Taken together, our data demonstrate that VEGF and fVEGF may each play separate and pivotal roles in mediating inflammation in ARDS and UC, and that PR1P, by preventing proteolytic degradation of VEGF and the production of fVEGF may represent a novel therapeutic approach to preserve VEGF signaling and inhibit inflammation in acute and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Avner Adini
- Vascular Biology Program, Children’s Hospital Boston and Harvard Medical School, Boston, MA, United States
- Department of Medicine, Boston Children’s Hospital, Boston, MA, United States
- *Correspondence: Avner Adini,
| | - Victoria H. Ko
- Department of Surgery, Boston Children’s Hospital, Boston, MA, United States
| | - Mark Puder
- Department of Surgery, Boston Children’s Hospital, Boston, MA, United States
| | - Sharon M. Louie
- Stem Cell Program and Divisions of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, United States
| | - Carla F. Kim
- Stem Cell Program and Divisions of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, United States
| | - Joseph Baron
- Janus Biotherapeutics, Inc, Wellesley, MA, United States
| | - Benjamin D. Matthews
- Vascular Biology Program, Children’s Hospital Boston and Harvard Medical School, Boston, MA, United States
- Department of Medicine, Boston Children’s Hospital, Boston, MA, United States
| |
Collapse
|
9
|
Yildirim M, Kayalar O, Atahan E, Oztay F. Atorvastatin attenuates pulmonary fibrosis in mice and human lung fibroblasts, by the regulation of myofibroblast differentiation and apoptosis. J Biochem Mol Toxicol 2022; 36:e23074. [PMID: 35416377 DOI: 10.1002/jbt.23074] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 03/02/2022] [Accepted: 04/01/2022] [Indexed: 12/25/2022]
Abstract
Statins have anti-inflammatory and antifibrotic effects in addition to cholesterol-lowering effect. We aimed to investigate the effect of atorvastatin (ATR) in fibrotic mouse lung and human lung fibroblasts (MRC5s). Pulmonary fibrosis was induced by a single dose of bleomycin by intratracheal instillation in adult mice. ATR was administered (20 mg/kg ip) to mice with healthy and pulmonary fibrosis for 10 days from Day 7 of the experiment. Mice were dissected on the 21st day. The levels of alpha-smooth muscle actin (α-SMA), pSMAD2/3, LOXL2, and p-Src were determined by Western blot analysis in the lungs. Furthermore, a group of MRC5 was differentiated into myofibroblasts by transforming growth factor-beta (TGF-β). Another group of MRC5s was treated with 10 µM ATR at 24 h after TGF-β stimulation. Cells were collected at 0, 24, 48, and 72 h. The effects of ATR on myofibroblast differentiation, apoptosis, and TGF-β and Wnt/β-catenin signaling activations were examined by Western blot analysis and flow cytometry in MRC5s. ATR attenuated pulmonary fibrosis by regulating myofibroblast differentiation and interstitial accumulation of collagen, by acting on LOXL2, p-Src, and pSMAD2/3 in mice lungs. Additionally, it blocked myofibroblast differentiation via reduced TGF-β and Wnt/β-catenin signaling and decreased α-SMA in MRC5s stimulated with TGF-β. Moreover, ATR caused myofibroblast apoptosis via caspase-3 activation. ATR treatment attenuates pulmonary fibrosis in mice treated with bleomycin. It also inhibits fibroblast/myofibroblast activation, by both reducing myofibroblasts differentiation and inducing myofibroblast apoptosis.
Collapse
Affiliation(s)
- Merve Yildirim
- Department of Biology, Science Faculty, Istanbul University, Istanbul, Turkey
| | - Ozgecan Kayalar
- Department of Biology, Science Faculty, Istanbul University, Istanbul, Turkey.,Koç University School of Medicine Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Ersan Atahan
- Department of Chest Diseases, Cerrahpasa School of Medicine, Istanbul University Cerrahpasa, Istanbul, Turkey
| | - Fusun Oztay
- Department of Biology, Science Faculty, Istanbul University, Istanbul, Turkey
| |
Collapse
|
10
|
Bleomycin-induced Pneumonitis in a Child Treated With Nintedanib: Report of the First Case in a Childhood. J Pediatr Hematol Oncol 2022; 44:e500-e502. [PMID: 35200223 DOI: 10.1097/mph.0000000000002266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/23/2021] [Indexed: 01/24/2023]
Abstract
Pulmonary fibrosis caused by bleomycin-induced pneumonia (BIP) is the most important side effect limiting the use of bleomycin and is mainly treated with corticosteroids. However, 1% to 4% of patients do not respond to corticosteroid therapy. Idiopathic pulmonary fibrosis and BIP develop by similar pathophysiological mechanisms. Nintedanib is a tyrosine kinase inhibitor used successfully in the treatment of idiopathic pulmonary fibrosis and there is no information about its use in BIP treatment. Here, we would like to present a 13-year-old boy with Hodgkin lymphoma who developed BIP after 2 cycles of ABVD (Adriamycin, bleomycin, vinblastine, and dacarbazine) and 4 cycles of BAECOPP (bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine, and prednisone), whose respiratory failure impaired despite corticosteroid therapy, but was successfully treated with nintedanib.
Collapse
|
11
|
Reversible Acute Lung Injury due to Bleomycin. TANAFFOS 2022; 21:253-256. [PMID: 36879731 PMCID: PMC9985134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 11/04/2021] [Indexed: 03/08/2023]
Abstract
Bleomycin is a unique antibiotic agent with cytotoxic activity and is used successfully in various malignant diseases, such as Hodgkin lymphoma and germ cell tumors. Drug-induced lung injury (DILI) is one of the major limitations of bleomycin administration in particular clinical settings. The incidence varies among patients and depends on a variety of risk factors, such as cumulative drug dose, underlying malignant disease, and concurrent radiation. The clinical presentations are non-specific for bleomycin-induced lung injury (BILI), depending on the onset and severity of symptoms. There is no established guideline for the best treatment of DILI and the treatment is based on the time and severity of pulmonary symptoms. It is important to consider BILI in any patient with pulmonary clinical manifestations who has been treated with bleomycin. Here, we report a 19-year-old woman who is a known case of Hodgkin lymphoma. She was treated with a bleomycin-containing chemotherapy regimen. On the 5th month of therapy, she was admitted to hospital with severe acute pulmonary symptoms and decreased oxygen saturation. She was treated successfully with high-dose corticosteroid without any significant sequelae.
Collapse
|
12
|
Venosa A, Gow JG, Taylor S, Golden TN, Murray A, Abramova E, Malaviya R, Laskin DL, Gow AJ. Myeloid cell dynamics in bleomycin-induced pulmonary injury in mice; effects of anti-TNFα antibody. Toxicol Appl Pharmacol 2021; 417:115470. [PMID: 33647319 PMCID: PMC10157853 DOI: 10.1016/j.taap.2021.115470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/19/2022]
Abstract
Bleomycin is a cancer therapeutic known to cause lung injury which progresses to fibrosis. Evidence suggests that macrophages contribute to this pathological response. Tumor necrosis factor (TNF)α is a macrophage-derived pro-inflammatory cytokine implicated in lung injury. Herein, we investigated the role of TNFα in macrophage responses to bleomycin. Treatment of mice with bleomycin (3 U/kg, i.t.) caused histopathological changes in the lung within 3 d which culminated in fibrosis at 21 d. This was accompanied by an early (3-7 d) influx of CD11b+ and iNOS+ macrophages into the lung, and Arg-1+ macrophages at 21 d. At this time, epithelial cell dysfunction, defined by increases in total phospholipids and SP-B was evident. Treatment of mice with anti-TNFα antibody (7.5 mg/kg, i.v.) beginning 15-30 min after bleomycin, and every 5 d thereafter reduced the number and size of fibrotic foci and restored epithelial cell function. Flow cytometric analysis of F4/80+ alveolar macrophages (AM) isolated by bronchoalveolar lavage and interstitial macrophages (IM) by tissue digestion identified resident (CD11b-CD11c+) and immature infiltrating (CD11b+CD11c-) AM, and mature (CD11b+CD11c+) and immature (CD11b+CD11c-) IM subsets in bleomycin treated mice. Greater numbers of mature (CD11c+) infiltrating (CD11b+) AM expressing the anti-inflammatory marker, mannose receptor (CD206) were observed at 21 d when compared to 7 d post bleomycin. Mature proinflammatory (Ly6C+) IM were greater at 7 d relative to 21 d. These cells transitioned into mature anti-inflammatory/pro-fibrotic (CD206+) IM between 7 and 21 d. Anti-TNFα antibody heightened the number of CD11b+ AM in the lung without altering their activation state. Conversely, it reduced the abundance of mature proinflammatory (Ly6C+) IM in the tissue at 7 d and immature pro-fibrotic IM at 21 d. Taken together, these data suggest that TNFα inhibition has beneficial effects in bleomycin induced injury, restoring epithelial function and reducing numbers of profibrotic IM and the extent of pulmonary fibrosis.
Collapse
Affiliation(s)
- Alessandro Venosa
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Sheryse Taylor
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Thea N Golden
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 18015, USA
| | - Alexa Murray
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Elena Abramova
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Rama Malaviya
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
13
|
Dei-Adomakoh YA, Afriyie-Mensah JS, Gbadamosi H. Bleomycin-induced pneumonitis in a young Ghanaian male with Hodgkin's Lymphoma. Ghana Med J 2020; 54:279-283. [PMID: 33883778 PMCID: PMC8042802 DOI: 10.4314/gmj.v54i4.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We report a case of a young Ghanaian male who developed Bleomycin Induced Pneumonitis (BIP) after being treated for Hodgkin's Lymphoma. Pulmonary toxicity is the most feared complication of bleomycin therapy despite its effectiveness in achieving cure in patients with Hodgkin's lymphoma and germ cell tumors. BIP has a significant mortality rate if detected late and a high index of suspicion is required in all patients on bleomycin-based therapies with sudden onset of respiratory symptoms.
Collapse
Affiliation(s)
- Yvonne A Dei-Adomakoh
- Department of Haematology, University of Ghana Medical School, College of Health Sciences University of Ghana, Accra, Ghana
| | - Jane S Afriyie-Mensah
- Department of Medicine and therapeutics, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Hafisatu Gbadamosi
- Department of Radiology, Korle Bu Teaching Hospital, Korle Bu, Accra, Ghana
| |
Collapse
|
14
|
Muthuramalingam K, Cho M, Kim Y. Cellular senescence and EMT crosstalk in bleomycin-induced pathogenesis of pulmonary fibrosis-an in vitro analysis. Cell Biol Int 2019; 44:477-487. [PMID: 31631444 DOI: 10.1002/cbin.11248] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/15/2019] [Indexed: 12/26/2022]
Abstract
With poor prognosis and aberrant lung remodeling, pulmonary fibrosis exhibits worldwide prevalence accompanied by an increase in burden in terms of hospitalization and death. Apart from genetic and non-genetic factors, fibrosis occurs as a side effect of bleomycin antineoplastic activity. Elucidating the cellular and molecular mechanism could help in the development of effective anti-fibrotic treatment strategies. In the present study, we investigated the underlying mechanism behind bleomycin-induced fibrosis using human alveolar epithelial cells (A549 cells). On the basis of the experimental observation, it was demonstrated that with transforming growth factor-β (TGF-β) as a central mediator of fibrosis progression, a cross-talk between epithelial-mesenchymal transition (EMT) and senescence upon bleomycin treatment occurs. This results in the advancement of this serious fibrotic condition. Fibrosis was initiated through integrin activation and imbalance in the redox state (NOX expression) of the cell. It progressed along the TGF-β-mediated non-canonical pathway (via ERK phosphorylation) followed by the upregulation of α-smooth muscle actin and collagen synthesis. Additionally, in this process, the loss of the epithelial marker E-cadherin was observed. Furthermore, the expressions of senescence markers, such as p21 and p53, were upregulated upon bleomycin treatment, thereby intensifying the fibrotic condition. Accordingly, the molecular pathway mediating the bleomycin-induced fibrosis was explored in the current study.
Collapse
Affiliation(s)
- Karthika Muthuramalingam
- Department of Biochemistry, School of Medicine, Jeju National University, Jeju, 63243, Republic of Korea
| | - Moonjae Cho
- Department of Biochemistry, School of Medicine, Jeju National University, Jeju, 63243, Republic of Korea.,Institute of Medical Science, Jeju National University, Jeju, 63241, Republic of Korea.,Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, 63241, Republic of Korea
| | - Youngmee Kim
- Department of Biochemistry, School of Medicine, Jeju National University, Jeju, 63243, Republic of Korea
| |
Collapse
|