1
|
He D, Chen Y, Shen J, Yu H, Keasling JD, Luo X. Biosynthesis of 10-Hydroxy-2-Decenoic Acid in Escherichia coli. Metab Eng 2025; 88:240-249. [PMID: 39842502 DOI: 10.1016/j.ymben.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/30/2024] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
10-hydroxy-2-decenoic acid (10-HDA), a unique unsaturated fatty acid present in royal jelly, has attracted considerable interest due to its potential medical applications. However, its low concentration in royal jelly and complex conformational structure present challenges for large-scale production. In this study, we designed and constructed a de novo biosynthetic pathway for 10-HDA in Escherichia coli. Initially, we introduced the heterologous thioesterase UaFatB1 to hydrolyze trans-2-decenoyl ACP to produce trans-2-decenoic acid, a key precursor for 10-HDA. Subsequently, we employed the bacterial cytochrome P450 enzyme CYP153AMaq to catalyze the terminal hydroxylation of trans-2-decenoic acid. Furthermore, through redox partner engineering and directed evolution, we identified the optimal combination for 10-HDA production: CYP153AMaq Q129R/V141L mutant with redox partner FdR0978/Fdx0338. Finally, we optimized the fermentation conditions and achieved a 10-HDA titer of 18.8 mg/L using glucose as primary carbon source. Our work establishes a platform for producing α,β-unsaturated fatty acids and their derivatives, facilitating further studies on these compounds.
Collapse
Affiliation(s)
- Dan He
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yan Chen
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, China
| | - Junfeng Shen
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Han Yu
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jay D Keasling
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark; Department of Chemical and Biomolecular Engineering and Department of Bioengineering, University of California, Berkeley, CA, USA; Joint BioEnergy Institute, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Xiaozhou Luo
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Zhao P, Kong F, Jiang Y, Qin X, Tian X, Cong Z. Enabling Peroxygenase Activity in Cytochrome P450 Monooxygenases by Engineering Hydrogen Peroxide Tunnels. J Am Chem Soc 2023; 145:5506-5511. [PMID: 36790023 DOI: 10.1021/jacs.3c00195] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Given prominent physicochemical similarities between H2O2 and water, we report a new strategy for promoting the peroxygenase activity of P450 enzymes by engineering their water tunnels to facilitate H2O2 access to the heme center buried therein. Specifically, the H2O2-driven activities of two native NADH-dependent P450 enzymes (CYP199A4 and CYP153AM.aq) increase significantly (by >183-fold and >15-fold, respectively). Additionally, the amount of H2O2 required for an artificial P450 peroxygenase facilitated by a dual-functional small molecule to obtain the desired product is reduced by 95%-97.5% (with ∼95% coupling efficiency). Structural analysis suggests that mutating the residue at the bottleneck of the water tunnel may open a second pathway for H2O2 to flow to the heme center (in addition to the natural substrate tunnel). This study highlights a promising, generalizable strategy whereby P450 monooxygenases can be modified to adopt peroxygenase activity through H2O2 tunnel engineering, thus broadening the application scope of P450s in synthetic chemistry and synthetic biology.
Collapse
Affiliation(s)
- Panxia Zhao
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fanhui Kong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiping Jiang
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Xiangquan Qin
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Xiaoxia Tian
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Shandong Energy Institute, Qingdao, Shandong 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, Shandong 266101, China
| |
Collapse
|
3
|
Yu J, Ge J, Yu H, Ye L. Improved Bioproduction of the Nylon 12 Monomer by Combining the Directed Evolution of P450 and Enhancing Heme Synthesis. Molecules 2023; 28:molecules28041758. [PMID: 36838746 PMCID: PMC9963201 DOI: 10.3390/molecules28041758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
The nylon 12 (PA12) monomer ω-aminododecanoic acid (ω-AmDDA) could be synthesized from lauric acid (DDA) through multi-enzyme cascade transformation using engineered E. coli, with the P450 catalyzing terminal hydroxylation of DDA as a rate-limiting enzyme. Its activity is jointly determined by the heme domain and the reductase domain. To obtain a P450 mutant with higher activity, directed evolution was conducted using a colorimetric high-throughput screening (HTS) system with DDA as the real substrate. After two rounds of directed evolution, a positive double-site mutant (R14R/D629G) with 90.3% higher activity was obtained. Molecular docking analysis, kinetic parameter determination and protein electrophoresis suggested the improved soluble expression of P450 resulting from the synonymous mutation near the N-terminus and the shortened distance of the electron transfer between FMN and FAD caused by D629G mutation as the major reasons for activity improvement. The significantly increased kcat and unchanged Km provided further evidence for the increase in electron transfer efficiency. Considering the important role of heme in P450, its supply was strengthened by the metabolic engineering of the heme synthesis pathway. By combining P450-directed evolution and enhancing heme synthesis, 2.02 ± 0.03 g/L of ω-AmDDA was produced from 10 mM DDA, with a yield of 93.6%.
Collapse
Affiliation(s)
- Jiaming Yu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jiawei Ge
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Hongwei Yu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Correspondence: (H.Y.); (L.Y.)
| | - Lidan Ye
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Correspondence: (H.Y.); (L.Y.)
| |
Collapse
|
4
|
Robinson WXQ, Mielke T, Melling B, Cuetos A, Parkin A, Unsworth WP, Cartwright J, Grogan G. Comparing the Catalytic and Structural Characteristics of a 'Short' Unspecific Peroxygenase (UPO) Expressed in Pichia pastoris and Escherichia coli. Chembiochem 2023; 24:e202200558. [PMID: 36374006 PMCID: PMC10098773 DOI: 10.1002/cbic.202200558] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/14/2022] [Indexed: 11/16/2022]
Abstract
Unspecific peroxygenases (UPOs) have emerged as valuable tools for the oxygenation of non-activated carbon atoms, as they exhibit high turnovers, good stability and depend only on hydrogen peroxide as the external oxidant for activity. However, the isolation of UPOs from their natural fungal sources remains a barrier to wider application. We have cloned the gene encoding an 'artificial' peroxygenase (artUPO), close in sequence to the 'short' UPO from Marasmius rotula (MroUPO), and expressed it in both the yeast Pichia pastoris and E. coli to compare the catalytic and structural characteristics of the enzymes produced in each system. Catalytic efficiency for the UPO substrate 5-nitro-1,3-benzodioxole (NBD) was largely the same for both enzymes, and the structures also revealed few differences apart from the expected glycosylation of the yeast enzyme. However, the glycosylated enzyme displayed greater stability, as determined by nano differential scanning fluorimetry (nano-DSF) measurements. Interestingly, while artUPO hydroxylated ethylbenzene derivatives to give the (R)-alcohols, also given by a variant of the 'long' UPO from Agrocybe aegerita (AaeUPO), it gave the opposite (S)-series of sulfoxide products from a range of sulfide substrates, broadening the scope for application of the enzymes. The structures of artUPO reveal substantial differences to that of AaeUPO, and provide a platform for investigating the distinctive activity of this and related'short' UPOs.
Collapse
Affiliation(s)
- Wendy X. Q. Robinson
- York Structural Biology LaboratoryDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Tamara Mielke
- York Structural Biology LaboratoryDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Benjamin Melling
- York Structural Biology LaboratoryDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Anibal Cuetos
- York Structural Biology LaboratoryDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Alison Parkin
- York Structural Biology LaboratoryDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - William P. Unsworth
- York Structural Biology LaboratoryDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | | | - Gideon Grogan
- York Structural Biology LaboratoryDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| |
Collapse
|
5
|
Call A, Cianfanelli M, Besalú-Sala P, Olivo G, Palone A, Vicens L, Ribas X, Luis JM, Bietti M, Costas M. Carboxylic Acid Directed γ-Lactonization of Unactivated Primary C-H Bonds Catalyzed by Mn Complexes: Application to Stereoselective Natural Product Diversification. J Am Chem Soc 2022; 144:19542-19558. [PMID: 36228322 DOI: 10.1021/jacs.2c08620] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reactions that enable selective functionalization of strong aliphatic C-H bonds open new synthetic paths to rapidly increase molecular complexity and expand chemical space. Particularly valuable are reactions where site-selectivity can be directed toward a specific C-H bond by catalyst control. Herein we describe the catalytic site- and stereoselective γ-lactonization of unactivated primary C-H bonds in carboxylic acid substrates. The system relies on a chiral Mn catalyst that activates aqueous hydrogen peroxide to promote intramolecular lactonization under mild conditions, via carboxylate binding to the metal center. The system exhibits high site-selectivity and enables the oxidation of unactivated primary γ-C-H bonds even in the presence of intrinsically weaker and a priori more reactive secondary and tertiary ones at α- and β-carbons. With substrates bearing nonequivalent γ-C-H bonds, the factors governing site-selectivity have been uncovered. Most remarkably, by manipulating the absolute chirality of the catalyst, γ-lactonization at methyl groups in gem-dimethyl structural units of rigid cyclic and bicyclic carboxylic acids can be achieved with unprecedented levels of diastereoselectivity. Such control has been successfully exploited in the late-stage lactonization of natural products such as camphoric, camphanic, ketopinic, and isoketopinic acids. DFT analysis points toward a rebound type mechanism initiated by intramolecular 1,7-HAT from a primary γ-C-H bond of the bound substrate to a highly reactive MnIV-oxyl intermediate, to deliver a carbon radical that rapidly lactonizes through carboxylate transfer. Intramolecular kinetic deuterium isotope effect and 18O labeling experiments provide strong support to this mechanistic picture.
Collapse
Affiliation(s)
- Arnau Call
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Marco Cianfanelli
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Pau Besalú-Sala
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Giorgio Olivo
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Andrea Palone
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain.,Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica 1, I-00133 Rome, Italy
| | - Laia Vicens
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Xavi Ribas
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Josep M Luis
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Massimo Bietti
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica 1, I-00133 Rome, Italy
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| |
Collapse
|
6
|
Li Y, Wang J, Wang F, Wang L, Wang L, Xu Z, Yuan H, Yang X, Li P, Su J, Wang R. Production of 10-Hydroxy-2-decenoic Acid from Decanoic Acid via Whole-Cell Catalysis in Engineered Escherichia coli. CHEMSUSCHEM 2022; 15:e202102152. [PMID: 34796684 DOI: 10.1002/cssc.202102152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/18/2021] [Indexed: 06/13/2023]
Abstract
10-Hydroxy-2-decenoic acid (10-HDA) is a terminal hydroxylated medium-chain α,β-unsaturated carboxylic acid that performs various unique physiological activities and has a wide market value. Therefore, development of an environmentally friendly, safe, and high-efficiency route to synthesize 10-HDA is required. Here, the β-oxidation pathway of Escherichia coli was modified and a P450 terminal hydroxylase (CYP153A33-CPRBM3 ) was rationally designed to synthesize 10-HDA using decanoic acid as a substrate via two-step whole-cell catalysis. Different homologues of FadDs, FadEs, and YdiIs were analyzed in the first step of the conversion of decanoic acid to trans- -2- decenoic acid. In the second step, CYP153A33 (M228L)-CPRBM3 efficiently catalyzed the conversion of trans- -2- decenoic acid to 10-HDA. Finally, 217 mg L-1 10-HDA was obtained with 500 mg L-1 decanoic acid. This study provides a strategy for biosynthesis of 10-HDA and other α, β-unsaturated carboxylic acid derivatives from specific fatty acids.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Jinan, Shandong, 250353, P. R. China
- Key Laboratory of Shandong Microbial Engineering, QILU University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, P. R. China
| | - Junqing Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Jinan, Shandong, 250353, P. R. China
- Key Laboratory of Shandong Microbial Engineering, QILU University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, P. R. China
| | - Fen Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Jinan, Shandong, 250353, P. R. China
- Key Laboratory of Shandong Microbial Engineering, QILU University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, P. R. China
| | - Li Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Jinan, Shandong, 250353, P. R. China
- Key Laboratory of Shandong Microbial Engineering, QILU University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, P. R. China
| | - Leilei Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Jinan, Shandong, 250353, P. R. China
- Key Laboratory of Shandong Microbial Engineering, QILU University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, P. R. China
| | - Ziqi Xu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Jinan, Shandong, 250353, P. R. China
- Key Laboratory of Shandong Microbial Engineering, QILU University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, P. R. China
| | - Haibo Yuan
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Jinan, Shandong, 250353, P. R. China
- Key Laboratory of Shandong Microbial Engineering, QILU University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, P. R. China
| | - Xiaohui Yang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Jinan, Shandong, 250353, P. R. China
- Key Laboratory of Shandong Microbial Engineering, QILU University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, P. R. China
| | - Piwu Li
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Jinan, Shandong, 250353, P. R. China
- Key Laboratory of Shandong Microbial Engineering, QILU University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, P. R. China
| | - Jing Su
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Jinan, Shandong, 250353, P. R. China
- Key Laboratory of Shandong Microbial Engineering, QILU University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, P. R. China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Jinan, Shandong, 250353, P. R. China
- Key Laboratory of Shandong Microbial Engineering, QILU University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, P. R. China
| |
Collapse
|
7
|
Dong YL, Chong GG, Li CX, Chen Q, Pan J, Li AT, Xu JH. Carving the Active Site of CYP153A7 Monooxygenase for Improving Terminal Hydroxylation of Medium-Chain Fatty Acids. Chembiochem 2022; 23:e202200063. [PMID: 35257464 DOI: 10.1002/cbic.202200063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/07/2022] [Indexed: 11/10/2022]
Abstract
The P450-mediated terminal hydroxylation of non-activated C-H bonds is a chemically challenging reaction. CYP153A7 monooxygenase discovered in Sphingomonas sp. HXN200 belongs to the CYP153A subfamily and shows a pronounced terminal selectivity. Herein, we report the significantly improved terminal hydroxylation activity of CYP153A7 by redesign of the substrate binding pocket based on molecular docking of CYP153A7-C 8:0 and sequence alignments. Some of the resultant single mutants were advantageous over the wild-type enzyme with higher reaction rates, achieving a complete conversion of n- octanoic acid (C 8:0. 1 mM) in a shorter period. Especially, a single-mutation variant, D258E, showed 3.8-fold higher catalytic efficiency than the wild type toward the terminal hydroxylation of medium-chain fatty acid C 8:0 into the high value-added product 8-hydroxyoctanoic acid.
Collapse
Affiliation(s)
- Ya-Li Dong
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, CHINA
| | - Gang-Gang Chong
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, 130 Meilong Road, Shanghai 200237, China, 200237, Shanghai, CHINA
| | - Chun-Xiu Li
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, CHINA
| | - Qi Chen
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, CHINA
| | - Jiang Pan
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, CHINA
| | - Ai-Tao Li
- Hubei University, College of Life Science, CHINA
| | - Jian-He Xu
- East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, CHINA
| |
Collapse
|
8
|
Rapp LR, Marques SM, Nebel B, Damborsky J, Hauer B. Engineering CYP153A
M.aq
to Oxyfunctionalize its Inhibitor Dodecylamine Using a LC/MS Based Rapid Flow Analysis Screening. ChemCatChem 2022. [DOI: 10.1002/cctc.202101648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lea R. Rapp
- Institute of Biochemistry and Technical Biochemistry Department of Technical Biochemistry University of Stuttgart Allmandring 31 70569 Stuttgart Germany
| | - Sérgio M. Marques
- Loschmidt Laboratories Department of Experimental Biology and RECETOX Faculty of Science Masaryk University Kamenice 5/A13 625 00 Brno Czech Republic
- International Clinical Research Center St. Anne's University Hospital Brno Pekarska 53 656 91 Brno Czech Republic
| | - Bernd Nebel
- Institute of Biochemistry and Technical Biochemistry Department of Technical Biochemistry University of Stuttgart Allmandring 31 70569 Stuttgart Germany
| | - Jiri Damborsky
- Loschmidt Laboratories Department of Experimental Biology and RECETOX Faculty of Science Masaryk University Kamenice 5/A13 625 00 Brno Czech Republic
- International Clinical Research Center St. Anne's University Hospital Brno Pekarska 53 656 91 Brno Czech Republic
| | - Bernhard Hauer
- Institute of Biochemistry and Technical Biochemistry Department of Technical Biochemistry University of Stuttgart Allmandring 31 70569 Stuttgart Germany
| |
Collapse
|
9
|
Park H, Bak D, Jeon W, Jang M, Ahn JO, Choi KY. Engineering of CYP153A33 With Enhanced Ratio of Hydroxylation to Overoxidation Activity in Whole-Cell Biotransformation of Medium-Chain 1-Alkanols. Front Bioeng Biotechnol 2022; 9:817455. [PMID: 35059390 PMCID: PMC8764613 DOI: 10.3389/fbioe.2021.817455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/13/2021] [Indexed: 12/21/2022] Open
Abstract
α,ω-Dodecanediol is a versatile material that has been widely used not only as an adhesive and crosslinking reagent, but also as a building block in the pharmaceutical and polymer industries. The biosynthesis of α,ω-dodecanediol from fatty derivatives, such as dodecane and dodecanol, requires an ω-specific hydroxylation step using monooxygenase enzymes. An issue with the whole-cell biotransformation of 1-dodecanol using cytochrome P450 monooxygenase (CYP) with ω-specific hydroxylation activity was the low conversion and production of the over-oxidized product of dodecanoic acid. In this study, CYP153A33 from Marinobacter aquaeolei was engineered to obtain higher ω-specific hydroxylation activity through site-directed mutagenesis. The target residue was mutated to increase flux toward α,ω-dodecanediol synthesis, while reducing the generation of the overoxidation product of dodecanoic acid and α,ω-dodecanedioic acid. Among the evaluated variants, CYP153A33 P136A showed a significant increase in 1-dodecanol conversion, i.e., 71.2% (7.12 mM from 10 mM 1-dodecanol), with an increased hydroxylation to over-oxidation activity ratio, i.e., 32.4. Finally, the applicability of this engineered enzyme for ω-specific hydroxylation against several 1-alkanols, i.e., from C6 to C16, was investigated and discussed based on the structure-activity relationship.
Collapse
Affiliation(s)
- Hyuna Park
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, South Korea
| | - Doyeong Bak
- Department of Environmental and Safety Engineering, College of Engineering, Ajou University, Suwon, South Korea
| | - Wooyoung Jeon
- Biotechnology Process Engineering Center, Korea Research Institute of Biosceince and Biotechnology (KRIBB), Cheongju, South Korea
| | - Minjung Jang
- Biotechnology Process Engineering Center, Korea Research Institute of Biosceince and Biotechnology (KRIBB), Cheongju, South Korea
| | - Jung-Oh Ahn
- Biotechnology Process Engineering Center, Korea Research Institute of Biosceince and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Bioprocess Engineering, University of Science and Technology (UST), Daejeon, South Korea
| | - Kwon-Young Choi
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, South Korea.,Department of Environmental and Safety Engineering, College of Engineering, Ajou University, Suwon, South Korea
| |
Collapse
|
10
|
Santner P, Szabó LK, Chanquia SN, Merrild AH, Hollmann F, Kara S, Eser BE. Optimization and Engineering of Fatty Acid Photodecarboxylase for Substrate Specificity. ChemCatChem 2021. [DOI: 10.1002/cctc.202100840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Paul Santner
- Enzyme Engineering Group Department of Biological and Chemical Engineering Faculty of Technical Sciences Aarhus University Gustav Wieds Vej 10 DK 8000 Aarhus Denmark
| | - László Krisztián Szabó
- Enzyme Engineering Group Department of Biological and Chemical Engineering Faculty of Technical Sciences Aarhus University Gustav Wieds Vej 10 DK 8000 Aarhus Denmark
| | - Santiago Nahuel Chanquia
- Biocatalysis and Bioprocessing Group Department of Biological and Chemical Engineering Faculty of Technical Sciences Aarhus University Gustav Wieds Vej 10 DK 8000 Aarhus Denmark
| | - Aske Høj Merrild
- Enzyme Engineering Group Department of Biological and Chemical Engineering Faculty of Technical Sciences Aarhus University Gustav Wieds Vej 10 DK 8000 Aarhus Denmark
| | - Frank Hollmann
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629HZ Delft The Netherlands
| | - Selin Kara
- Biocatalysis and Bioprocessing Group Department of Biological and Chemical Engineering Faculty of Technical Sciences Aarhus University Gustav Wieds Vej 10 DK 8000 Aarhus Denmark
| | - Bekir Engin Eser
- Enzyme Engineering Group Department of Biological and Chemical Engineering Faculty of Technical Sciences Aarhus University Gustav Wieds Vej 10 DK 8000 Aarhus Denmark
| |
Collapse
|
11
|
Affiliation(s)
- Judith Münch
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany
| | - Pascal Püllmann
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany
| | - Wuyuan Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West seventh Avenue, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, 32 West seventh Avenue, Tianjin 300308, China
| | - Martin J. Weissenborn
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany
- Institute of Chemistry, MartinLuther-University Halle-Wittenberg, Kurt-Mothes-Strasse 2, 06120, Halle, Saale, Germany
| |
Collapse
|
12
|
Rapp LR, Marques SM, Zukic E, Rowlinson B, Sharma M, Grogan G, Damborsky J, Hauer B. Substrate Anchoring and Flexibility Reduction in CYP153A M.aq Leads to Highly Improved Efficiency toward Octanoic Acid. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05193] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lea R. Rapp
- Institute of Biochemistry and Technical Biochemistry, Department of Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Sérgio M. Marques
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Centre for Clinical Research, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Erna Zukic
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Benjamin Rowlinson
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Mahima Sharma
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Gideon Grogan
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Centre for Clinical Research, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Bernhard Hauer
- Institute of Biochemistry and Technical Biochemistry, Department of Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
13
|
Fiorentini F, Hatzl AM, Schmidt S, Savino S, Glieder A, Mattevi A. The Extreme Structural Plasticity in the CYP153 Subfamily of P450s Directs Development of Designer Hydroxylases. Biochemistry 2018; 57:6701-6714. [DOI: 10.1021/acs.biochem.8b01052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Filippo Fiorentini
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, Pavia 27100, Italy
| | - Anna-Maria Hatzl
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, Graz 8010, Austria
| | - Sandy Schmidt
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, Graz 8010, Austria
| | - Simone Savino
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, Pavia 27100, Italy
| | - Anton Glieder
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, Graz 8010, Austria
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, Pavia 27100, Italy
| |
Collapse
|
14
|
Darimont D, Weissenborn MJ, Nebel BA, Hauer B. Modulating proposed electron transfer pathways in P450 BM3 led to improved activity and coupling efficiency. Bioelectrochemistry 2017; 119:119-123. [PMID: 28965071 DOI: 10.1016/j.bioelechem.2017.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 10/18/2022]
Abstract
Electrochemical in vitro reduction of P450 enzymes is a promising alternative to in vivo applications. Previously we presented three engineered P450BM3 variants for aniline hydroxylation, equipped with a carbon nanotube binding-peptide (CNT-tag) for self-assembly on CNT electrodes. Compared to wildtype P450BM3 the NADPH-dependent activity was enhanced, but the coupling efficiency remained low. For P450BM3 Verma, Schwaneberg and Roccatano (2014, Biopolymers 101, 197-209) calculated putative electron transfer pathways (eTPs) by MD simulations. We hypothesised that knockouts of these transfer pathways would alter the coupling efficiency of the system. The results revealed no improved system for the electrically-driven P450s. For the NADPH-driven P450s, however, the most active eTP-mutant showed a 13-fold increased activity and a 32-fold elevated coupling efficiency using NADPH as reducing equivalent. This suggests an alternative principle of electron transport for the reduction by NADPH and an electrode, respectively. The work presents moreover a tool to improve the coupling and activity of P450s with non-natural substrates.
Collapse
Affiliation(s)
- Dominique Darimont
- Institute of Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Martin J Weissenborn
- Leibniz-Institute of Plant Biochemistry (IPB), Weinberg 3, 06120 Halle (Saale), Germany; Martin-Luther-University Halle-Wittenberg, Institute of Chemistry, Germany
| | - Bernd A Nebel
- Institute of Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Bernhard Hauer
- Institute of Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| |
Collapse
|
15
|
Combinatorial Engineering of Yarrowia lipolytica as a Promising Cell Biorefinery Platform for the de novo Production of Multi-Purpose Long Chain Dicarboxylic Acids. FERMENTATION-BASEL 2017. [DOI: 10.3390/fermentation3030040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
16
|
Lee CW, Yu SC, Lee JH, Park SH, Park H, Oh TJ, Lee JH. Crystal Structure of a Putative Cytochrome P450 Alkane Hydroxylase (CYP153D17) from Sphingomonas sp. PAMC 26605 and Its Conformational Substrate Binding. Int J Mol Sci 2016; 17:ijms17122067. [PMID: 27941697 PMCID: PMC5187867 DOI: 10.3390/ijms17122067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/29/2016] [Accepted: 12/06/2016] [Indexed: 01/07/2023] Open
Abstract
Enzymatic alkane hydroxylation reactions are useful for producing pharmaceutical and agricultural chemical intermediates from hydrocarbons. Several cytochrome P450 enzymes catalyze the regio- and stereo-specific hydroxylation of alkanes. We evaluated the substrate binding of a putative CYP alkane hydroxylase (CYP153D17) from the bacterium Sphingomonas sp. PAMC 26605. Substrate affinities to C10-C12 n-alkanes and C10-C14 fatty acids with Kd values varied from 0.42 to 0.59 μM. A longer alkane (C12) bound more strongly than a shorter alkane (C10), while shorter fatty acids (C10, capric acid; C12, lauric acid) bound more strongly than a longer fatty acid (C14, myristic acid). These data displayed a broad substrate specificity of CYP153D17, hence it was named as a putative CYP alkane hydroxylase. Moreover, the crystal structure of CYP153D17 was determined at 3.1 Å resolution. This is the first study to provide structural information for the CYP153D family. Structural analysis showed that a co-purified alkane-like compound bound near the active-site heme group. The alkane-like substrate is in the hydrophobic pocket containing Thr74, Met90, Ala175, Ile240, Leu241, Val244, Leu292, Met295, and Phe393. Comparison with other CYP structures suggested that conformational changes in the β1-β2, α3-α4, and α6-α7 connecting loop are important for incorporating the long hydrophobic alkane-like substrate. These results improve the understanding of the catalytic mechanism of CYP153D17 and provide valuable information for future protein engineering studies.
Collapse
Affiliation(s)
- Chang Woo Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon 406-840, Korea.
- Department of Polar Sciences, University of Science and Technology, Incheon 406-840, Korea.
| | - Sang-Cheol Yu
- Department of BT-Convergent Pharmaceutical Engineering, Sunmoon University, Asansi 336-708, Korea.
| | - Joo-Ho Lee
- Department of BT-Convergent Pharmaceutical Engineering, Sunmoon University, Asansi 336-708, Korea.
| | - Sun-Ha Park
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon 406-840, Korea.
| | - Hyun Park
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon 406-840, Korea.
- Department of Polar Sciences, University of Science and Technology, Incheon 406-840, Korea.
| | - Tae-Jin Oh
- Department of BT-Convergent Pharmaceutical Engineering, Sunmoon University, Asansi 336-708, Korea.
| | - Jun Hyuck Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon 406-840, Korea.
- Department of Polar Sciences, University of Science and Technology, Incheon 406-840, Korea.
| |
Collapse
|