1
|
Chi D, Qi H, Wang L, Chen S. Pd-Catalyzed cascade Heck cyclization/carbonylation of indoles with aryl formates: enantioselective construction of indolo[2,1- a]isoquinolines. Chem Commun (Camb) 2024; 60:8613-8616. [PMID: 39046243 DOI: 10.1039/d4cc02577f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
An efficient palladium-catalyzed cascade cyclization/carbonylation of indoles with aryl formates to access ester-functionalized indolo[2,1-a]isoquinoline scaffolds has been developed. In addition, an asymmetric variant is also achieved using a chiral phosphine ligand, affording the indolo[2,1-a]isoquinoline products in good yields and enantioselectivities.
Collapse
Affiliation(s)
- Dongmei Chi
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China.
| | - Hongbo Qi
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China.
| | - Leming Wang
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China.
| | - Shufeng Chen
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China.
| |
Collapse
|
2
|
Santos CMM, Silva AMS. Transition Metal-Catalyzed Transformations of Chalcones. CHEM REC 2024; 24:e202400060. [PMID: 39008887 DOI: 10.1002/tcr.202400060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/09/2024] [Indexed: 07/17/2024]
Abstract
Chalcones are a class of naturally occurring flavonoid compounds associated to a variety of biological and pharmacological properties. Several reviews have been published describing the synthesis and biological properties of a vast array of analogues. However, overviews on the reactivity of chalcones has only been explored in a few accounts. To fill this gap, a systematic survey on the most recent developments in the transition metal-catalyzed transformation of chalcones was performed. The chemistry of copper, palladium, zinc, iron, manganese, nickel, ruthenium, cobalt, rhodium, iridium, silver, indium, gold, titanium, platinum, among others, as versatile catalysts will be highlighted, covering the literature from year 2000 to 2023, in more than 380 publications.
Collapse
Affiliation(s)
- Clementina M M Santos
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Bragança, Apolónia, 5300-253, Bragança, Portugal
| | - Artur M S Silva
- LAQV, REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Campus de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
3
|
De Salvo A, Mancuso R, Wu XF. Carbonylative synthesis and functionalization of indoles. Beilstein J Org Chem 2024; 20:973-1000. [PMID: 38711593 PMCID: PMC11070973 DOI: 10.3762/bjoc.20.87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/19/2024] [Indexed: 05/08/2024] Open
Abstract
Carbonylation processes have become widely recognized as a versatile, convenient, and low-cost method for the synthesis of high-value compounds. Given the great importance of heterocyclic compounds, the carbonylative approach has become increasingly important for their synthesis. In this mini-review, as a class of benzo-fused nitrogen-containing heterocyclic compounds, we summarized and discussed the recent achievements on the synthesis and functionalization of indole derivatives via carbonylative approaches.
Collapse
Affiliation(s)
- Alex De Salvo
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036 Arcavacata di Rende (CS), Italy
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Raffaella Mancuso
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036 Arcavacata di Rende (CS), Italy
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Liaoning, China
| |
Collapse
|
4
|
Suzuki H, Ito Y, Yabe K, Takemura Y, Matsuda T. Rhodium-catalysed additive-free alkoxycarbonylation of indoles: 2,4,6-trimethylbenzoic acid-based carbonate anhydrides as a versatile alkoxycarboxyl source. Org Biomol Chem 2024; 22:3209-3214. [PMID: 38563730 DOI: 10.1039/d4ob00205a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
We report a CO-free approach to indole-2-carboxylic esters: rhodium-catalysed C(2)-alkoxycarbonylation of indoles with 2,4,6-trimethylbenzoic acid-based carbonate anhydrides. Selective C-O bond cleavage of the anhydrides facilitates the introduction of various alkoxycarbonyl groups. Control experiments suggest that merging a rhodium catalyst and KI promotes the in situ formation of the RhI species.
Collapse
Affiliation(s)
- Hirotsugu Suzuki
- Tenure-Track Program for Innovative Research, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui 910-8507, Japan.
| | - Yuki Ito
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Kentaro Yabe
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Yosuke Takemura
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Takanori Matsuda
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| |
Collapse
|
5
|
Chen C, Liu L, Liu JP, Ding J, Ni C, Ni C, Zhu B. Palladium-catalyzed Heck-carbonylation of alkene-tethered carbamoyl chlorides with aryl formates. Org Biomol Chem 2023; 21:7129-7135. [PMID: 37602718 DOI: 10.1039/d3ob01149f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
We report a palladium-catalyzed Heck-carbonylation of alkene-tethered carbamoyl chlorides by utilizing aryl formates as convenient CO surrogates. One C-O and two C-C bonds are constructed to give diversiform esterified oxindoles/γ-lactams bearing an all-carbon quaternary stereocenter under gas-free conditions. This transformation features a wide substrate scope and good functional group tolerance and can be easily applied to late-stage functionalization.
Collapse
Affiliation(s)
- Chen Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Liying Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Jin-Ping Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Jie Ding
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Chang Ni
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Chunjie Ni
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, P. R. China.
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| |
Collapse
|
6
|
Ferretti F, Fouad MA, Abbo C, Ragaini F. Effective Synthesis of 4-Quinolones by Reductive Cyclization of 2'-Nitrochalcones Using Formic Acid as a CO Surrogate. Molecules 2023; 28:5424. [PMID: 37513296 PMCID: PMC10386197 DOI: 10.3390/molecules28145424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
4-Quinolones are the structural elements of many pharmaceutically active compounds. Although several approaches are known for their synthesis, the introduction of an aryl ring in position 2 is problematic with most of them. The reductive cyclization of o-nitrochalcones by pressurized CO, catalyzed by ruthenium or palladium complexes, has been previously reported to be a viable synthetic strategy for this aim, but the need for pressurized CO lines and autoclaves has prevented its widespread use. In this paper, we describe the use of the formic acid/acetic anhydride mixture as a CO surrogate, which allows us to perform the reaction in a cheap and commercially available thick-walled glass tube without adding any gaseous reagent. The obtained yields are often high and compare favorably with those previously reported by the use of pressurized CO. The procedure was applied to a three-step synthesis from commercially available and cheap reagents of the alkaloid Graveoline.
Collapse
Affiliation(s)
- Francesco Ferretti
- Dipartimento di Chimica, Università Degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
| | - Manar Ahmed Fouad
- Dipartimento di Chimica, Università Degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt
| | - Cecilia Abbo
- Dipartimento di Chimica, Università Degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
| | - Fabio Ragaini
- Dipartimento di Chimica, Università Degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
| |
Collapse
|
7
|
Fouad M, Ferretti F, Ragaini F. Formic Acid as Carbon Monoxide Source in the Palladium-Catalyzed N-Heterocyclization of o-Nitrostyrenes to Indoles. J Org Chem 2023; 88:5108-5117. [PMID: 36655880 PMCID: PMC10127278 DOI: 10.1021/acs.joc.2c02613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Indexed: 01/20/2023]
Abstract
The reductive cyclization reaction of o-nitrostyrenes to generate indoles has been investigated for three decades using CO as a cheap reducing agent, but it remains an interesting area of research and improvements. However, using toxic CO gas has several drawbacks. As a result, it is highly preferable to use safe and efficient surrogates for in situ generation of CO from nontoxic and affordable sources. Among several CO sources that have been previously explored for the generation of gaseous CO, here we report the use of cheap and readily available formic acid as an effective reductant for the reductive cyclization of o-nitrostyrenes. The reaction is air and water tolerant and provides the desired indoles in yields up to 99%, at a low catalyst loading (0.5 mol %) and without generating toxic or difficult to separate byproducts. A cheap glass thick-walled "pressure tube" can be used instead of less available autoclaves, even on a 2 g scale, thus widening the applicability of our protocol.
Collapse
Affiliation(s)
- Manar
Ahmed Fouad
- Dipartimento
di Chimica, Università degli Studi
di Milano, Via C. Golgi 19, 20133 Milano, Italy
- Chemistry
Department, Faculty of Science, Alexandria
University, P.O. Box 426, Alexandria 21321, Egypt
| | - Francesco Ferretti
- Dipartimento
di Chimica, Università degli Studi
di Milano, Via C. Golgi 19, 20133 Milano, Italy
| | - Fabio Ragaini
- Dipartimento
di Chimica, Università degli Studi
di Milano, Via C. Golgi 19, 20133 Milano, Italy
| |
Collapse
|
8
|
Synthesis of aromatic carbamate via palladium catalyzed reductive carbonylation reaction of Nitro benzene: An alternative approach with different nucleophiles other than MeOH. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2023.122651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
9
|
Phenyl Formate as a CO Surrogate for the Reductive Cyclization of Organic Nitro Compounds to Yield Different N-Heterocycles: No Need for Autoclaves and Pressurized Carbon Monoxide. Catalysts 2023. [DOI: 10.3390/catal13020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The reductive cyclization of different organic nitro compounds by carbon monoxide, catalyzed by transition metal complexes, is a very efficient and clean strategy for the synthesis of many N-heterocycles. However, its use requires the use of autoclaves and pressurized CO lines. In this perspective, the authors will present the results obtained in their laboratories on the use of phenyl formate as a convenient CO surrogate, able to liberate carbon monoxide under the reaction conditions and allowing the use of a cheap glass pressure tube as a reaction vessel. In most cases, yields were better than those previously reported by the use of pressurized CO, proving that the use of CO surrogates can be a viable alternative to the gaseous reagent.
Collapse
|
10
|
Khanal HD, Perumal M, Lee YR. Annulation strategies for diverse heterocycles via the reductive transformation of 2-nitrostyrenes. Org Biomol Chem 2022; 20:7675-7693. [PMID: 35971908 DOI: 10.1039/d2ob01149b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reduction of the stable nitro group is a fundamental and widely used transformation for the construction of complex and functionalized heterocyclic architectures. The unfolding of the reactivity of the nitro group in the 2-nitrostyrene moiety not only triggers the formation of carbon-nitrogen bonds, but also offers the opportunity for annulation and heteroannulation, thereby providing a cascade process for the synthesis of highly conjugated natural and unnatural molecules. In this review, we comprehensively discuss the use of 2-nitrostyrene motifs in the synthesis of various N-heterocycles. We offer readers an overview of the synthetic achievements achieved to date, highlighting their important features, reactivities, and mechanisms.
Collapse
Affiliation(s)
- Hari Datta Khanal
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Muthuraja Perumal
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
11
|
Wang M, Zhang X, Ma M, Zhao B. Palladium-Catalyzed Synthesis of Esters from Arenes through C-H Thianthrenation. Org Lett 2022; 24:6031-6036. [PMID: 35929821 DOI: 10.1021/acs.orglett.2c02330] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The efficient palladium-catalyzed synthesis of esters from readily available arenes has been developed. These C-H bond esterifications were achieved relying on the regioselective thianthrenation to generate the aryl-TT salts, which were treated as reactive electrophilic substrates to couple with phenol formate and N-hydroxysuccinimide (NHS) formate giving access to phenol esters and NHS esters, respectively, in the absence of carbon monoxide. A wide range of functional esters could be prepared with high efficiency under this redox-neutral palladium-catalytic condition. Late-stage functionalization and investigations of synthetic applications demonstrated the potential application of the established platform and these products.
Collapse
Affiliation(s)
- Mengning Wang
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaomei Zhang
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Mengtao Ma
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Binlin Zhao
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
12
|
De La Cruz LK, Bauer N, Cachuela A, Tam WS, Tripathi R, Yang X, Wang B. Light-Activated CO Donor as a Universal CO Surrogate for Pd-Catalyzed and Light-Mediated Carbonylation. Org Lett 2022; 24:4902-4907. [PMID: 35786951 DOI: 10.1021/acs.orglett.2c01726] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A low-molecular-weight, solid CO surrogate that only requires a low-power LED for activation to release 2 equiv of CO is reported. The surrogate can be universally implemented in various palladium-catalyzed carbonylative transformations. It is also compatible with protocols that employ blue-light to activate conventionally inaccessible substrates such as nonactivated alkyl halides. Furthermore, we demonstrate that the photolabile CO-releasing scaffold can be installed into polymeric materials, thereby creating new materials with CO-releasing capabilities.
Collapse
Affiliation(s)
- Ladie Kimberly De La Cruz
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Nicola Bauer
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Alyssa Cachuela
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Wing Sze Tam
- Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Ravi Tripathi
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Xiaoxiao Yang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Binghe Wang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
13
|
Murtinho D, Elisa da Silva Serra M. Transition Metal Catalysis in Synthetic Heterocyclic Chemistry. HETEROCYCLES 2022. [DOI: 10.1002/9783527832002.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Ramadan DR, Ferretti F, Ragaini F. Catalytic Reductive Cyclization of 2-Nitrobiphenyls Using Phenyl formate as CO Surrogate: a Robust Synthesis of 9H-Carbazoles. J Catal 2022. [DOI: 10.1016/j.jcat.2022.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Synthesis of Indoles by Palladium-Catalyzed Reductive Cyclization of β-Nitrostyrenes with Phenyl Formate as a CO Surrogate. Catalysts 2022. [DOI: 10.3390/catal12010106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The reductive cyclization of suitably substituted organic nitro compounds by carbon monoxide is a very appealing technique for the synthesis of heterocycles because of its atom efficiency and easiness of separation of the only stoichiometric byproduct CO2, but the need for pressurized CO has hampered its diffusion. We have recently reported on the synthesis of indoles by reductive cyclization of o-nitrostyrenes using phenyl formate as a CO surrogate, using a palladium/1,10-phenanthroline complex as catalyst. However, depending on the desired substituents on the structure, the use of β-nitrostyrenes as alternative reagents may be advantageous. We report here the results of our study on the possibility to use phenyl formate as a CO surrogate in the synthesis of indoles by reductive cyclization of β-nitrostyrenes, using PdCl2(CH3CN)2 + phenanthroline as the catalyst. It turned out that good results can be obtained when the starting nitrostyrene bears an aryl substituent in the alpha position. However, when no such substituent is present, only fair yield of indole can be obtained because the base required to decompose the formate also catalyzes an oligo-polymerization of the starting styrene. The reaction can be performed in a single glass pressure tube, a cheap and easily available piece of equipment.
Collapse
|
16
|
Suárez-Pantiga S, Sanz R. Deoxygenation reactions in organic synthesis catalyzed by dioxomolybdenum(VI) complexes. Org Biomol Chem 2021; 19:10472-10492. [PMID: 34816863 DOI: 10.1039/d1ob01939b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Dioxomolybdenum(VI) complexes have been applied as efficient, inexpensive and benign catalysts to deoxygenation reactions of a diverse number of compounds in the last two decades. Dioxomolybdenum complexes have demonstrated wide applicability to the deoxygenation of sulfoxides into sulfides and reduction of N-O bonds. Even the challenging nitro functional group was efficiently deoxygenated, affording amines or diverse heterocycles after reductive cyclization reactions. More recently, carbon-based substrates like epoxides, alcohols and ketones have been successfully deoxygenated. Also, dioxomolybdenum complexes accomplished deoxydehydration (DODH) reactions of biomass-derived vicinal 1,2-diols, affording valuable alkenes. The choice of the catalytic systems and reductant is decisive to achieve the desired transformation. Commonly found reducing agents involved phosphorous-based compounds, silanes, molecular hydrogen, or even glycols and other alcohols.
Collapse
Affiliation(s)
- Samuel Suárez-Pantiga
- Área de Química Orgánica, Departamento de Química, Facultad de Ciencias, Pza, Misael Bañuelos, s/n, Universidad de Burgos, 09001 Burgos, Spain.
| | - Roberto Sanz
- Área de Química Orgánica, Departamento de Química, Facultad de Ciencias, Pza, Misael Bañuelos, s/n, Universidad de Burgos, 09001 Burgos, Spain.
| |
Collapse
|
17
|
Ahmed Fouad M, Ferretti F, Formenti D, Milani F, Ragaini F. Synthesis of Indoles by Reductive Cyclization of Nitro Compounds Using Formate Esters as CO Surrogates. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Manar Ahmed Fouad
- Dipartimento di Chimica Università degli Studi di Milano Via C. Golgi 19 20133 Milano Italy
- Chemistry Department, Faculty of Science Alexandria University P.O. Box 426 Alexandria 21321 Egypt
| | - Francesco Ferretti
- Dipartimento di Chimica Università degli Studi di Milano Via C. Golgi 19 20133 Milano Italy
| | - Dario Formenti
- Dipartimento di Chimica Università degli Studi di Milano Via C. Golgi 19 20133 Milano Italy
- Institut für Anorganische Chemie – RWTH Aachen Landoltweg 1a 52074 Aachen Germany
| | - Fabio Milani
- Dipartimento di Chimica Università degli Studi di Milano Via C. Golgi 19 20133 Milano Italy
| | - Fabio Ragaini
- Dipartimento di Chimica Università degli Studi di Milano Via C. Golgi 19 20133 Milano Italy
| |
Collapse
|
18
|
A palladium-catalyzed Barluenga cross-coupling - reductive cyclization sequence to substituted indoles. Tetrahedron 2021; 94. [PMID: 34483377 DOI: 10.1016/j.tet.2021.132331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A short and flexible synthesis of substituted indoles employing two palladium-catalyzed reactions, a Barluenga cross-coupling of p-tosylhydrazones with 2-nitroarylhalides followed by a palladium-catalyzed, carbon monoxide-mediated reductive cyclization has been developed. A one-pot, two-step methodology was further developed, eliminating isolation and purification of the cross-coupling product. This was accomplished by utilizing the initially added 0.025 equivalents of bis(triphenylphosphine)palladium dichloride, thus serving a dual role in the cross-coupling and the reductive cyclization. It was found that addition of 1,3-bis(diphenylphosphino)propane and carbon monoxide after completion of the Barluenga reaction afforded, in most cases, significantly better overall yields.
Collapse
|
19
|
Liu B, Wang S, Bian C, Liao H, Lin H. Divergent Syntheses of Pyridoacridine Alkaloids
via
Palladium‐Catalyzed
Reductive Cyclization with
Nitro‐Biarenes. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Bo Liu
- Research Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Shuping Wang
- Research Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Changhao Bian
- Research Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Hongze Liao
- Research Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Hou‐Wen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| |
Collapse
|
20
|
Sheng X, Xu Q, Lin Z, Hu Z, Pan L, Liu Q, Li Y. External Reductant‐free Stepwise [3+2] Cycloaddition/Reductive Cyclization from 2‐Nitrochalcones and Isocyanides: Synthesis of Pyrrolo[3,4‐
c
]quinoline
N
‐oxides. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xinyao Sheng
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Qi Xu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Ziwen Lin
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Zhongyan Hu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
- Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science Shandong Normal University Jinan 250014 P. R. China
| | - Ling Pan
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Qun Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Yifei Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
| |
Collapse
|
21
|
Su Z, Liu B, Liao H, Lin HW. Synthesis of N-Heterocycles by Reductive Cyclization of Nitroalkenes Using Molybdenum Hexacarbonyl as Carbon Monoxide Surrogate. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Zhiyou Su
- Research Center for Marine Drugs; State Key Laboratory of Oncogene and Related Genes; Department of Pharmacy, Ren Ji Hospital, School of Medicine; Shanghai Jiao Tong University; 200127 Shanghai China
| | - Bo Liu
- Research Center for Marine Drugs; State Key Laboratory of Oncogene and Related Genes; Department of Pharmacy, Ren Ji Hospital, School of Medicine; Shanghai Jiao Tong University; 200127 Shanghai China
| | - Hongze Liao
- Research Center for Marine Drugs; State Key Laboratory of Oncogene and Related Genes; Department of Pharmacy, Ren Ji Hospital, School of Medicine; Shanghai Jiao Tong University; 200127 Shanghai China
| | - Hou-Wen Lin
- Research Center for Marine Drugs; State Key Laboratory of Oncogene and Related Genes; Department of Pharmacy, Ren Ji Hospital, School of Medicine; Shanghai Jiao Tong University; 200127 Shanghai China
| |
Collapse
|
22
|
An effective non-chromatographic method for the purification of phenanthrolines and related ligands. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Ansari NH, Banini S, Cummings MM, Söderberg BCG. Palladium-Catalyzed Double Reductive Cyclization of 2,3-Dinitro-1,4-dialkenylbenzenes. Synthesis of 1 H,8 H-Pyrrolo[3,2- g]indoles. J Org Chem 2020; 85:4002-4010. [PMID: 32130856 PMCID: PMC9827688 DOI: 10.1021/acs.joc.9b03290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A flexible route to both symmetrical and unsymmetrical 1H,8H-pyrrolo[3,2-g]indole has been developed. The key and ultimate step is a double palladium-catalyzed, carbon monoxide mediated reductive cyclization of 1,4-dialkenyl-2,3-dinitrobenzenes. The cyclization precursors were prepared by a double Kosugi-Migita-Stille cross coupling of 1,4-dibromo-2,3-dinitrobenzene with an alkenyltin reagent to give symmetrical products. Unsymetrical cyclization precursors were prepared by two sequential cross couplings using 4-iodo-2,3-dinitrophenyl trifluoromethanesulfonate as the starting material.
Collapse
|
24
|
Alkyl formates as reagents for reductive amination of carbonyl compounds. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.01.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Chen Z, Wang LC, Wu XF. Carbonylative synthesis of heterocycles involving diverse CO surrogates. Chem Commun (Camb) 2020; 56:6016-6030. [DOI: 10.1039/d0cc01504k] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent advances in the carbonylative synthesis of heterocycles by using diverse CO surrogates as sources of CO are summarized and discussed.
Collapse
Affiliation(s)
- Zhengkai Chen
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
| | - Le-Cheng Wang
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
| | - Xiao-Feng Wu
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock
| |
Collapse
|
26
|
Sundaravelu N, Sekar G. Cu-Catalyzed one-pot synthesis of thiochromeno-quinolinone and thiochromeno-thioflavone via oxidative double hetero Michael addition using in situ generated nucleophiles. Chem Commun (Camb) 2020; 56:8826-8829. [DOI: 10.1039/d0cc03210g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A copper catalyzed three-component synthesis of π-conjugated tetracyclic thiochromeno-quinolinone and thiochromeno-thioflavone was established via oxidative double hetero Michael addition using in situ generated nucleophiles.
Collapse
Affiliation(s)
| | - Govindasamy Sekar
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai-600036
- India
| |
Collapse
|
27
|
Cheng C, Wan B, Zhou B, Gu Y, Zhang Y. Enantioselective synthesis of quaternary 3,4-dihydroisoquinolinones via Heck carbonylation reactions: development and application to the synthesis of Minalrestat analogues. Chem Sci 2019; 10:9853-9858. [PMID: 32015808 PMCID: PMC6977551 DOI: 10.1039/c9sc03406d] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/31/2019] [Indexed: 12/23/2022] Open
Abstract
Minalrestat and its analogues represent structurally novel aldose reductase inhibitors, and the asymmetric synthesis of such pharmaceutically privileged molecules has not been reported yet. We have developed a palladium-catalyzed enantioselective intramolecular carbonylative Heck reaction by using formate esters as the source of CO, which represents the first enantioselective synthesis of quaternary 3,4-dihydroisoquinolines. The reaction provides a facile and efficient method for the synthesis of enantiopure nitrogen-containing heterocyclic compounds bearing an all-carbon quaternary stereocenter. The reaction has been successfully applied to the first asymmetric synthesis of Minalrestat analogues.
Collapse
Affiliation(s)
- Cang Cheng
- School of Chemical Science and Engineering , Shanghai Key Laboratory of Chemical Assessment and Sustainability , Tongji University , 1239 Siping Road , Shanghai 200092 , China .
| | - Bin Wan
- School of Chemical Science and Engineering , Shanghai Key Laboratory of Chemical Assessment and Sustainability , Tongji University , 1239 Siping Road , Shanghai 200092 , China .
| | - Bo Zhou
- School of Chemical Science and Engineering , Shanghai Key Laboratory of Chemical Assessment and Sustainability , Tongji University , 1239 Siping Road , Shanghai 200092 , China .
| | - Yichao Gu
- School of Chemical Science and Engineering , Shanghai Key Laboratory of Chemical Assessment and Sustainability , Tongji University , 1239 Siping Road , Shanghai 200092 , China .
| | - Yanghui Zhang
- School of Chemical Science and Engineering , Shanghai Key Laboratory of Chemical Assessment and Sustainability , Tongji University , 1239 Siping Road , Shanghai 200092 , China .
| |
Collapse
|
28
|
Gulledge Z, Tedder ML, Lyons KR, Carrick JD. Synthesis of Tridentate [1,2,4] Triazinyl-Pyridin-2-yl Indole Lewis Basic Complexants via Pd-Catalyzed Suzuki-Miyaura Cross-Coupling. ACS OMEGA 2019; 4:18855-18866. [PMID: 31737847 PMCID: PMC6854830 DOI: 10.1021/acsomega.9b02891] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Full closure of the nuclear fuel cycle is predicated, in part, on defining efficient separations processes for the effective speciation of the neutron-absorbing lanthanides from the minor actinides post-PUREX. Pursuant to the aforementioned, a class of tridentate, Lewis basic procomplexants have been prepared leveraging a Pd-catalyzed Suzuki-Miyaura cross-coupling between 6-bromo-[1,2,4]-triazinylpyridine derivatives and various protected indole-boronic acids to afford functionalized 2-[6-(5,6-diphenyl-[1,2,4]triazin-3-yl)-pyridin-2-yl]-1H-indoles. A highly active catalyst/ligand system with low loadings was employed rapidly affording 26 examples in yields as high as 85%. Method optimization, substrate and indole scope, comparative analysis between coupling reagents, and a scale-up experiment are reported.
Collapse
|
29
|
Ford RL, Alt I, Jana N, Driver TG. Intramolecular Pd-Catalyzed Reductive Amination of Enolizable sp 3-C-H Bonds. Org Lett 2019; 21:8827-8831. [PMID: 31613113 DOI: 10.1021/acs.orglett.9b03458] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A palladium-catalyzed reductive cyclization of nitroarenes has been designed to construct sp3-C-NHAr bonds from sp3-C-H bonds by using an enolizable nucleophile to intercept a nitrosoarene intermediate. Exposure of ortho-substituted nitroarenes to 5 mol % of Pd(OAc)2 and 10 mol % of phenanthroline under 2 atm of CO constructs partially saturated 5-, 6-, or 7-membered N-heterocycles using α-pyridyl carboxylates, malonates, 1,3-dimethylbarbituric acid, 1,3-diones, or difurans as the nucleophile.
Collapse
Affiliation(s)
- Russell L Ford
- Department of Chemistry , University at Illinois at Chicago , 845 West Taylor Street , Chicago , Illinois 60607 , United States
| | - Isabel Alt
- Department of Chemistry , University at Illinois at Chicago , 845 West Taylor Street , Chicago , Illinois 60607 , United States.,Institut für Organische Chemie , Universität Stuttgart , Pfaffenwaldring 55 , DE-70569 Stuttgart , Germany
| | - Navendu Jana
- Department of Chemistry , University at Illinois at Chicago , 845 West Taylor Street , Chicago , Illinois 60607 , United States
| | - Tom G Driver
- Department of Chemistry , University at Illinois at Chicago , 845 West Taylor Street , Chicago , Illinois 60607 , United States
| |
Collapse
|
30
|
Ferretti F, Ramadan DR, Ragaini F. Transition Metal Catalyzed Reductive Cyclization Reactions of Nitroarenes and Nitroalkenes. ChemCatChem 2019. [DOI: 10.1002/cctc.201901065] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Francesco Ferretti
- Dipartimento di ChimicaUniversità degli Studi di Milano via C. Golgi 19 Milano 20133 Italy
| | - Doaa R. Ramadan
- Dipartimento di ChimicaUniversità degli Studi di Milano via C. Golgi 19 Milano 20133 Italy
| | - Fabio Ragaini
- Dipartimento di ChimicaUniversità degli Studi di Milano via C. Golgi 19 Milano 20133 Italy
| |
Collapse
|
31
|
Zhou R, Qi X, Wu XF. Selenium-Catalyzed Carbonylative Synthesis of 3,4-Dihydroquinazolin-2(1 H)-one Derivatives with TFBen as the CO Source. ACS COMBINATORIAL SCIENCE 2019; 21:573-577. [PMID: 31318526 DOI: 10.1021/acscombsci.9b00090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
An efficient and general carbonylative procedure for the synthesis of 3,4-dihydroquinazolin-2(1H)-one from 1-(halomethyl)-2-nitrobenzenes and aryl/alkyl amines have been explored. In this approach, to avoid of using toxic CO gas, a solid and stable CO precursor, TFBen (benzene-1,3,5-triyl triformate), was utilized. With elemental selenium as the catalyst, a variety of aryl/alkyl amines has been tolerated well to afford the corresponding 3,4-dihydroquinazolin-2(1H)-one products in moderate to excellent yields under mild reaction condition.
Collapse
Affiliation(s)
- Rong Zhou
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People’s Republic of China
| | - Xinxin Qi
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People’s Republic of China
| | - Xiao-Feng Wu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People’s Republic of China
- Leibniz-Institut für Katalyse e.V. an der, Institution Universität Rostock, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| |
Collapse
|
32
|
Lai M, Qi X, Wu XF. Palladium-Catalyzed Carbonylative Synthesis of Benzyl Benzoates Employing Benzyl Formates as Both CO Surrogates and Benzyl Alcohol Sources. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ming Lai
- Department of Chemistry; Zhejiang Sci-Tech University; Xiasha Campus 310018 Hangzhou People's Republic of China
| | - Xinxin Qi
- Department of Chemistry; Zhejiang Sci-Tech University; Xiasha Campus 310018 Hangzhou People's Republic of China
| | - Xiao-Feng Wu
- Department of Chemistry; Zhejiang Sci-Tech University; Xiasha Campus 310018 Hangzhou People's Republic of China
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock; Albert-Einstein-Strasse 29a 18059 Rostock Germany
| |
Collapse
|
33
|
Qi X, Lai M, Zhu M, Peng J, Ying J, Wu X. 1‐Arylvinyl formats: A New CO Source and Ketone Source in Carbonylative Synthesis of Chalcone Derivatives. ChemCatChem 2019. [DOI: 10.1002/cctc.201900011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xinxin Qi
- Department of ChemistryZhejiang Sci-Tech University Xiasha Campus Hangzhou 310018 P. R. China
| | - Ming Lai
- Department of ChemistryZhejiang Sci-Tech University Xiasha Campus Hangzhou 310018 P. R. China
| | - Min‐Jie Zhu
- Department of ChemistryZhejiang Sci-Tech University Xiasha Campus Hangzhou 310018 P. R. China
| | - Jin‐Bao Peng
- Department of ChemistryZhejiang Sci-Tech University Xiasha Campus Hangzhou 310018 P. R. China
| | - Jun Ying
- Department of ChemistryZhejiang Sci-Tech University Xiasha Campus Hangzhou 310018 P. R. China
| | - Xiao‐Feng Wu
- Department of ChemistryZhejiang Sci-Tech University Xiasha Campus Hangzhou 310018 P. R. China
- Leibniz-Institut für Katalyse e.V.Universität Rostock Albert-Einstein-Strasse 29a 18059 Rostock Germany
| |
Collapse
|
34
|
Gao Y, Yang F, Sun F, Liu L, Liu B, Wang SP, Cheng CW, Liao H, Lin HW. Total Synthesis of Aaptamine, Demethyloxyaaptamine, and Their 3-Alkylamino Derivatives. Org Lett 2019; 21:1430-1433. [PMID: 30775923 DOI: 10.1021/acs.orglett.9b00183] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuan Gao
- Research Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fan Yang
- Research Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fan Sun
- Research Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lei Liu
- Research Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Bo Liu
- Research Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shu-Ping Wang
- Research Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chun-Wei Cheng
- Research Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hongze Liao
- Research Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hou-Wen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
35
|
Qi X, Zhou R, Peng JB, Ying J, Wu XF. Selenium-Catalyzed Carbonylative Synthesis of 2-Benzimidazolones from 2-Nitroanilines with TFBen as the CO Source. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801739] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xinxin Qi
- Department of Chemistry; Zhejiang Sci-Tech University; Xiasha Campous 310018 Hangzhou People's Republic of China
| | - Rong Zhou
- Department of Chemistry; Zhejiang Sci-Tech University; Xiasha Campous 310018 Hangzhou People's Republic of China
| | - Jin-Bao Peng
- Department of Chemistry; Zhejiang Sci-Tech University; Xiasha Campous 310018 Hangzhou People's Republic of China
| | - Jun Ying
- Department of Chemistry; Zhejiang Sci-Tech University; Xiasha Campous 310018 Hangzhou People's Republic of China
| | - Xiao-Feng Wu
- Department of Chemistry; Zhejiang Sci-Tech University; Xiasha Campous 310018 Hangzhou People's Republic of China
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock; Albert-Einstein-Strasse 29a 18059 Rostock Germany
| |
Collapse
|
36
|
Qi X, Lai M, Wu XF. Carbonylative transformation of benzyl formates into alkyl 2-arylacetates in organic carbonates. Org Chem Front 2019. [DOI: 10.1039/c9qo00917e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A carbonylation procedure for the transformation of benzyl formates in organic carbonates has been developed.
Collapse
Affiliation(s)
- Xinxin Qi
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
| | - Ming Lai
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
| | - Xiao-Feng Wu
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock
| |
Collapse
|
37
|
Afanasyev OI, Zarochintsev A, Petrushina T, Cherkasova A, Denisov G, Cherkashchenko I, Chusova O, Jinho O, Man-Seog C, Usanov DL, Semenov SE, Chusov D. Synthesis of Nitriles from Aldehydes with Elongation of the Molecule with Two Carbon Atoms. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801412] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Oleg I. Afanasyev
- Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences; Vavilova St. 28 119991 Moscow Russian Federation
| | - Alexander Zarochintsev
- Moscow South-Eastern School named after V.I. Chuikov (Moscow Chemical Lyceum); Tamozhenniy proezd 4 111033 Moscow Russian Federation
| | - Tatiana Petrushina
- Moscow South-Eastern School named after V.I. Chuikov (Moscow Chemical Lyceum); Tamozhenniy proezd 4 111033 Moscow Russian Federation
| | - Anastasia Cherkasova
- Moscow South-Eastern School named after V.I. Chuikov (Moscow Chemical Lyceum); Tamozhenniy proezd 4 111033 Moscow Russian Federation
| | - Gleb Denisov
- Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences; Vavilova St. 28 119991 Moscow Russian Federation
| | - Ilia Cherkashchenko
- Department of Chemistry; M. V. Lomonosov Moscow State University; Leninskie Gory 1 119991 Moscow Russian Federation
| | - Olga Chusova
- Faculty of Science; RUDN University; 6 Miklukho-Maklaya St. 117198 Moscow Russian Federation
| | - Oh Jinho
- Korea Science Academy of KAIST; 105-47, Baegyanggwanmun-ro, Busanjin-gu 614-822 Busan Republic of Korea
| | - Chun Man-Seog
- Korea Science Academy of KAIST; 105-47, Baegyanggwanmun-ro, Busanjin-gu 614-822 Busan Republic of Korea
| | - Dmitry L. Usanov
- Broad Institute of MIT and Harvard; 415 Main Street 02142 Cambridge MA United States
| | - Sergei E. Semenov
- Moscow South-Eastern School named after V.I. Chuikov (Moscow Chemical Lyceum); Tamozhenniy proezd 4 111033 Moscow Russian Federation
| | - Denis Chusov
- Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences; Vavilova St. 28 119991 Moscow Russian Federation
| |
Collapse
|
38
|
Litvinova VA, Tikhomirov AS. Methods for the synthesis of indole-3-carboxylic acid esters (microreview). Chem Heterocycl Compd (N Y) 2018. [DOI: 10.1007/s10593-018-2370-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
EL-Atawy MA, Formenti D, Ferretti F, Ragaini F. Synthesis of 3,6-Dihydro-2H-[1, 2]-Oxazines from Nitroarenes and Conjugated Dienes, Catalyzed by Palladium/Phenanthroline Complexes and Employing Phenyl Formate as a CO Surrogate. ChemCatChem 2018. [DOI: 10.1002/cctc.201801223] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Mohamed A. EL-Atawy
- Chemistry Department, Faculty of Science; Taibah University; Yanbu 46423 Saudi Arabia
- Chemistry Department, Faculty of Science; Alexandria University; P.O. 426 Ibrahemia Alexandria 21321 Egypt
| | - Dario Formenti
- Dipartimento di Chimica; Università degli Studi di Milano Via Golgi 19; 20133 Milano Italy
| | - Francesco Ferretti
- Dipartimento di Chimica; Università degli Studi di Milano Via Golgi 19; 20133 Milano Italy
| | - Fabio Ragaini
- Dipartimento di Chimica; Università degli Studi di Milano Via Golgi 19; 20133 Milano Italy
| |
Collapse
|
40
|
Castiñeira Reis M, Marín-Luna M, Silva López C, Faza ON. Mechanism of the Molybdenum-Mediated Cadogan Reaction. ACS OMEGA 2018; 3:7019-7026. [PMID: 31458865 PMCID: PMC6644586 DOI: 10.1021/acsomega.8b01278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/13/2018] [Indexed: 05/24/2023]
Abstract
Oxygen atom transfer reactions are receiving increasing attention because they bring about paramount transformations in the current biomass processing industry. Significant efforts have therefore been made lately in the development of efficient and scalable methods to deoxygenate organic compounds. One recent alternative involves the modification of the Cadogan reaction in which a Mo(VI) core catalyzes the reduction of o-nitrostyrene derivatives to indoles in the presence of PPh3. We have used density functional theory calculations to perform a comprehensive mechanistic study on this transformation, in which we find two clearly defined stages: an associative path from the nitro to the nitroso compound, characterized by the reduction of the catalyst in the first step, and a peculiar mechanism involving oxazaphosphiridine and nitrene intermediates leading to an indole product, where the metal catalyst does not participate.
Collapse
Affiliation(s)
- Marta Castiñeira Reis
- Departamento
de Química Orgánica, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| | - Marta Marín-Luna
- Departamento
de Química Orgánica, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| | - Carlos Silva López
- Departamento
de Química Orgánica, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| | - Olalla Nieto Faza
- Departamento
de Química Orgánica, Universidade de Vigo, Campus As Lagoas, 32004 Orense, Spain
| |
Collapse
|
41
|
Wang H, Ying J, Lai M, Qi X, Peng JB, Wu XF. Base-Promoted Carbonylative Cyclization of Propargylic Amines with Selenium under CO Gas-free Conditions. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800109] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Hai Wang
- Department of Chemistry; Zhejiang Sci-Tech University; Xiasha Campus Hangzhou 310018 People's Republic of China
| | - Jun Ying
- Department of Chemistry; Zhejiang Sci-Tech University; Xiasha Campus Hangzhou 310018 People's Republic of China
| | - Ming Lai
- Department of Chemistry; Zhejiang Sci-Tech University; Xiasha Campus Hangzhou 310018 People's Republic of China
| | - Xinxin Qi
- Department of Chemistry; Zhejiang Sci-Tech University; Xiasha Campus Hangzhou 310018 People's Republic of China
| | - Jin-Bao Peng
- Department of Chemistry; Zhejiang Sci-Tech University; Xiasha Campus Hangzhou 310018 People's Republic of China
| | - Xiao-Feng Wu
- Department of Chemistry; Zhejiang Sci-Tech University; Xiasha Campus Hangzhou 310018 People's Republic of China
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock; Albert-Einstein-Straβe 29a 18059 Rostock Germany
| |
Collapse
|
42
|
Tsygankov AA, Makarova M, Chusov D. Carbon monoxide as a selective reducing agent in organic chemistry. MENDELEEV COMMUNICATIONS 2018. [DOI: 10.1016/j.mencom.2018.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|