1
|
Deshmukh MA, Bakandritsos A, Zbořil R. Bimetallic Single-Atom Catalysts for Water Splitting. NANO-MICRO LETTERS 2024; 17:1. [PMID: 39317789 PMCID: PMC11422407 DOI: 10.1007/s40820-024-01505-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/10/2024] [Indexed: 09/26/2024]
Abstract
Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society. The field of catalysis has been revolutionized by single-atom catalysts (SACs), which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports. Recently, bimetallic SACs (bimSACs) have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports. BimSACs offer an avenue for rich metal-metal and metal-support cooperativity, potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton-electron exchanges, substrate activation with reversible redox cycles, simultaneous multi-electron transfer, regulation of spin states, tuning of electronic properties, and cyclic transition states with low activation energies. This review aims to encapsulate the growing advancements in bimSACs, with an emphasis on their pivotal role in hydrogen generation via water splitting. We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs, elucidate their electronic properties, and discuss their local coordination environment. Overall, we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction, the two half-reactions of the water electrolysis process.
Collapse
Affiliation(s)
- Megha A Deshmukh
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| | - Aristides Bakandritsos
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic.
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, 783 71, Olomouc - Holice, Czech Republic.
| | - Radek Zbořil
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic.
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, 783 71, Olomouc - Holice, Czech Republic.
| |
Collapse
|
2
|
Choi J, Seo S, Kim M, Han Y, Shao X, Lee H. Relationship between Structure and Performance of Atomic-Scale Electrocatalysts for Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304560. [PMID: 37544918 DOI: 10.1002/smll.202304560] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/17/2023] [Indexed: 08/08/2023]
Abstract
Atomic-scale electrocatalysts greatly improve the performance and efficiency of water splitting but require special adjustments of the supporting structures for anchoring and dispersing metal single atoms. Here, the structural evolution of atomic-scale electrocatalysts for water splitting is reviewed based on different synthetic methods and structural properties that create different environments for electrocatalytic activity. The rate-determining step or intermediate state for hydrogen or oxygen evolution reactions is energetically stabilized by the coordination environment to the single-atom active site from the supporting material. In large-scale practical use, maximizing the loading amount of metal single atoms increases the efficiency of the electrocatalyst and reduces the economic cost. Dual-atom electrocatalysts with two different single-atom active sites react with an increased number of water molecules and reduce the adsorption energy of water derived from the difference in electronegativity between the two metal atoms. In particular, single-atom dimers induce asymmetric active sites that promote the degradation of H2O to H2 or O2 evolution. Consequently, the structural properties of atomic-scale electrocatalysts clarify the atomic interrelation between the catalytic active sites and the supporting material to achieve maximum efficiency.
Collapse
Affiliation(s)
- Jungsue Choi
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Sohyeon Seo
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Creative Research Institute (CRI), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Minsu Kim
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Yeonsu Han
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Xiaodong Shao
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Hyoyoung Lee
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Creative Research Institute (CRI), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Department of Biophysics, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Institute of Quantum Biophysics, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
3
|
Chen K, Wang J, Zhang H, Ma D, Chu K. Self-Tandem Electrocatalytic NO Reduction to NH 3 on a W Single-Atom Catalyst. NANO LETTERS 2023; 23:1735-1742. [PMID: 36786441 DOI: 10.1021/acs.nanolett.2c04444] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We design single-atom W confined in MoO3-x amorphous nanosheets (W1/MoO3-x) comprising W1-O5 motifs as a highly active and durable NORR catalyst. Theoretical and operando spectroscopic investigations reveal the dual functions of W1-O5 motifs to (1) facilitate the activation and protonation of NO molecules and (2) promote H2O dissociation while suppressing *H dimerization to increase the proton supply, eventually resulting in a self-tandem NORR mechanism of W1/MoO3-x to greatly accelerate the protonation energetics of the NO-to-NH3 pathway. As a result, W1/MoO3-x exhibits the highest NH3-Faradaic efficiency of 91.2% and NH3 yield rate of 308.6 μmol h-1 cm-2, surpassing that of most previously reported NORR catalysts.
Collapse
Affiliation(s)
- Kai Chen
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jiaxin Wang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Hu Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dongwei Ma
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
| | - Ke Chu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
4
|
Tomboc GM, Kim T, Jung S, Yoon HJ, Lee K. Modulating the Local Coordination Environment of Single-Atom Catalysts for Enhanced Catalytic Performance in Hydrogen/Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105680. [PMID: 35102698 DOI: 10.1002/smll.202105680] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Single-atom catalysts (SACs) hold the promise of utilizing 100% of the participating atoms in a reaction as active catalytic sites, achieving a remarkable boost in catalytic efficiency. Thus, they present great potential for noble metal-based electrochemical application systems, such as water electrolyzers and fuel cells. However, their practical applications are severely hindered by intrinsic complications, namely atom agglomeration and relocation, originating from the uncontrollably high surface energy of isolated single-atoms (SAs) during postsynthetic treatment processes or catalytic reactions. Extensive efforts have been made to develop new methodologies for strengthening the interactions between SAs and supports, which could ensure the desired stability of the active catalytic sites and their full utilization by SACs. This review covers the recent progress in SACs development while emphasizing the association between the regulation of coordination environments (e.g., coordination atoms, numbers, sites, structures) and the electrocatalytic performance of the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The crucial role of coordination chemistry in modifying the intrinsic properties of SACs and manipulating their metal-loading, stability, and catalytic properties is elucidated. Finally, the future challenges of SACS development and the industrial outlook of this field are discussed.
Collapse
Affiliation(s)
- Gracita M Tomboc
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Taekyung Kim
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Sangmin Jung
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Hyo Jae Yoon
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
5
|
Accelerated kinetics of alkaline hydrogen evolution/oxidation reactions on dispersed ruthenium sites through N and S dual coordination. Sci China Chem 2022. [DOI: 10.1007/s11426-021-1190-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Zhu J, Tu Y, Cai L, Ma H, Chai Y, Zhang L, Zhang W. Defect-Assisted Anchoring of Pt Single Atoms on MoS 2 Nanosheets Produces High-Performance Catalyst for Industrial Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104824. [PMID: 34816586 DOI: 10.1002/smll.202104824] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Pt-based catalysts are currently the most efficient electrocatalysts for the hydrogen evolution reaction (HER), but the scarcity and high cost of Pt limit industrial applications. Downsizing Pt nanoparticles (NPs) to single atoms (SAs) can expose more active sites and increase atomic utilization, thus decreasing the cost. Here, a solar-irradiation strategy is used to prepare hybrid SA-Pt/MoS2 nanosheets (NSs) that demonstrate excellent HER activity (the overpotential at a current density of 10 mA cm-2 (η10 ) of 44 mV, and Tafel slope of 34.83 mV dec-1 in acidic media; η10 of 123 mV, and Tafel slope of 76.71 mV dec-1 in alkaline media). Defects and deformations introduced by thermal pretreatment of the hydrothermal MoS2 NSs promote anchoring and stability of Pt SAs. The fabrication of Pt SAs and NPs is easily controlled using different Pt-precursor concentrations. Moreover, SA-Pt/MoS2 produced under natural sunlight exhibits high HER performance (η10 of 55 mV, and Tafel slope of 43.54 mV dec-1 ), which indicates its viability for mass production. Theoretical simulations show that Pt improves the absorption of H atoms and the charge-transfer kinetics of MoS2 , which significantly enhance HER activity. A simple, inexpensive strategy for preparing SA-Pt/MoS2 hybrid catalysts for industrial HER is provided.
Collapse
Affiliation(s)
- Jingting Zhu
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yudi Tu
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Lejuan Cai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
| | - Haibin Ma
- ATF Research and Development Center, China Nuclear Power Technology Research Institute, Shenzhen, 518026, P. R. China
| | - Yang Chai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
| | - Lifu Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Wenjing Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
7
|
Zhou M, Liu Y, Su Y, Su Q. Plasmonic Oxygen Defects in MO 3- x (M = W or Mo) Nanomaterials: Synthesis, Modifications, and Biomedical Applications. Adv Healthc Mater 2021; 10:e2101331. [PMID: 34549537 DOI: 10.1002/adhm.202101331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/09/2021] [Indexed: 12/31/2022]
Abstract
Nanomedicine is a promising technology with many advantages and provides exciting opportunities for cancer diagnosis and therapy. During recent years, the newly developed oxygen-deficiency transition metal oxides MO3- x (M = W or Mo) have received significant attention due to the unique optical properties, such as strong localized surface plasmon resonance (LSPR) , tunable and broad near-IR absorption, high photothermal conversion efficiency, and large X-ray attenuation coefficient. This review presents an overview of recent advances in the development of MO3- x nanomaterials for biomedical applications. First, the fundamentals of the LSPR effect are introduced. Then, the preparation and modification methods of MO3- x nanomaterials are summarized. In addition, the biological effects of MO3- x nanomaterials are highlighted and their applications in the biomedical field are outlined. This includes imaging modalities, cancer treatment, and antibacterial capability. Finally, the prospects and challenges of MO3- x and MO3- x -based nanomaterial for fundamental studies and clinical applications are also discussed.
Collapse
Affiliation(s)
- Mingzhu Zhou
- Institute of Nanochemistry and Nanobiology Shanghai University Shanghai 200444 China
| | - Yachong Liu
- Institute of Nanochemistry and Nanobiology Shanghai University Shanghai 200444 China
| | - Yan Su
- Genome Institute of Singapore Agency of Science Technology and Research Singapore 138672 Singapore
| | - Qianqian Su
- Institute of Nanochemistry and Nanobiology Shanghai University Shanghai 200444 China
| |
Collapse
|
8
|
Singh B, Gawande MB, Kute AD, Varma RS, Fornasiero P, McNeice P, Jagadeesh RV, Beller M, Zbořil R. Single-Atom (Iron-Based) Catalysts: Synthesis and Applications. Chem Rev 2021; 121:13620-13697. [PMID: 34644065 DOI: 10.1021/acs.chemrev.1c00158] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Supported single-metal atom catalysts (SACs) are constituted of isolated active metal centers, which are heterogenized on inert supports such as graphene, porous carbon, and metal oxides. Their thermal stability, electronic properties, and catalytic activities can be controlled via interactions between the single-metal atom center and neighboring heteroatoms such as nitrogen, oxygen, and sulfur. Due to the atomic dispersion of the active catalytic centers, the amount of metal required for catalysis can be decreased, thus offering new possibilities to control the selectivity of a given transformation as well as to improve catalyst turnover frequencies and turnover numbers. This review aims to comprehensively summarize the synthesis of Fe-SACs with a focus on anchoring single atoms (SA) on carbon/graphene supports. The characterization of these advanced materials using various spectroscopic techniques and their applications in diverse research areas are described. When applicable, mechanistic investigations conducted to understand the specific behavior of Fe-SACs-based catalysts are highlighted, including the use of theoretical models.
Collapse
Affiliation(s)
- Baljeet Singh
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193 Portugal
| | - Manoj B Gawande
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology Mumbai-Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Arun D Kute
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology Mumbai-Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, 779 00 Olomouc, Czech Republic
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, Center for Energy, Environment and Transport Giacomo Ciamiciam, INSTM Trieste Research Unit and ICCOM-CNR Trieste Research Unit, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Peter McNeice
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Rajenahally V Jagadeesh
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany.,Department of Chemistry, REVA University, Bangalore 560064, India
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, 779 00 Olomouc, Czech Republic.,CEET Nanotechnology Centre, VŠB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| |
Collapse
|
9
|
Yu X, Dos Santos EC, White J, Salazar-Alvarez G, Pettersson LGM, Cornell A, Johnsson M. Electrocatalytic Glycerol Oxidation with Concurrent Hydrogen Evolution Utilizing an Efficient MoO x /Pt Catalyst. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104288. [PMID: 34596974 DOI: 10.1002/smll.202104288] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Glycerol electrolysis affords a green and energetically favorable route for the production of value-added chemicals at the anode and H2 production in parallel at the cathode. Here, a facile method for trapping Pt nanoparticles at oxygen vacancies of molybdenum oxide (MoOx ) nanosheets, yielding a high-performance MoOx /Pt composite electrocatalyst for both the glycerol oxidation reaction (GOR) and the hydrogen evolution reaction (HER) in alkaline electrolytes, is reported. Combined electrochemical experiments and theoretical calculations reveal the important role of MoOx nanosheets for the adsorption of glycerol molecules in GOR and the dissociation of water molecules in HER, as well as the strong electronic interaction with Pt. The MoOx /Pt composite thus significantly enhances the specific mass activity of Pt and the kinetics for both reactions. With MoOx /Pt electrodes serving as both cathode and anode, two-electrode glycerol electrolysis is achieved at a cell voltage of 0.70 V to reach a current density of 10 mA cm-2 , which is 0.90 V less than that required for water electrolysis.
Collapse
Affiliation(s)
- Xiaowen Yu
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, SE-106 91, Sweden
| | | | - Jai White
- Department of Chemical Engineering, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Germán Salazar-Alvarez
- Department of Materials Science and Engineering, Ångström Laboratory, Uppsala University, Uppsala, SE-751 03, Sweden
| | | | - Ann Cornell
- Department of Chemical Engineering, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Mats Johnsson
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, SE-106 91, Sweden
| |
Collapse
|
10
|
Zaman N, Noor T, Iqbal N. Recent advances in the metal–organic framework-based electrocatalysts for the hydrogen evolution reaction in water splitting: a review. RSC Adv 2021; 11:21904-21925. [PMID: 35480834 PMCID: PMC9034227 DOI: 10.1039/d1ra02240g] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/09/2021] [Indexed: 01/18/2023] Open
Abstract
Water splitting is an important technology for alternative and sustainable energy storage, and a way for the production of hydrogen without generating pollution.
Collapse
Affiliation(s)
- Neelam Zaman
- U.S.-Pakistan Centre for Advanced Studies in Energy (USPCAS-E)
- National University of Sciences and Technology (NUST)
- Islamabad 44000
- Pakistan
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME)
- National University of Sciences and Technology (NUST)
- Islamabad 44000
- Pakistan
| | - Naseem Iqbal
- U.S.-Pakistan Centre for Advanced Studies in Energy (USPCAS-E)
- National University of Sciences and Technology (NUST)
- Islamabad 44000
- Pakistan
| |
Collapse
|
11
|
Yang J, Li W, Wang D, Li Y. Electronic Metal-Support Interaction of Single-Atom Catalysts and Applications in Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003300. [PMID: 33125802 DOI: 10.1002/adma.202003300] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/08/2020] [Indexed: 05/03/2023]
Abstract
The electronic metal-support interaction (EMSI), which acts as a bridge between theoretical electronic study and the design of heterogenous catalysts, has attracted much attention. Utilizing the interaction between the metal and the support is one of the most essential strategies to enhance electrocatalytic efficiency due to structural and synergetic promotion. To date, as the ideal model for realizing EMSI, many types of single-atom catalysts (SACs) have been developed. The understanding of the electronic interaction on SACs has also been pushed to a higher level. However, systematic theories and operando experiments are seldom reported, and will be necessary to put forward and be carried out, respectively. Herein, the types, characterization, mechanism, and electrocatalytic applications of EMSI are comprehensively summarized and discussed. In addition to the basic information above, the challenges, opportunities, and future development of the EMSI on SACs are also proposed to present an overall view and reference to the later research.
Collapse
Affiliation(s)
- Jiarui Yang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wenhao Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
12
|
Kaiser SK, Chen Z, Faust Akl D, Mitchell S, Pérez-Ramírez J. Single-Atom Catalysts across the Periodic Table. Chem Rev 2020; 120:11703-11809. [PMID: 33085890 DOI: 10.1021/acs.chemrev.0c00576] [Citation(s) in RCA: 358] [Impact Index Per Article: 89.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Isolated atoms featuring unique reactivity are at the heart of enzymatic and homogeneous catalysts. In contrast, although the concept has long existed, single-atom heterogeneous catalysts (SACs) have only recently gained prominence. Host materials have similar functions to ligands in homogeneous catalysts, determining the stability, local environment, and electronic properties of isolated atoms and thus providing a platform for tailoring heterogeneous catalysts for targeted applications. Within just a decade, we have witnessed many examples of SACs both disrupting diverse fields of heterogeneous catalysis with their distinctive reactivity and substantially enriching our understanding of molecular processes on surfaces. To date, the term SAC mostly refers to late transition metal-based systems, but numerous examples exist in which isolated atoms of other elements play key catalytic roles. This review provides a compositional encyclopedia of SACs, celebrating the 10th anniversary of the introduction of this term. By defining single-atom catalysis in the broadest sense, we explore the full elemental diversity, joining different areas across the whole periodic table, and discussing historical milestones and recent developments. In particular, we examine the coordination structures and associated properties accessed through distinct single-atom-host combinations and relate them to their main applications in thermo-, electro-, and photocatalysis, revealing trends in element-specific evolution, host design, and uses. Finally, we highlight frontiers in the field, including multimetallic SACs, atom proximity control, and possible applications for multistep and cascade reactions, identifying challenges, and propose directions for future development in this flourishing field.
Collapse
Affiliation(s)
- Selina K Kaiser
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Zupeng Chen
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Dario Faust Akl
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Sharon Mitchell
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Javier Pérez-Ramírez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| |
Collapse
|
13
|
Affiliation(s)
- Bingzhang Lu
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Qiming Liu
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| |
Collapse
|
14
|
Pu Z, Amiinu IS, Cheng R, Wang P, Zhang C, Mu S, Zhao W, Su F, Zhang G, Liao S, Sun S. Single-Atom Catalysts for Electrochemical Hydrogen Evolution Reaction: Recent Advances and Future Perspectives. NANO-MICRO LETTERS 2020; 12:21. [PMID: 34138058 PMCID: PMC7770676 DOI: 10.1007/s40820-019-0349-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/20/2019] [Indexed: 05/19/2023]
Abstract
Hydrogen, a renewable and outstanding energy carrier with zero carbon dioxide emission, is regarded as the best alternative to fossil fuels. The most preferred route to large-scale production of hydrogen is by water electrolysis from the intermittent sources (e.g., wind, solar, hydro, and tidal energy). However, the efficiency of water electrolysis is very much dependent on the activity of electrocatalysts. Thus, designing high-effective, stable, and cheap materials for hydrogen evolution reaction (HER) could have a substantial impact on renewable energy technologies. Recently, single-atom catalysts (SACs) have emerged as a new frontier in catalysis science, because SACs have maximum atom-utilization efficiency and excellent catalytic reaction activity. Various synthesis methods and analytical techniques have been adopted to prepare and characterize these SACs. In this review, we discuss recent progress on SACs synthesis, characterization methods, and their catalytic applications. Particularly, we highlight their unique electrochemical characteristics toward HER. Finally, the current key challenges in SACs for HER are pointed out and some potential directions are proposed as well.
Collapse
Affiliation(s)
- Zonghua Pu
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, QC, J3X 1S2, Canada
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Ibrahim Saana Amiinu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Ruilin Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Pengyan Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Chengtian Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
| | - Weiyue Zhao
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, The Key Laboratory of New Energy Technology of Guangdong Universities, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, People's Republic of China
| | - Fengmei Su
- Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, People's Republic of China
| | - Gaixia Zhang
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, QC, J3X 1S2, Canada.
| | - Shijun Liao
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, The Key Laboratory of New Energy Technology of Guangdong Universities, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, People's Republic of China.
| | - Shuhui Sun
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, QC, J3X 1S2, Canada.
| |
Collapse
|
15
|
Nanostructured MoO 3 for Efficient Energy and Environmental Catalysis. Molecules 2019; 25:molecules25010018. [PMID: 31861563 PMCID: PMC6983150 DOI: 10.3390/molecules25010018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/11/2019] [Accepted: 12/15/2019] [Indexed: 11/27/2022] Open
Abstract
This paper mainly focuses on the application of nanostructured MoO3 materials in both energy and environmental catalysis fields. MoO3 has wide tunability in bandgap, a unique semiconducting structure, and multiple valence states. Due to the natural advantage, it can be used as a high-activity metal oxide catalyst, can serve as an excellent support material, and provide opportunities to replace noble metal catalysts, thus having broad application prospects in catalysis. Herein, we comprehensively summarize the crystal structure and properties of nanostructured MoO3 and highlight the recent significant research advancements in energy and environmental catalysis. Several current challenges and perspective research directions based on nanostructured MoO3 are also discussed.
Collapse
|
16
|
Li Y, Li Q, Wang H, Zhang L, Wilkinson DP, Zhang J. Recent Progresses in Oxygen Reduction Reaction Electrocatalysts for Electrochemical Energy Applications. ELECTROCHEM ENERGY R 2019. [DOI: 10.1007/s41918-019-00052-4] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abstract
Electrochemical energy storage systems such as fuel cells and metal–air batteries can be used as clean power sources for electric vehicles. In these systems, one necessary reaction at the cathode is the catalysis of oxygen reduction reaction (ORR), which is the rate-determining factor affecting overall system performance. Therefore, to increase the rate of ORR for enhanced system performances, efficient electrocatalysts are essential. And although ORR electrocatalysts have been intensively explored and developed, significant breakthroughs have yet been achieved in terms of catalytic activity, stability, cost and associated electrochemical system performance. Based on this, this review will comprehensively present the recent progresses of ORR electrocatalysts, including precious metal catalysts, non-precious metal catalysts, single-atom catalysts and metal-free catalysts. In addition, major technical challenges are analyzed and possible future research directions to overcome these challenges are proposed to facilitate further research and development toward practical application.
Graphic Abstract
Collapse
|
17
|
Sun Z, Fan Q, Zhang M, Liu S, Tao H, Texter J. Supercritical Fluid-Facilitated Exfoliation and Processing of 2D Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901084. [PMID: 31572648 PMCID: PMC6760473 DOI: 10.1002/advs.201901084] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Indexed: 05/19/2023]
Abstract
Since the first intercalation of layered silicates by using supercritical CO2 as a processing medium, considerable efforts have been dedicated to intercalating and exfoliating layered two-dimensional (2D) materials in various supercritical fluids (SCFs) to yield single- and few-layer nanosheets. Here, recent work in this area is highlighted. Motivating factors for enhancing exfoliation efficiency and product quality in SCFs, mechanisms for exfoliation and dispersion in SCFs, as well as general metrics applied to assess quality and processability of exfoliated 2D materials are critically discussed. Further, advances in formation and application of 2D material-based composites with assistance from SCFs are presented. These discussions address chemical transformations accompanying SCF processing such as doping, covalent surface modification, and heterostructure formation. Promising features, challenges, and routes to expanding SCF processing techniques are described.
Collapse
Affiliation(s)
- Zhenyu Sun
- State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Qun Fan
- State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Mingli Zhang
- State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Shizhen Liu
- State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Hengcong Tao
- State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - John Texter
- School of Engineering TechnologyEastern Michigan UniversityYpsilantiMI48197USA
| |
Collapse
|
18
|
Liu Q, Zhang Z. Platinum single-atom catalysts: a comparative review towards effective characterization. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01028a] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review summaries the characterization techniques for Pt single-atom catalysts and focuses on FT-EXAFS spectroscopy to study the coordination environment of Pt–M for atomically dispersed Pt catalysts on diverse supports.
Collapse
Affiliation(s)
- Qing Liu
- Key Laboratory of Low Carbon Energy and Chemical Engineering
- College of Chemical and Environmental Engineering
- Shandong University of Science and Technology
- Qingdao
- China
| | - Zailei Zhang
- CAS Center for Excellence in Nanoscience
- Beijing Institute of Nanoenergy and Nanosystems
- Chinese Academy of Sciences
- Beijing 100083
- China
| |
Collapse
|
19
|
Liu W, Xu Q. CO 2 -Assisted Conversion of Crystal Two-Dimensional Molybdenum Oxide to Amorphism with Plasmon Resonances. Chemistry 2018; 24:13693-13700. [PMID: 29676819 DOI: 10.1002/chem.201801055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/12/2018] [Indexed: 11/08/2022]
Abstract
Localized surface plasmon resonances (LSPRs) of ultra-thin two-dimensional (2D) nanomaterials have opened up a new regime in plasmonics in the last several years. 2D plasmonic materials are currently concentrated on the crystal structure, with amorphous materials hardly being reported because of their limited preparation methods rather than undesired plasmonic properties. Taking molybdenum oxides as an example, herein, we elaborate the 2D amorphous plasmons prepared with the assistance of supercritical CO2 . In brief, we examine the reported characteristic plasmonic properties of molybdenum oxides, and applications of supercritical CO2 in formations of 2D layer materials as well as introduced phase and disorder engineering based on our research. Furthermore, we propose our perspective on the development of 2D plasmons, especially for amorphous layer materials in the future.
Collapse
Affiliation(s)
- Wei Liu
- College of Materials Science & Engineering, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Qun Xu
- College of Materials Science & Engineering, Zhengzhou University, Zhengzhou, 450052, P. R. China
| |
Collapse
|
20
|
Affiliation(s)
- Haoxuan Liu
- Center for Electron Microscopy Tianjin Key Lab of Advanced Functional Porous MaterialsInstitute for New Energy Materials and Low-Carbon Technologies School of Materials Science and EngineeringTianjin University of Technology Tianjin 300384 China
| | - Xianyun Peng
- Center for Electron Microscopy Tianjin Key Lab of Advanced Functional Porous MaterialsInstitute for New Energy Materials and Low-Carbon Technologies School of Materials Science and EngineeringTianjin University of Technology Tianjin 300384 China
| | - Xijun Liu
- Center for Electron Microscopy Tianjin Key Lab of Advanced Functional Porous MaterialsInstitute for New Energy Materials and Low-Carbon Technologies School of Materials Science and EngineeringTianjin University of Technology Tianjin 300384 China
| |
Collapse
|