1
|
Dunås P, Paterson AJ, Lewis SE, Kann N. Carbon-carbon bond formation using aromatics from biomass. Chem Commun (Camb) 2024; 60:14885-14895. [PMID: 39611735 PMCID: PMC11606386 DOI: 10.1039/d4cc05664g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
The transition to a circular economy requires that we adapt currently used chemical processes to the structurally diverse and often highly oxygenated precursors that are accessible from biomass. In this review, we highlight different examples of carbon-carbon bond formation using aromatics derived from bio-based sources, reported during 2015-2024. Examples of sustainable biomass building blocks include heterocycles such as furfural and hydroxymethylfurfural, obtained from carbohydrates, as well as lignin-based aromatics such as vanillin and eugenol. These have subsequently been applied in a variety of different types of carbon-carbon bond formation, including more classical methods such as aldol condensation and Morita-Baylis-Hillman reactions, but also employing transition metal catalysis, electrochemistry or photochemistry to create new C-C bonds.
Collapse
Affiliation(s)
- Petter Dunås
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Göteborg, Sweden.
| | - Andrew J Paterson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Göteborg, Sweden.
| | - Simon E Lewis
- Department of Chemistry, University of Bath, Convocation Avenue, Bath BA2 7AY, UK.
- Institute of Sustainability and Climate Change, University of Bath, Bath, BA2 7AY, UK
| | - Nina Kann
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Göteborg, Sweden.
| |
Collapse
|
2
|
Skoda D, Hanulikova B, Styskalik A, Vykoukal V, Machac P, Urbanek P, Domincova Bergerova E, Simonikova L, Kuritka I. Non-aqueous synthesis of homogeneous molybdenum silicate microspheres and their application as heterogeneous catalysts in olefin epoxidation and selective aniline oxidation. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
3
|
Hacatrjan S, Liu L, Gan J, Nakagawa Y, Cao J, Yabushita M, Tamura M, Tomishige K. Titania-supported molybdenum oxide combined with Au nanoparticles as hydrogen-driven deoxydehydration catalyst of diol compounds. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02144c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A heterogenous catalyst for deoxydehydration (DODH) reaction was developed using less expensive Mo than Re as the active center. Combination of Mo with anatase-rich TiO2 and Au as the support...
Collapse
|
4
|
Jentoft FC. Transition metal-catalyzed deoxydehydration: missing pieces of the puzzle. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02083h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Deoxydehydration (DODH) is a transformation that converts a vicinal diol into an olefin with the help of a sacrificial reductant.
Collapse
Affiliation(s)
- Friederike C. Jentoft
- Department of Chemical Engineering, University of Massachusetts Amherst, 686 North Pleasant Street, Amherst, MA 01003-9303, USA
| |
Collapse
|
5
|
Suárez-Pantiga S, Sanz R. Deoxygenation reactions in organic synthesis catalyzed by dioxomolybdenum(VI) complexes. Org Biomol Chem 2021; 19:10472-10492. [PMID: 34816863 DOI: 10.1039/d1ob01939b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Dioxomolybdenum(VI) complexes have been applied as efficient, inexpensive and benign catalysts to deoxygenation reactions of a diverse number of compounds in the last two decades. Dioxomolybdenum complexes have demonstrated wide applicability to the deoxygenation of sulfoxides into sulfides and reduction of N-O bonds. Even the challenging nitro functional group was efficiently deoxygenated, affording amines or diverse heterocycles after reductive cyclization reactions. More recently, carbon-based substrates like epoxides, alcohols and ketones have been successfully deoxygenated. Also, dioxomolybdenum complexes accomplished deoxydehydration (DODH) reactions of biomass-derived vicinal 1,2-diols, affording valuable alkenes. The choice of the catalytic systems and reductant is decisive to achieve the desired transformation. Commonly found reducing agents involved phosphorous-based compounds, silanes, molecular hydrogen, or even glycols and other alcohols.
Collapse
Affiliation(s)
- Samuel Suárez-Pantiga
- Área de Química Orgánica, Departamento de Química, Facultad de Ciencias, Pza, Misael Bañuelos, s/n, Universidad de Burgos, 09001 Burgos, Spain.
| | - Roberto Sanz
- Área de Química Orgánica, Departamento de Química, Facultad de Ciencias, Pza, Misael Bañuelos, s/n, Universidad de Burgos, 09001 Burgos, Spain.
| |
Collapse
|
6
|
Wu F, Jiang H, Zhu X, Lu R, Shi L, Lu F. Effect of Tungsten Species on Selective Hydrogenolysis of Glycerol to 1,3-Propanediol. CHEMSUSCHEM 2021; 14:569-581. [PMID: 33219614 DOI: 10.1002/cssc.202002405] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/19/2020] [Indexed: 06/11/2023]
Abstract
Glycerol, as the major byproduct of biodiesel industry, is a cheap and green chemical feedstock. Following the expanded production of biodiesel, the oversupply of glycerol has led to increasing research of the catalytic conversion of glycerol. The selective hydrogenolysis of glycerol is an economical and sustainable way to produce 1,3-propanediol, which experiences a global growing demand, and valorize glycerol. However, the secondary hydroxy group of glycerol is sterically hindered by two primary hydroxy groups. As a result, 1,2-propanediol is the preferential product rather than 1,3-propanediol during conventional hydrogenolysis of glycerol. Currently, tungsten-containing bifunctional catalysts with metal and Brønsted acid sites are considered as a highly effective and atom-economical catalytic system for the selective hydrogenolysis of glycerol to 1,3-propanediol. Therefore, this Minireview summarized various tungsten-containing bifunctional catalysts for the hydrogenolysis of glycerol in detail and deeply discussed the relationship between tungsten species, metal active sites, and glycerol for selectively producing 1,3-propanediol.
Collapse
Affiliation(s)
- Fengliang Wu
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, 116029, P. R. China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023, P. R. China
| | - Huifang Jiang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xuhai Zhu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023, P. R. China
| | - Rui Lu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023, P. R. China
| | - Lei Shi
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, 116029, P. R. China
| | - Fang Lu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023, P. R. China
| |
Collapse
|
7
|
Jiang H, Lu R, Luo X, Si X, Xu J, Lu F. Molybdenum-Catalyzed Deoxygenation Coupling of Lignin-Derived Alcohols for Functionalized Bibenzyl Chemicals. Chemistry 2021; 27:1292-1296. [PMID: 32929787 DOI: 10.1002/chem.202003776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Indexed: 01/05/2023]
Abstract
With the growing demand for sustainability and reducing CO2 footprint, lignocellulosic biomass has attracted much attention as a renewable, carbon-neutral and low-cost feedstock for the production of chemicals and fuels. To realize efficient utilization of biomass resource, it is essential to selectively alter the high degree of oxygen functionality of biomass-derivates. Herein, we introduced a novel procedure to transform renewable lignin-derived alcohols to various functionalized bibenzyl chemicals. This strategy relied on a short deoxygenation coupling pathway with economical molybdenum catalyst. A well-designed H-donor experiment was performed to investigate the mechanism of this Mo-catalyzed process. It was proven that benzyl carbon-radical was the most possible intermediate to form the bibenzyl products. It was also discovered that the para methoxy and phenolic hydroxyl groups could stabilize the corresponding radical intermediates and then facilitate to selectively obtain bibenzyl products. Our research provides a promising application to produce functionalized aromatics from biomass-derived materials.
Collapse
Affiliation(s)
- Huifang Jiang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Rui Lu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Dalian, 116023, P. R. China
| | - Xiaolin Luo
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaoqin Si
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Dalian, 116023, P. R. China
| | - Jie Xu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Dalian, 116023, P. R. China
| | - Fang Lu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Dalian, 116023, P. R. China
| |
Collapse
|
8
|
Lu R, Jiang H, Si X, Luo X, Lu F, Xu J. Sustainable synthesis of 1,2,3,4-cyclohexanetetracarboxylate from sugar-derived carboxylic acids. Chem Commun (Camb) 2020; 56:7499-7502. [PMID: 32501464 DOI: 10.1039/d0cc02163f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein, we report a sustainable route for the synthesis of 1,2,3,4-cyclohexanetetracarboxylate from sugar-derived muconic acid and fumaric acid. The key Diels-Alder reaction constructed a cyclohexene framework substituted by four ester groups. The isolated yield of tetramethyl 5-cyclohexene-1,2,3,4-tetracarboxylate was up to 95.5% without any catalyst used. And the hydrogenation reaction of the cycloadduct was catalyzed by commercial RANEY® Ni at room temperature and nearly 100% yield of the cyclohexyl target products was obtained.
Collapse
Affiliation(s)
- Rui Lu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.
| | | | | | | | | | | |
Collapse
|