1
|
Chen SJ, Zhong WQ, Huang JM. Electrochemical Trifluoromethylation and Sulfonylation of N-Allylamides: Synthesis of Oxazoline Derivatives. J Org Chem 2023; 88:12630-12640. [PMID: 37579302 DOI: 10.1021/acs.joc.3c01310] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
We report a new method for the synthesis of trifluoromethylated and sulfonylated oxazolines by electrochemical radical cascade cyclizations of N-allylamides with sodium trifluoromethanesulfinate or sulfonylhydrazines. This protocol provides a green and useful strategy to synthesize trifluoromethylated and sulfonylated oxazolines with a broad substrate scope under ambient conditions.
Collapse
Affiliation(s)
- Shu-Jun Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Wei-Qiang Zhong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Jing-Mei Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| |
Collapse
|
2
|
La-Ongthong K, Chantarojsiri T, Soorukram D, Leowanawat P, Reutrakul V, Kuhakarn C. Electrochemical trifluoromethylation of 2-isocyanobiaryls using CF 3SO 2Na: synthesis of 6-(trifluoromethyl)phenanthridines. Org Biomol Chem 2023; 21:4225-4236. [PMID: 36880879 DOI: 10.1039/d3ob00239j] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
An efficient trifluoromethylation of 2-isocyanobiaryls was developed through the constant current electrolysis, employing sodium trifluoromethanesulfinate (CF3SO2Na) as the trifluoromethyl source. The method enabled the syntheses of a series of 6-(trifluoromethyl)phenanthridine derivatives in moderate to high yields under metal- and oxidant-free conditions. A gram-scale synthesis highlights the synthetic versatility of the reported protocol.
Collapse
Affiliation(s)
- Kannika La-Ongthong
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand. .,Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Teera Chantarojsiri
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand. .,Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Darunee Soorukram
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand. .,Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Pawaret Leowanawat
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand. .,Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Vichai Reutrakul
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand. .,Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Chutima Kuhakarn
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand. .,Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| |
Collapse
|
3
|
Ali T, Wang H, Iqbal W, Bashir T, Shah R, Hu Y. Electro-Synthesis of Organic Compounds with Heterogeneous Catalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2205077. [PMID: 36398622 PMCID: PMC9811472 DOI: 10.1002/advs.202205077] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Electro-organic synthesis has attracted a lot of attention in pharmaceutical science, medicinal chemistry, and future industrial applications in energy storage and conversion. To date, there has not been a detailed review on electro-organic synthesis with the strategy of heterogeneous catalysis. In this review, the most recent advances in synthesizing value-added chemicals by heterogeneous catalysis are summarized. An overview of electrocatalytic oxidation and reduction processes as well as paired electrocatalysis is provided, and the anodic oxidation of alcohols (monohydric and polyhydric), aldehydes, and amines are discussed. This review also provides in-depth insight into the cathodic reduction of carboxylates, carbon dioxide, CC, C≡C, and reductive coupling reactions. Moreover, the electrocatalytic paired electro-synthesis methods, including parallel paired, sequential divergent paired, and convergent paired electrolysis, are summarized. Additionally, the strategies developed to achieve high electrosynthesis efficiency and the associated challenges are also addressed. It is believed that electro-organic synthesis is a promising direction of organic electrochemistry, offering numerous opportunities to develop new organic reaction methods.
Collapse
Affiliation(s)
- Tariq Ali
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsDepartment of ChemistryZhejiang Normal UniversityJinhua321004China
| | - Haiyan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsDepartment of ChemistryZhejiang Normal UniversityJinhua321004China
| | - Waseem Iqbal
- Dipartimento di Chimica e Tecnologie ChimicheUniversità della CalabriaRendeCS87036Italy
| | - Tariq Bashir
- Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy TechnologiesSoochow UniversitySuzhou215006China
| | - Rahim Shah
- Institute of Chemical SciencesUniversity of SwatSwatKhyber Pakhtunkhwa19130Pakistan
| | - Yong Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsDepartment of ChemistryZhejiang Normal UniversityJinhua321004China
- Hangzhou Institute of Advanced StudiesZhejiang Normal UniversityHangzhou311231China
| |
Collapse
|
4
|
Liu W, Hao L, Zhang J, Zhu T. Progress in the Electrochemical Reactions of Sulfonyl Compounds. CHEMSUSCHEM 2022; 15:e202102557. [PMID: 35174969 DOI: 10.1002/cssc.202102557] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Electrosynthesis has recently attracted more and more attention due to its great potential to replace chemical oxidants or reductants in molecule-electrode electron transfer. Sulfonyl compounds such as sulfonyl hydrazides, sulfinic acids (and their salts), sulfonyl halides have been discovered as practical precursors of several radicals. As electrochemical redox reactions can provide green and efficient pathways for the activation of sulfonyl compounds, studies for electrosynthesis have rapidly increased. Several types of radicals can be generated from anodic oxidation or cathodic reduction of sulfonyl compounds and can initiate fluoroalkylation, benzenesulfonylation, cyclization or rearrangement. In this Review, we summarize the electrosynthesis developments involving sulfonyl compounds mainly in the last decade.
Collapse
Affiliation(s)
- Wangsheng Liu
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Lin Hao
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Junmin Zhang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Tingshun Zhu
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
5
|
Murtaza A, Qamar MA, Saleem K, Hardwick T, Zia Ul Haq, Shirinfar B, Ahmed N. Renewable Electricity Enables Green Routes to Fine Chemicals and Pharmaceuticals. CHEM REC 2022; 22:e202100296. [PMID: 35103382 DOI: 10.1002/tcr.202100296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/29/2022]
Abstract
Syntheses of chemicals using renewable electricity and when generating high atom economies are considered green and sustainable processes. In the present state of affairs, electrochemical manufacturing of fine chemicals and pharmaceuticals is not as common place as it could be and therefore, merits more attention. There is also a need to turn attention toward the electrochemical synthesis of valuable chemicals from recyclable greenhouse gases that can accelerate the process of circular economy. CO2 emissions are the major contributor to human-induced global warming. CO2 conversion into chemicals is a valuable application of its utilisation and will contribute to circular economy while maintaining environmental sustainability. Herein, we present an overview of electro-carboxylation, including mechanistic aspects, which forms carboxylic acids using molecular carbon dioxide. We also discuss atom economies of electrochemical fluorination, methoxylation and amide formation reactions.
Collapse
Affiliation(s)
- Ayesha Murtaza
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Muhammad Awais Qamar
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, Gansu, China
| | - Kaynat Saleem
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Tomas Hardwick
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.,National Graphene Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.,Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Zia Ul Haq
- Chemical Engineering department, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | | | - Nisar Ahmed
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| |
Collapse
|
6
|
Wang ZH, Wei L, Jiao KJ, Ma C, Mei TS. Nickel-Catalyzed Decarboxylative Cross-Coupling of Indole-3-acetic Acids with Aryl Bromides by Convergent Paired Electrolysis. Chem Commun (Camb) 2022; 58:8202-8205. [DOI: 10.1039/d2cc02641d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, nickel-catalyzed decarboxylative cross-coupling of indole-3-acetic acids with aryl bromides by convergent paired electrolysis was developed in an undivided cell. This protocol features good functional group tolerance, chemical redox agent-...
Collapse
|
7
|
Guo Y, Wang R, Song H, Liu Y, Wang Q. Electrochemical trifluoromethylation/cyclization for the synthesis of isoquinoline-1,3-diones and oxindoles. Chem Commun (Camb) 2021; 57:8284-8287. [PMID: 34328164 DOI: 10.1039/d1cc03389a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we describe a protocol for electrochemical cathode reduction to generate trifluoromethyl radicals. The trifluoromethylation reagent (IMDN-SO2CF3) used in this strategy is inexpensive and easy to obtain, and the reaction can be conducted efficiently without the addition of additional redox reagents. Using this strategy, we achieved electrochemical trifluoromethylation/cyclization for the synthesis of isoquinoline-1,3-diones and oxindoles. This protocol has good functional group tolerance and a broad substrate scope.
Collapse
Affiliation(s)
- Yuanqiang Guo
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China.
| | | | | | | | | |
Collapse
|
8
|
Kisukuri CM, Fernandes VA, Delgado JAC, Häring AP, Paixão MW, Waldvogel SR. Electrochemical Installation of CFH 2 -, CF 2 H-, CF 3 -, and Perfluoroalkyl Groups into Small Organic Molecules. CHEM REC 2021; 21:2502-2525. [PMID: 34151507 DOI: 10.1002/tcr.202100065] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 11/11/2022]
Abstract
Electrosynthesis can be considered a powerful and sustainable methodology for the synthesis of small organic molecules. Due to its intrinsic ability to generate highly reactive species under mild conditions by anodic oxidation or cathodic reduction, electrosynthesis is particularly interesting for otherwise challenging transformations. One such challenge is the installation of fluorinated alkyl groups, which has gained significant attention in medicinal chemistry and material science due to their unique physicochemical features. Unsurprisingly, several electrochemical fluoroalkylation methods have been established. In this review, we survey recent developments and established methods in the field of electrochemical mono-, di-, and trifluoromethylation, and perfluoroalkylation of small organic molecules.
Collapse
Affiliation(s)
- Camila M Kisukuri
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos - UFSCar São Carlos, São Paulo, Brazil, -13565-905
| | - Vitor A Fernandes
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos - UFSCar São Carlos, São Paulo, Brazil, -13565-905
| | - José A C Delgado
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos - UFSCar São Carlos, São Paulo, Brazil, -13565-905
| | - Andreas P Häring
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Márcio W Paixão
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos - UFSCar São Carlos, São Paulo, Brazil, -13565-905
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
9
|
Vil' VA, Merkulova VM, Ilovaisky AI, Paveliev SA, Nikishin GI, Terent'ev AO. Electrochemical Synthesis of Fluorinated Ketones from Enol Acetates and Sodium Perfluoroalkyl Sulfinates. Org Lett 2021; 23:5107-5112. [PMID: 34124913 DOI: 10.1021/acs.orglett.1c01643] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electrochemical synthesis of fluorinated ketones from enol acetates and RfSO2Na in an undivided cell under constant current conditions was developed. The electrosynthesis proceeded via perfluoroalkyl radical generation from sodium perfluoroalkyl sulfinate followed by addition to the enol acetate and transformation of the resulting C radical to a fluorinated ketone. The method is applicable to a wide range of enol acetates and results in the desired products in yields of 20 to 85%.
Collapse
Affiliation(s)
- Vera A Vil'
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russian Federation
| | - Valentina M Merkulova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russian Federation
| | - Alexey I Ilovaisky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russian Federation
| | - Stanislav A Paveliev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russian Federation
| | - Gennady I Nikishin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russian Federation
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russian Federation
| |
Collapse
|
10
|
Chicas-Baños DF, Frontana-Uribe BA. Electrochemical Generation and Use in Organic Synthesis of C-, O-, and N-Centered Radicals. CHEM REC 2021; 21:2538-2573. [PMID: 34047059 DOI: 10.1002/tcr.202100056] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 12/23/2022]
Abstract
During the last decade several research groups have been developing electrochemical procedures to access highly functionalized organic molecules. Among the most exciting advances, the possibility of using free radical chemistry has attracted the attention of the most important synthetic groups. Nowadays, electrochemical strategies based on these species with a synthetic purpose are published continuously in scientific journals, increasing the alternatives for the synthetic organic chemistry laboratories. Free radicals can be obtained in organic electrochemical reactions; thus, this review reassembles the last decade's (2010-2020) efforts of the electrosynthetic community to generate and take advantage of the C-, O-, and N-centered radicals' reactivity. The electrochemical reactions that occur, as well as the proposed mechanism, are discussed, trying to give clear information about the used conditions and reactivity of these reactive intermediate species.
Collapse
Affiliation(s)
- Diego Francisco Chicas-Baños
- Centro Conjunto Química Sustentable UAEMéx-UNAM, Km 14.5 Carretera Toluca-Ixtlahuaca, Toluca, 50200, Estado de México, Mexico
| | - Bernardo A Frontana-Uribe
- Centro Conjunto Química Sustentable UAEMéx-UNAM, Km 14.5 Carretera Toluca-Ixtlahuaca, Toluca, 50200, Estado de México, Mexico.,Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México, 04510, Mexico
| |
Collapse
|
11
|
Ramadoss V, Zheng Y, Shao X, Tian L, Wang Y. Advances in Electrochemical Decarboxylative Transformation Reactions. Chemistry 2021; 27:3213-3228. [PMID: 32633436 DOI: 10.1002/chem.202001764] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Indexed: 12/26/2022]
Abstract
Owing to their non-toxic, stable, inexpensive properties, carboxylic acids are considered as environmentally benign alternatives as coupling partners in various organic transformations. Electrochemical mediated decarboxylation of carboxylic acid has emerged as a new and efficient methodology for the construction of carbon-carbon or carbon-heteroatom bonds. Compared with transition-metal catalysis and photoredox catalysis, electro-organic decarboxylative transformations are considered as a green and sustainable protocol due to the absence of chemical oxidants and strong bases. Further, it exhibits good tolerance with various functional groups. In this Minireview, we summarize the recent advances and discoveries on the electrochemical decarboxylative transformations on C-C and C-heteroatoms bond formations.
Collapse
Affiliation(s)
- Velayudham Ramadoss
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yue Zheng
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xiaoqing Shao
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Lifang Tian
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yahui Wang
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
12
|
Zou Z, Zhang W, Wang Y, Pan Y. Recent advances in electrochemically driven radical fluorination and fluoroalkylation. Org Chem Front 2021. [DOI: 10.1039/d1qo00054c] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Electrochemical fluorination (ECF) refers to the introduction of fluorine-containing moieties into organic molecules under electrochemical conditions.
Collapse
Affiliation(s)
- Zhenlei Zou
- State Key Laboratory of Coordination Chemistry
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| | - Weigang Zhang
- State Key Laboratory of Coordination Chemistry
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| | - Yi Pan
- State Key Laboratory of Coordination Chemistry
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| |
Collapse
|
13
|
Sbei N, Aslam S, Ahmed N. Organic synthesis via Kolbe and related non-Kolbe electrolysis: an enabling electro-strategy. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00047k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Herein, the electrolysis process, where the anodic oxidation of carboxylic acids leads to decarboxylation, has been discussed to synthesize organic molecules.
Collapse
Affiliation(s)
- Najoua Sbei
- Organic Chemistry Department
- Peoples' Friendship University of Russia (RUDN University)
- Moscow
- Russian Federation
- Institute of Nanotechnology
| | - Samina Aslam
- Department of Chemistry
- The Women University Multan
- Multan 60000
- Pakistan
| | - Nisar Ahmed
- International Centre for Chemical and Biological Sciences
- HEJ Research Institute of Chemistry
- University of Karachi
- Karachi 75270
- Pakistan
| |
Collapse
|
14
|
Liu Y, Han Y, Lin L, Xu Y. Research Progress of Polyfluoroalkylation Reaction under Electrochemical Catalysis. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202008017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Chen N, Ye Z, Zhang F. Recent progress on electrochemical synthesis involving carboxylic acids. Org Biomol Chem 2021; 19:5501-5520. [PMID: 34079974 DOI: 10.1039/d1ob00420d] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Carboxylic acids are not only essential sections of medicinal molecules, natural products and agrochemicals but also basic building blocks for organic synthesis. However, high temperature, expensive catalysts and excess oxidants are normally required for carboxylic acid group transformations. Therefore, more eco-friendly and efficient methods are urgently needed. Organic electrochemistry, as an environmentally friendly and sustainable synthetic method, can potentially avoid the above problems and is favored by more and more organic chemists. This review summarized the recent progress on the electrochemical synthesis of carboxylic acids to construct more complex compounds, emphasizing the development of electrosynthesis methodologies and mechanisms in order to attract more chemists to recognize the importance and applications of electrochemical synthesis.
Collapse
Affiliation(s)
- Na Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, Zhejiang 310014, China.
| | - Zenghui Ye
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, Zhejiang 310014, China.
| | - Fengzhi Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
16
|
Affiliation(s)
- Rasmi P. Bhaskaran
- Department of Chemistry National Institute of Technology Karnataka (NITK) Mangalore, Surathkal 575025 India
| | - Beneesh P. Babu
- Department of Chemistry National Institute of Technology Karnataka (NITK) Mangalore, Surathkal 575025 India
| |
Collapse
|
17
|
Qian P, Zhou Z, Wang L, Wang Z, Wang Z, Zhang Z, Sheng L. Electrosynthesis of 2-(1,3,4-Oxadiazol-2-yl)aniline Derivatives with Isatins as Amino-Attached C1 Sources. J Org Chem 2020; 85:13029-13036. [DOI: 10.1021/acs.joc.0c01700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Peng Qian
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Zhenghong Zhou
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Li Wang
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Zhicheng Wang
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Zhongwei Wang
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Zhenlei Zhang
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Liangquan Sheng
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| |
Collapse
|
18
|
Zhao J, Liu RX, Luo CP, Yang L. Radical-Dual-Difunctionalization and Trifluoromethylative Decarboxylation of Two Different Alkenes. Org Lett 2020; 22:6776-6779. [DOI: 10.1021/acs.orglett.0c02267] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jing Zhao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Hunan 411105, P.R. China
| | - Ren-Xiang Liu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Hunan 411105, P.R. China
| | - Cui-Ping Luo
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Hunan 411105, P.R. China
| | - Luo Yang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Hunan 411105, P.R. China
| |
Collapse
|
19
|
Lin DZ, Huang JM. Synthesis of 3-Formylindoles via Electrochemical Decarboxylation of Glyoxylic Acid with an Amine as a Dual Function Organocatalyst. Org Lett 2019; 21:5862-5866. [DOI: 10.1021/acs.orglett.9b01971] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Dian-Zhao Lin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Jing-Mei Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| |
Collapse
|