1
|
Hu B, Xi X, Xiao F, Bai X, Gong Y, Li Y, Qiao X, Tang C, Huang J. Significantly enhanced specific activity of Bacillus subtilis (2,3)-butanediol dehydrogenase through computer-aided refinement of its substrate-binding pocket. Int J Biol Macromol 2024; 281:136443. [PMID: 39389503 DOI: 10.1016/j.ijbiomac.2024.136443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/04/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
(2,3)-Butanediol dehydrogenases (BDHs) are widely utilized for the stereoselective interconversion between α-hydroxy ketones and vicinal diols to produce various functional building blocks. In this study, to enhance the specific activity towards (R)-phenyl-1,2-ethanediol (1a) for 2-hydroxyacetophenone (1b), the substrate-binding pocket of a Bacillus subtilis BDH (BsBDHA) was refined through site-directed mutagenesis. Based on molecular docking simulations, 14 residues were identified and subjected to alanine scanning mutagenesis. After screening, two residues, His42 and Gly292, were singled out for partial site-saturation mutagenesis. The results revealed that BsBDHAH42A and BsBDHAG292A displayed high activities of 3.21 and 1.97 U/mg, respectively. Employing combinatorial mutagenesis, a superior mutant, BsBDHAI49L/V266L/G292A, was developed, exhibiting significantly enhanced specific activity and catalytic efficiency towards (R)-1a, achieving 14.81 U/mg and 4.47 mM-1 s-1, respectively, which were 27.4- and 55.9-fold higher than those of BsBDHA. Further substrate spectrum analysis revealed that the superior mutant displayed increased specific activities for (R)-2a-6a by 1.4- to 10.3-fold. The integration of BsBDHAI49L/V266L/G292A into a three-enzymatic cascade for the synthesis of 1b effectively elevated the yield from 58.1 to 82.4%. Molecular mechanism analysis indicated that the mutation-induced changes in intermolecular forces resulted in a higher frequency of reactive conformations for (R)-1a in BsBDHAI49L/V266L/G292A compared to BsBDHA.
Collapse
Affiliation(s)
- Bochun Hu
- Henan Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang 461000, PR China
| | - Xiaoqi Xi
- Henan Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang 461000, PR China; Henan Provincial Engineering Laboratory of Insect Bio-reactor and College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Fugang Xiao
- Henan Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang 461000, PR China
| | - Xiaomeng Bai
- Henan Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang 461000, PR China
| | - Yuanyuan Gong
- Henan Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang 461000, PR China
| | - Yifan Li
- Henan Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang 461000, PR China
| | - Xueqin Qiao
- Henan Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang 461000, PR China
| | - Cunduo Tang
- Henan Provincial Engineering Laboratory of Insect Bio-reactor and College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China.
| | - Jihong Huang
- Henan Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang 461000, PR China.
| |
Collapse
|
2
|
Yi J, Goh NJJ, Li Z. Green and Enantioselective Synthesis via Cascade Biotransformations: From Simple Racemic Substrates to High-Value Chiral Chemicals. Chem Asian J 2024; 19:e202400565. [PMID: 38954385 DOI: 10.1002/asia.202400565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
Asymmetric synthesis of chiral chemicals in high enantiomeric excess (ee) is pivotal to the pharmaceutical industry, but classic chemistry usually requires multi-step reactions, harsh conditions, and expensive chiral ligands, and sometimes suffers from unsatisfactory enantioselectivity. Enzymatic catalysis is a much greener and more enantioselective alternative, and cascade biotransformations with multi-step reactions can be performed in one pot to avoid costly intermediate isolation and minimise waste generation. One of the most attractive applications of enzymatic cascade transformations is to convert easily available simple racemic substrates into valuable functionalised chiral chemicals in high yields and ee. Here, we review the three general strategies to build up such cascade biotransformations, including enantioconvergent reaction, dynamic kinetic resolution, and destruction-and-reinstallation of chirality. Examples of cascade transformations using racemic substrates such as racemic epoxides, alcohols, hydroxy acids, etc. to produce the chiral amino alcohols, hydroxy acids, amines, and amino acids are given. The product concentration, ee, and yield, scalability, and substrate scope of these enzymatic cascades are critically reviewed. To further improve the efficiency and practical applicability of the cascades, enzyme engineering to enhance catalytic activities of the key enzymes using the latest microfluidics-based ultrahigh-throughput screening and artificial intelligence-guided directed evolution could be a useful approach.
Collapse
Affiliation(s)
- Jieran Yi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Nicholas Jun Jie Goh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
3
|
Li JM, Shi K, Li AT, Zhang ZJ, Yu HL, Xu JH. Development of a Thermodynamically Favorable Multi-enzyme Cascade Reaction for Efficient Sustainable Production of ω-Amino Fatty Acids and α,ω-Diamines. CHEMSUSCHEM 2024; 17:e202301477. [PMID: 38117609 DOI: 10.1002/cssc.202301477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/25/2023] [Accepted: 12/19/2023] [Indexed: 12/22/2023]
Abstract
Aliphatic ω-amino fatty acids (ω-AFAs) and α,ω-diamines (α,ω-DMs) are essential monomers for the production of nylons. Development of a sustainable biosynthesis route for ω-AFAs and α,ω-DMs is crucial in addressing the challenges posed by climate change. Herein, we constructed an unprecedented thermodynamically favorable multi-enzyme cascade (TherFavMEC) for the efficient sustainable biosynthesis of ω-AFAs and α,ω-DMs from cheap α,ω-dicarboxylic acids (α,ω-DAs). This TherFavMEC was developed by incorporating bioretrosynthesis analysis tools, reaction Gibbs free energy calculations, thermodynamic equilibrium shift strategies and cofactor (NADPH&ATP) regeneration systems. The molar yield of 6-aminohexanoic acid (6-ACA) from adipic acid (AA) was 92.3 %, while the molar yield from 6-ACA to 1,6-hexanediamine (1,6-HMD) was 96.1 %, which were significantly higher than those of previously reported routes. Furthermore, the biosynthesis of ω-AFAs and α,ω-DMs from 20.0 mM α,ω-DAs (C6-C9) was also performed, giving 11.2 mM 1,6-HMD (56.0 % yield), 14.8 mM 1,7-heptanediamine (74.0 % yield), 17.4 mM 1,8-octanediamine (87.0 % yield), and 19.7 mM 1,9-nonanediamine (98.5 % yield), respectively. The titers of 1,9-nonanediamine, 1,8-octanediamine, 1,7-heptanediamine and 1,6-HMD were improved by 328-fold, 1740-fold, 87-fold and 3.8-fold compared to previous work. Therefore, this work holds great potential for the bioproduction of ω-AFAs and α,ω-DMs.
Collapse
Affiliation(s)
- Ju-Mou Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Kun Shi
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Ai-Tao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan, 430062, P.R. China
| | - Zhi-Jun Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| |
Collapse
|
4
|
Bruno SM, Valente AA, Gonçalves IS, Pillinger M. Group 6 carbonyl complexes of N,O,P-ligands as precursors of high-valent metal-oxo catalysts for olefin epoxidation. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
5
|
Yi J, Li Z. Artificial multi-enzyme cascades for natural product synthesis. Curr Opin Biotechnol 2022; 78:102831. [PMID: 36308987 DOI: 10.1016/j.copbio.2022.102831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/19/2022] [Accepted: 09/30/2022] [Indexed: 12/14/2022]
Abstract
Artificial multi-enzyme cascades bear great potential for offering sustainable synthesis of useful and valuable natural molecules. In the past two years, many new cascades were developed to produce natural alcohols, acids, esters, amino compounds, fatty acid derivatives, alkaloids, terpenoids, terpenes and monosaccharides from natural substrates and simple chemicals, respectively. These artificial cascades were constructed by combining individual enzymes designed using the retro-synthesis strategy and based on the available natural substrates and simple chemicals. While performing the cascades in vivo is often simple and straightforward, in vitro cascades usually require cofactor regeneration that was achieved by introducing one or more cofactor-regeneration modules in one pot. Protein engineering is frequently used to improve the performances of some enzymes in the cascades.
Collapse
Affiliation(s)
- Jieran Yi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| |
Collapse
|
6
|
Yi J, Wang Z, Li Z. Cascade Biotransformations for Enantioconvergent Conversion of Racemic Styrene Oxides to ( R)-Mandelic Acids. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jieran Yi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Zilong Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
7
|
Peng T, Tian J, Zhao Y, Jiang X, Cheng X, Deng G, Zhang Q, Wang Z, Yang J, Chen Y. Multienzyme Redox System with Cofactor Regeneration for Cyclic Deracemization of Sulfoxides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Tao Peng
- Zunyi Medical University Department of Biochemistry CHINA
| | - Jin Tian
- Zunyi Medical University Department of Biochemistry CHINA
| | - Yuyan Zhao
- Zunyi Medical University Department of Biochemistry CHINA
| | - Xu Jiang
- Zunyi Medical University Department of Biochemistry CHINA
| | - Xiaoling Cheng
- Zunyi Medical University Department of Biochemistry CHINA
| | - Guozhong Deng
- Zunyi Medical University Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province CHINA
| | - Quan Zhang
- Zunyi Medical University Department of Biochemistry CHINA
| | - Zhongqiang Wang
- Zunyi Medical University Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province CHINA
| | - Jiawei Yang
- Zunyi Medical University Department of Biochemistry CHINA
| | - Yongzheng Chen
- Zunyi Medical University School of Pharmacy 6#, Xuefu West Road,Zunyi, Guizhou,P.R. China 563000 Zunyi CHINA
| |
Collapse
|
8
|
Peng T, Tian J, Zhao Y, Jiang X, Cheng X, Deng G, Zhang Q, Wang Z, Yang J, Chen Y. Multienzyme Redox System with Cofactor Regeneration for Cyclic Deracemization of Sulfoxides. Angew Chem Int Ed Engl 2022; 61:e202209272. [PMID: 35831972 DOI: 10.1002/anie.202209272] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Indexed: 11/07/2022]
Abstract
Optically pure sulfoxides are noteworthy compounds applied in a wide range of industrial fields; however, the biocatalytic deracemization of racemic sulfoxides is challenging. Herein, a high-enantioselective methionine sulfoxide reductase A (MsrA) was combined with a low-enantioselective styrene monooxygenase (SMO) for the cyclic deracemization of sulfoxides. Enantiopure sulfoxides were obtained in >90% yield and with >90% enantiomeric excess ( ee ) through dynamic "selective reduction and non-selective oxidation" cycles. The cofactors of MsrA and SMO were subsequently regenerated by the cascade catalysis of three auxiliary enzymes through the consumption of low-cost D-glucose. Moreover, this "one-pot, one-step" cyclic deracemization strategy exhibited a wide substrate scope toward various aromatic, heteroaromatic, alkyl and thio-alkyl sulfoxides. This system proposed an efficient strategy for the green synthesis of chiral sulfoxide .
Collapse
Affiliation(s)
- Tao Peng
- Zunyi Medical University, Department of Biochemistry, CHINA
| | - Jin Tian
- Zunyi Medical University, Department of Biochemistry, CHINA
| | - Yuyan Zhao
- Zunyi Medical University, Department of Biochemistry, CHINA
| | - Xu Jiang
- Zunyi Medical University, Department of Biochemistry, CHINA
| | - Xiaoling Cheng
- Zunyi Medical University, Department of Biochemistry, CHINA
| | - Guozhong Deng
- Zunyi Medical University, Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, CHINA
| | - Quan Zhang
- Zunyi Medical University, Department of Biochemistry, CHINA
| | - Zhongqiang Wang
- Zunyi Medical University, Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, CHINA
| | - Jiawei Yang
- Zunyi Medical University, Department of Biochemistry, CHINA
| | - Yongzheng Chen
- Zunyi Medical University, School of Pharmacy, 6#, Xuefu West Road,Zunyi, Guizhou,P.R. China, 563000, Zunyi, CHINA
| |
Collapse
|
9
|
Benítez-Mateos AI, Roura Padrosa D, Paradisi F. Multistep enzyme cascades as a route towards green and sustainable pharmaceutical syntheses. Nat Chem 2022; 14:489-499. [PMID: 35513571 DOI: 10.1038/s41557-022-00931-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 03/17/2022] [Indexed: 12/25/2022]
Abstract
Enzyme cascades are a powerful technology to develop environmentally friendly and cost-effective synthetic processes to manufacture drugs, as they couple different biotransformations in sequential reactions to synthesize the product. These biocatalytic tools can address two key parameters for the pharmaceutical industry: an improved selectivity of synthetic reactions and a reduction of potential hazards by using biocompatible catalysts, which can be produced from sustainable sources, which are biodegradable and, generally, non-toxic. Here we outline a broad variety of enzyme cascades used either in vivo (whole cells) or in vitro (purified enzymes) to specifically target pharmaceutically relevant molecules, from simple building blocks to complex drugs. We also discuss the advantages and requirements of multistep enzyme cascades and their combination with chemical catalysts through a series of reported examples. Finally, we examine the efficiency of enzyme cascades and how they can be further improved by enzyme engineering, process intensification in flow reactors and/or enzyme immobilization to meet all the industrial requirements.
Collapse
Affiliation(s)
- Ana I Benítez-Mateos
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - David Roura Padrosa
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Francesca Paradisi
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
10
|
Corrado ML, Knaus T, Schwaneberg U, Mutti FG. High-Yield Synthesis of Enantiopure 1,2-Amino Alcohols from l-Phenylalanine via Linear and Divergent Enzymatic Cascades. Org Process Res Dev 2022; 26:2085-2095. [PMID: 35873603 PMCID: PMC9295148 DOI: 10.1021/acs.oprd.1c00490] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Enantiomerically
pure 1,2-amino alcohols are important compounds
due to their biological activities and wide applications in chemical
synthesis. In this work, we present two multienzyme pathways for the
conversion of l-phenylalanine into either 2-phenylglycinol
or phenylethanolamine in the enantiomerically pure form. Both pathways
start with the two-pot sequential four-step conversion of l-phenylalanine into styrene via subsequent deamination, decarboxylation,
enantioselective epoxidation, and enantioselective hydrolysis. For
instance, after optimization, the multienzyme process could convert
507 mg of l-phenylalanine into (R)-1-phenyl-1,2-diol
in an overall isolated yield of 75% and >99% ee. The opposite enantiomer,
(S)-1-phenyl-1,2-diol, was also obtained in a 70%
yield and 98–99% ee following the same approach. At this stage,
two divergent routes were developed to convert the chiral diols into
either 2-phenylglycinol or phenylethanolamine. The former route consisted
of a one-pot concurrent interconnected two-step cascade in which the
diol intermediate was oxidized to 2-hydroxy-acetophenone by an alcohol
dehydrogenase and then aminated by a transaminase to give enantiomerically
pure 2-phenylglycinol. Notably, the addition of an alanine dehydrogenase
enabled the connection of the two steps and made the overall process
redox-self-sufficient. Thus, (S)-phenylglycinol was
isolated in an 81% yield and >99.4% ee starting from ca. 100 mg
of
the diol intermediate. The second route consisted of a one-pot concurrent
two-step cascade in which the oxidative and reductive steps were not
interconnected. In this case, the diol intermediate was oxidized to
either (S)- or (R)-2-hydroxy-2-phenylacetaldehyde
by an alcohol oxidase and then aminated by an amine dehydrogenase
to give the enantiomerically pure phenylethanolamine. The addition
of a formate dehydrogenase and sodium formate was required to provide
the reducing equivalents for the reductive amination step. Thus, (R)-phenylethanolamine was isolated in a 92% yield and >99.9%
ee starting from ca. 100 mg of the diol intermediate. In summary, l-phenylalanine was converted into enantiomerically pure 2-phenylglycinol
and phenylethanolamine in overall yields of 61% and 69%, respectively.
This work exemplifies how linear and divergent enzyme cascades can
enable the synthesis of high-value chiral molecules such as amino
alcohols from a renewable material such as l-phenylalanine
with high atom economy and improved sustainability.
Collapse
Affiliation(s)
- Maria L. Corrado
- Van’t Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Tanja Knaus
- Van’t Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany
| | - Francesco G. Mutti
- Van’t Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
11
|
Koumarianou G, Wang I, Satterthwaite L, Patterson D. Assignment-free chirality detection in unknown samples via microwave three-wave mixing. Commun Chem 2022; 5:31. [PMID: 36697786 PMCID: PMC9814651 DOI: 10.1038/s42004-022-00641-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/03/2022] [Indexed: 01/28/2023] Open
Abstract
Straightforward identification of chiral molecules in multi-component mixtures of unknown composition is extremely challenging. Current spectrometric and chromatographic methods cannot unambiguously identify components while the state of the art spectroscopic methods are limited by the difficult and time-consuming task of spectral assignment. Here, we introduce a highly sensitive generalized version of microwave three-wave mixing that uses broad-spectrum fields to detect chiral molecules in enantiomeric excess without any prior chemical knowledge of the sample. This method does not require spectral assignment as a necessary step to extract information out of a spectrum. We demonstrate our method by recording three-wave mixing spectra of multi-component samples that provide direct evidence of enantiomeric excess. Our method opens up new capabilities in ultrasensitive phase-coherent spectroscopic detection that can be applied for chiral detection in real-life mixtures, raw products of chemical reactions and difficult to assign novel exotic species.
Collapse
Affiliation(s)
- Greta Koumarianou
- Physics Department, University of California, Santa Barbara, Santa Barbara, CA, USA.
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, USA.
| | - Irene Wang
- Physics Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Lincoln Satterthwaite
- Physics Department, University of California, Santa Barbara, Santa Barbara, CA, USA
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - David Patterson
- Physics Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
12
|
Sequential co-immobilization of multienzyme nanodevices based on SpyCatcher and SpyTag for robust biocatalysis. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Wang Z, Sundara Sekar B, Li Z. Recent advances in artificial enzyme cascades for the production of value-added chemicals. BIORESOURCE TECHNOLOGY 2021; 323:124551. [PMID: 33360113 DOI: 10.1016/j.biortech.2020.124551] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Enzyme cascades are efficient tools to perform multi-step synthesis in one-pot in a green and sustainable manner, enabling non-natural synthesis of valuable chemicals from easily available substrates by artificially combining two or more enzymes. Bioproduction of many high-value chemicals such as chiral and highly functionalised molecules have been achieved by developing new enzyme cascades. This review summarizes recent advances on engineering and application of enzyme cascades to produce high-value chemicals (alcohols, aldehydes, ketones, amines, carboxylic acids, etc) from simple starting materials. While 2-step enzyme cascades are developed for versatile enantioselective synthesis, multi-step enzyme cascades are engineered to functionalise basic chemicals, such as styrenes, cyclic alkanes, and aromatic compounds. New cascade reactions have also been developed for producing valuable chemicals from bio-based substrates, such as ʟ-phenylalanine, and renewable feedstocks such as glucose and glycerol. The challenges in current process and future outlooks in the development of enzyme cascades are also addressed.
Collapse
Affiliation(s)
- Zilong Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Balaji Sundara Sekar
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| |
Collapse
|
14
|
Sekar BS, Mao J, Lukito BR, Wang Z, Li Z. Bioproduction of Enantiopure (
R
)‐ and (
S
)‐2‐Phenylglycinols from Styrenes and Renewable Feedstocks. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Balaji Sundara Sekar
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive Singapore 117585 Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI) Life Sciences Institute National University of Singapore 28 Medical Drive Singapore 117456 Singapore
| | - Jiwei Mao
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive Singapore 117585 Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI) Life Sciences Institute National University of Singapore 28 Medical Drive Singapore 117456 Singapore
| | - Benedict Ryan Lukito
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive Singapore 117585 Singapore
| | - Zilong Wang
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive Singapore 117585 Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI) Life Sciences Institute National University of Singapore 28 Medical Drive Singapore 117456 Singapore
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive Singapore 117585 Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI) Life Sciences Institute National University of Singapore 28 Medical Drive Singapore 117456 Singapore
| |
Collapse
|
15
|
Velasco-Lozano S, Roca M, Leal-Duaso A, Mayoral JA, Pires E, Moliner V, López-Gallego F. Selective oxidation of alkyl and aryl glyceryl monoethers catalysed by an engineered and immobilised glycerol dehydrogenase. Chem Sci 2020; 11:12009-12020. [PMID: 34123216 PMCID: PMC8162780 DOI: 10.1039/d0sc04471g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022] Open
Abstract
Enzymes acting over glyceryl ethers are scarce in living cells, and consequently biocatalytic transformations of these molecules are rare despite their interest for industrial chemistry. In this work, we have engineered and immobilised a glycerol dehydrogenase from Bacillus stearothermophilus (BsGlyDH) to accept a battery of alkyl/aryl glyceryl monoethers and catalyse their enantioselective oxidation to yield the corresponding 3-alkoxy/aryloxy-1-hydroxyacetones. QM/MM computational studies decipher the key role of D123 in the oxidation catalytic mechanism, and reveal that this enzyme is highly enantioselective towards S-isomers (ee > 99%). Through structure-guided site-selective mutagenesis, we find that the mutation L252A sculpts the active site to accommodate a productive configuration of 3-monoalkyl glycerols. This mutation enhances the k cat 163-fold towards 3-ethoxypropan-1,2-diol, resulting in a specific activity similar to the one found for the wild-type towards glycerol. Furthermore, we immobilised the L252A variant to intensify the process, demonstrating the reusability and increasing the operational stability of the resulting heterogeneous biocatalyst. Finally, we manage to integrate this immobilised enzyme into a one-pot chemoenzymatic process to convert glycidol and ethanol into 3-ethoxy-1-hydroxyacetone and (R)-3-ethoxypropan-1,2-diol, without affecting the oxidation activity. These results thus expand the uses of engineered glycerol dehydrogenases in applied biocatalysis for the kinetic resolution of glycerol ethers and the manufacturing of substituted hydroxyacetones.
Collapse
Affiliation(s)
- Susana Velasco-Lozano
- Catálisis Heterogénea en Síntesis Orgánicas Selectivas, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH-CSIC), University of Zaragoza Pedro Cerbuna, 12 50009 Zaragoza Spain
| | - Maite Roca
- Departament de Química Física i Analítica, Universitat Jaume I 12071 Castelló Spain
| | - Alejandro Leal-Duaso
- Catálisis Heterogénea en Síntesis Orgánicas Selectivas, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH-CSIC), University of Zaragoza Pedro Cerbuna, 12 50009 Zaragoza Spain
| | - José A Mayoral
- Catálisis Heterogénea en Síntesis Orgánicas Selectivas, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH-CSIC), University of Zaragoza Pedro Cerbuna, 12 50009 Zaragoza Spain
- Depto. de Química Orgánica, Facultad de Ciencias, University of Zaragoza Pedro Cerbuna, 12 50009 Zaragoza Spain
| | - Elisabet Pires
- Catálisis Heterogénea en Síntesis Orgánicas Selectivas, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH-CSIC), University of Zaragoza Pedro Cerbuna, 12 50009 Zaragoza Spain
- Depto. de Química Orgánica, Facultad de Ciencias, University of Zaragoza Pedro Cerbuna, 12 50009 Zaragoza Spain
| | - Vicent Moliner
- Departament de Química Física i Analítica, Universitat Jaume I 12071 Castelló Spain
| | - Fernando López-Gallego
- Catálisis Heterogénea en Síntesis Orgánicas Selectivas, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH-CSIC), University of Zaragoza Pedro Cerbuna, 12 50009 Zaragoza Spain
- Heterogeneous Biocatalysis Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramón 182 20014 Donostia San Sebastián Spain
- IKERBASQUE, Basque Foundation for Science María Díaz de Haro 3 48013 Bilbao Spain
| |
Collapse
|
16
|
Corrado ML, Knaus T, Mutti FG. Regio- and stereoselective multi-enzymatic aminohydroxylation of β-methylstyrene using dioxygen, ammonia and formate. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2019; 21:6246-6251. [PMID: 33628112 PMCID: PMC7116804 DOI: 10.1039/c9gc03161h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report an enzymatic route for the formal regio- and stereoselective aminohydroxylation of β-methylstyrene that consumes only dioxygen, ammonia and formate; carbonate is the by-product. The biocascade entails highly selective epoxidation, hydrolysis and hydrogen-borrowing alcohol amination. Thus, β-methylstyrene was converted into 1R,2R and 1S,2R-phenylpropanolamine in 59-63% isolated yields, and up to >99.5: <0.5 dr and er.
Collapse
Affiliation(s)
- Maria L Corrado
- Van't Hoff Institute for MolecularSciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Tanja Knaus
- Van't Hoff Institute for MolecularSciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Francesco G Mutti
- Van't Hoff Institute for MolecularSciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|