1
|
Hsu BZ, Lai JK, Lee YH. La-based perovskites for capacity enhancement of Li-O 2 batteries. Front Chem 2023; 11:1264593. [PMID: 37720718 PMCID: PMC10502298 DOI: 10.3389/fchem.2023.1264593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/23/2023] [Indexed: 09/19/2023] Open
Abstract
Li-O2 batteries are a promising technology for the upcoming energy storage requirements because of their high theoretical specific energy density of 11,680 Wh kg-1. Currently, the actual capacity of Li-O2 batteries is much lower than this theoretical value. In many studies, perovskites have been applied as catalysts to improve the air electrode reactions in Li-O2 batteries. The effects of structure and doping on the catalytic activity of perovskites are still unclear. La1-xSrxCoO3-δ (x = 0.1, 0.3, and 0.5) and La0.9Sr0.1YbO3-δ mixed with carbon black (Vulcan XC500 or Super P) were used as air electrode catalysts. Electrochemical characterizations were conducted using a Swagelok-type cell. The charge-discharge capacity and cyclic voltammetry (CV) performance were investigated in this study. The La1-xSrxCoO3-δ (x = 0.1, 0.3, and 0.5) is a suitable cathode catalyst for Li-O2 batteries. In this study, the La0.5Sr0.5CoO3-δ/Super P cathode demonstrated the highest discharge capacity (6,032 mAh g-1). This excellent performance was attributed to the large reaction area and enhanced Li2CO3 generation.
Collapse
Affiliation(s)
| | | | - Yi-Hsuan Lee
- Department of Mechanical Engineering, National Taipei University of Technology, Taipei, Taiwan
| |
Collapse
|
2
|
First Application of Nitrogen-Doped Carbon Nanosheets Derived from Lotus Leaves as the Electrode Catalyst for Li-CO2/O2 Battery. Catalysts 2023. [DOI: 10.3390/catal13030577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
The development of Li-CO2/O2 battery with high energy density and long-term stability is urgently needed to fulfill the carbon neutralization and pollution-free environment targets. The biomass-derived heteroatom-doped carbon catalyst with the combination of high-efficiency catalytic activity and sustainable supply is a promising cathode catalyst in Li-CO2/O2 battery. Specifically, the unique morphology and mesopore structure can promote the transfer of CO2, O2, and Li+. Abundant channel pores can provide discharge products accommodation to the largest extent. Nitrogen dopant, the commonly recognized active sites in carbon, can improve the electron conductivity and accelerate the sluggish kinetic reaction. Therefore, utilizing the louts leaves as the precursor, we successfully prepare the cellular-like nitrogen-doped activated carbon nanosheets (N-CNs) through the appropriate pyrolysis carbonization method. The as-synthesized carbon nanosheets display a three-dimensional interconnecting pore structure and abundant N-dopant actives, which dramatically improve the electrochemical catalytic activity of N-CNs. The Li-CO2/O2 battery with the N-CNs cathode delivers a high discharge capacity of 9825 mAh g−1, low overpotential of 1.21 V, and stable cycling performance of 95 cycles. Thus, we carry out a facile method for N-doped carbon nanosheets preparation derived from the cheap natural biomass, which can be the effective cathode catalyst for environmental-friendly Li-CO2/O2 battery.
Collapse
|
3
|
Peng L, Yin H, Zou L, Yu F. The Influence of Current Density Dependent Li2CO3 Properties on the Discharge and Charge Reactions of Li-CO2/O2 Battery. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Hui Z, An J, Zhou J, Huang W, Sun G. Mechanisms for self-templating design of micro/nanostructures toward efficient energy storage. EXPLORATION (BEIJING, CHINA) 2022; 2:20210237. [PMID: 37325505 PMCID: PMC10190938 DOI: 10.1002/exp.20210237] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 04/28/2022] [Indexed: 06/17/2023]
Abstract
The ever-growing demand in modern power systems calls for the innovation in electrochemical energy storage devices so as to achieve both supercapacitor-like high power density and battery-like high energy density. Rational design of the micro/nanostructures of energy storage materials offers a pathway to finely tailor their electrochemical properties thereby enabling significant improvements in device performances and enormous strategies have been developed for synthesizing hierarchically structured active materials. Among all strategies, the direct conversion of precursor templates into target micro/nanostructures through physical and/or chemical processes is facile, controllable, and scalable. Yet the mechanistic understanding of the self-templating method is lacking and the synthetic versatility for constructing complex architectures is inadequately demonstrated. This review starts with the introduction of five main self-templating synthetic mechanisms and the corresponding constructed hierarchical micro/nanostructures. Subsequently, the structural merits provided by the well-defined architectures for energy storage are elaborately discussed. At last, a summary of current challenges and future development of the self-templating method for synthesizing high-performance electrode materials is also presented.
Collapse
Affiliation(s)
- Zengyu Hui
- Institute of Flexible Electronics (IFE)Northwestern Polytechnical University (NPU)Xi'anP. R. China
| | - Jianing An
- Institute of Photonics TechnologyJinan UniversityGuangzhouP. R. China
| | - Jinyuan Zhou
- School of Physical Science and TechnologyLanzhou UniversityLanzhouP. R. China
| | - Wei Huang
- Institute of Flexible Electronics (IFE)Northwestern Polytechnical University (NPU)Xi'anP. R. China
- Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)NanjingP. R. China
| | - Gengzhi Sun
- Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)NanjingP. R. China
| |
Collapse
|
5
|
Wu Y, Ding H, Yang T, Xia Y, Zheng H, Wei Q, Han, J, Peng D, Yue G. Composite NiCo 2 O 4 @CeO 2 Microsphere as Cathode Catalyst for High-Performance Lithium-Oxygen Battery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200523. [PMID: 35475326 PMCID: PMC9189671 DOI: 10.1002/advs.202200523] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/27/2022] [Indexed: 05/06/2023]
Abstract
The large overpotential and poor cycle stability caused by inactive redox reactions are tough challenges for lithium-oxygen batteries (LOBs). Here, a composite microsphere material comprising NiCo2 O4 @CeO2 is synthesized via a hydrothermal approach followed by an annealing processing, which is acted as a high performance electrocatalyst for LOBs. The unique microstructured catalyst can provide enough catalytic surface to facilitate the barrier-free transport of oxygen as well as lithium ions. In addition, the special microsphere and porous nanoneedles structure can effectively accelerate electrolyte penetration and the reversible formation and decomposition process of Li2 O2 , while the introduction of CeO2 can increase oxygen vacancies and optimize the electronic structure of NiCo2 O4 , thereby enhancing the electron transport of the whole electrode. This kind of catalytic cathode material can effectively reduce the overpotential to only 1.07 V with remarkable cycling stability of 400 loops under 500 mA g-1 . Based on the density functional theory calculations, the origin of the enhanced electrochemical performance of NiCo2 O4 @CeO2 is clarified from the perspective of electronic structure and reaction kinetics. This work demonstrates the high efficiency of NiCo2 O4 @CeO2 as an electrocatalyst and confirms the contribution of the current design concept to the development of LOBs cathode materials.
Collapse
Affiliation(s)
- Yuanhui Wu
- State Key Lab of Physical Chemistry of Solid SurfaceFujian Key Laboratory of Materials GenomeCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Haoran Ding
- State Key Lab of Physical Chemistry of Solid SurfaceFujian Key Laboratory of Materials GenomeCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Tianlun Yang
- State Key Lab of Physical Chemistry of Solid SurfaceFujian Key Laboratory of Materials GenomeCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Yongji Xia
- State Key Lab of Physical Chemistry of Solid SurfaceFujian Key Laboratory of Materials GenomeCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Hongfei Zheng
- State Key Lab of Physical Chemistry of Solid SurfaceFujian Key Laboratory of Materials GenomeCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Qiulong Wei
- State Key Lab of Physical Chemistry of Solid SurfaceFujian Key Laboratory of Materials GenomeCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Jiajia Han,
- State Key Lab of Physical Chemistry of Solid SurfaceFujian Key Laboratory of Materials GenomeCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Dong‐Liang Peng
- State Key Lab of Physical Chemistry of Solid SurfaceFujian Key Laboratory of Materials GenomeCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Guanghui Yue
- State Key Lab of Physical Chemistry of Solid SurfaceFujian Key Laboratory of Materials GenomeCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| |
Collapse
|
6
|
Pham HTT, Choi Y, Park MS, Lee JW. Versatile design of metal-organic framework cathode for Li-O 2 and Li-O 2/CO 2 batteries. Chem Commun (Camb) 2020; 56:14223-14226. [PMID: 33112935 DOI: 10.1039/d0cc05980c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we propose a versatile design for metal-organic framework cathodes with the aim of improving the reversibility of Li-O2 and Li-O2/CO2 batteries. The porous nanoarchitecture of Co3O4-incorporated carbon wrapped with carbon nanotubes is beneficial for facilitating the reversible electrochemical reactions with O2 and CO2, ensuring long-term cycling performance.
Collapse
Affiliation(s)
- Hien Thi Thu Pham
- Department of Advanced Materials Engineering for information and Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin 17104, Republic of Korea.
| | | | | | | |
Collapse
|
7
|
Jena A, Hsieh HC, Thoka S, Hu SF, Chang H, Liu RS. Curtailing the Overpotential of Li-CO 2 Batteries with Shape-Controlled Cu 2 O as Cathode: Effect of Illuminating the Cathode. CHEMSUSCHEM 2020; 13:2719-2725. [PMID: 32128983 DOI: 10.1002/cssc.202000097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/26/2020] [Indexed: 06/10/2023]
Abstract
Li-air batteries are limited to lab-scale research owing to the uninterrupted formation of discharge products. In the case of Li-CO2 batteries, the increase in overpotential caused by Li2 CO3 formation results in cell death. In this study, Cu2 O crystals having three different types of shapes (i.e., cubic, octahedral, and rhombic) were synthesized to compare their catalytic activity toward CO2 reactions. The full-cycle and long-term stability test revealed that rhombohedral Cu2 O facilitates Li2 CO3 decomposition more efficiently than that of cubic and octahedral Cu2 O. The cycle was extended to investigate the photocatalytic activity of the rhombic Cu2 O by illuminating the cell. The repeated cycles to 1 h showed a maximum overpotential of 1.5 V, which is 0.5 V lower than that of the cell without illumination. A postmortem analysis of the cell after dividing the cycles into segments demonstrated interesting results concerning the role of light and Cu2 O during the cell cycle.
Collapse
Affiliation(s)
- Anirudha Jena
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
- Department of Mechanical Engineering and Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei, 106, Taiwan
| | - He Chin Hsieh
- Department of Physics, National Taiwan Normal University, Taipei, 116, Taiwan
| | | | - Shu Fen Hu
- Department of Physics, National Taiwan Normal University, Taipei, 116, Taiwan
| | - Ho Chang
- Department of Mechanical Engineering and Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Ru Shi Liu
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
- Department of Mechanical Engineering and Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei, 106, Taiwan
| |
Collapse
|
8
|
Thoka S, Chen CJ, Jena A, Wang FM, Wang XC, Chang H, Hu SF, Liu RS. Spinel Zinc Cobalt Oxide (ZnCo 2O 4) Porous Nanorods as a Cathode Material for Highly Durable Li-CO 2 Batteries. ACS APPLIED MATERIALS & INTERFACES 2020; 12:17353-17363. [PMID: 32202752 DOI: 10.1021/acsami.9b21347] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Li-CO2 batteries are of great interest among researchers due to their high energy density and utilization of the greenhouse gas CO2 to produce energy. However, several shortcomings have been encountered in the practical applications of Li-CO2 batteries, among which their poor cyclability and high charge overpotential necessary to decompose the highly insulating discharge product (Li2CO3) are the most important. Herein, the spinel zinc cobalt oxide porous nanorods with carbon nanotubes (ZnCo2O4@CNTs) composite is employed as a cathode material in Li-CO2 batteries to improve the latter's cycling performance. The ZnCo2O4@CNT cathode-based Li-CO2 battery exhibited a full discharge capacity of 4275 mAh g-1 and excellent cycling performance over 200 cycles with a charge overpotential below 4.3 V when operated at a current density of 100 mA g-1 and fixed capacity of 500 mAh g-1. The superior performance of the ZnCo2O4@CNT cathode composite was attributed to the synergistic effects of ZnCo2O4 and CNT. The highly porous ZnCo2O4 nanorod structures in the ZnCo2O4@CNT catalyst showed enhanced catalytic activity/stability, which effectively promoted CO2 diffusion during the discharging process and accelerated Li2CO3 decomposition at a low charge overpotential.
Collapse
Affiliation(s)
| | - Chih-Jung Chen
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Anirudha Jena
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
- Department of Mechanical Engineering and Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Fu-Ming Wang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- Sustainable Energy Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Xing-Chun Wang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Ho Chang
- Department of Mechanical Engineering and Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Shu-Fen Hu
- Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan
| | - Ru-Shi Liu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
- Department of Mechanical Engineering and Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 106, Taiwan
| |
Collapse
|