1
|
Salati M, Dorchies F, Wang JW, Ventosa M, González-Carrero S, Bozal-Ginesta C, Holub J, Rüdiger O, DeBeer S, Gimbert-Suriñach C, Durrant JR, Ertem MZ, Gil-Sepulcre M, Llobet A. Covalent Triazine-Based Frameworks with Ru-tda Based Catalyst Anchored via Coordination Bond for Photoinduced Water Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406375. [PMID: 39235360 DOI: 10.1002/smll.202406375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Indexed: 09/06/2024]
Abstract
Light-induced water splitting (hν-WS) for the production of hydrogen as a solar fuel is considered a promising sustainable strategy for the replacement of fossil fuels. An efficient system for hν-WS involves a photoactive material that, upon shining light, is capable of separating and transferring charges to catalysts for the hydrogen and oxygen evolution processes. Covalent triazine-based frameworks (CTFs) represent an interesting class of 2D organic light-absorbing materials that have recently emerged thanks to their tunable structural, optical and morphological properties. Typically, catalysts (Cat) are metallic nanoparticles generated in situ after photoelectroreduction of metal precursors or directly drop-casted on top of the CTF material to generate Cat-CTF assemblies. In this work, the synthesis, characterization and photocatalytic performance of a novel hybrid material, Ru-CTF, is reported, based on a CTF structure featuring dangling pyridyl groups that allow the Ru-tda (tda is [2,2':6',2'"-terpyridine]-6,6'"-dicarboxylic acid) water oxidation catalyst (WOC) unit to coordinate via covalent bond. The Ru-CTF molecular hybrid material can carry out the light-induced water oxidation reaction efficiently at neutral pH, reaching values of maximum TOF of 17 h-1 and TONs in the range of 220 using sodium persulfate as a sacrificial electron acceptor.
Collapse
Affiliation(s)
- Martina Salati
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Tarragona, 43007, Spain
| | - Florian Dorchies
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Tarragona, 43007, Spain
| | - Jia-Wei Wang
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Tarragona, 43007, Spain
| | - Marta Ventosa
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Tarragona, 43007, Spain
| | - Soranyel González-Carrero
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Tarragona, 43007, Spain
| | - Carlota Bozal-Ginesta
- Department of Chemistry, Centre for Processable Electronics, Imperial College London, Wood Lane, London, W12 0BZ, UK
| | - Jan Holub
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Tarragona, 43007, Spain
- Department of Inorganic Chemistry, University of Chemistry and Technology, Prague (UCT, Prague), Technická 5, Prague, 166 28, Czech Republic
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470, Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470, Mülheim an der Ruhr, Germany
| | - Carolina Gimbert-Suriñach
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Tarragona, 43007, Spain
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - James R Durrant
- Department of Chemistry, Centre for Processable Electronics, Imperial College London, Wood Lane, London, W12 0BZ, UK
| | - Mehmed Z Ertem
- Brookhaven National Laboratory, Chemistry Division, Upton, New York, 11973-5000, USA
| | - Marcos Gil-Sepulcre
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Tarragona, 43007, Spain
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470, Mülheim an der Ruhr, Germany
| | - Antoni Llobet
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Tarragona, 43007, Spain
| |
Collapse
|
2
|
Marchini E, Caramori S, Carli S. Metal Complexes for Dye-Sensitized Photoelectrochemical Cells (DSPECs). Molecules 2024; 29:293. [PMID: 38257206 PMCID: PMC10818894 DOI: 10.3390/molecules29020293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Since Mallouk's earliest contribution, dye-sensitized photoelectrochemical cells (DSPECs) have emerged as a promising class of photoelectrochemical devices capable of storing solar light into chemical bonds. This review primarily focuses on metal complexes outlining stabilization strategies and applications. The ubiquity and safety of water have made its splitting an extensively studied reaction; here, we present some examples from the outset to recent advancements. Additionally, alternative oxidative pathways like HX splitting and organic reactions mediated by a redox shuttle are discussed.
Collapse
Affiliation(s)
- Edoardo Marchini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Stefano Caramori
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Stefano Carli
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
| |
Collapse
|
3
|
Shen M, Rackers WH, Sadtler B. Getting the Most Out of Fluorogenic Probes: Challenges and Opportunities in Using Single-Molecule Fluorescence to Image Electro- and Photocatalysis. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:692-715. [PMID: 38037609 PMCID: PMC10685636 DOI: 10.1021/cbmi.3c00075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 12/02/2023]
Abstract
Single-molecule fluorescence microscopy enables the direct observation of individual reaction events at the surface of a catalyst. It has become a powerful tool to image in real time both intra- and interparticle heterogeneity among different nanoscale catalyst particles. Single-molecule fluorescence microscopy of heterogeneous catalysts relies on the detection of chemically activated fluorogenic probes that are converted from a nonfluorescent state into a highly fluorescent state through a reaction mediated at the catalyst surface. This review article describes challenges and opportunities in using such fluorogenic probes as proxies to develop structure-activity relationships in nanoscale electrocatalysts and photocatalysts. We compare single-molecule fluorescence microscopy to other microscopies for imaging catalysis in situ to highlight the distinct advantages and limitations of this technique. We describe correlative imaging between super-resolution activity maps obtained from multiple fluorogenic probes to understand the chemical origins behind spatial variations in activity that are frequently observed for nanoscale catalysts. Fluorogenic probes, originally developed for biological imaging, are introduced that can detect products such as carbon monoxide, nitrite, and ammonia, which are generated by electro- and photocatalysts for fuel production and environmental remediation. We conclude by describing how single-molecule imaging can provide mechanistic insights for a broader scope of catalytic systems, such as single-atom catalysts.
Collapse
Affiliation(s)
- Meikun Shen
- Department
of Chemistry and Biochemistry, University
of Oregon, Eugene, Oregon 97403, United States
| | - William H. Rackers
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Bryce Sadtler
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
- Institute
of Materials Science & Engineering, Washington University, St. Louis, Missouri 63130, United States
| |
Collapse
|
4
|
Zhou W, Deng QW, He HJ, Yang L, Liu TY, Wang X, Zheng DY, Dai ZB, Sun L, Liu C, Wu H, Li Z, Deng WQ. Heterogenization of Salen Metal Molecular Catalysts in Covalent Organic Frameworks for Photocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2023; 62:e202214143. [PMID: 36401588 DOI: 10.1002/anie.202214143] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022]
Abstract
Integrating a molecular catalyst with a light harvester into a photocatalyst is an effective strategy for solar light conversion. However, it is challenging to establish a crystallized framework with well-organized connections that favour charge separation and transfer. Herein, we report the heterogenization of a Salen metal complex molecular catalyst into a rigid covalent organic framework (COF) through covalent linkage with the light-harvesting unit of pyrene for photocatalytic hydrogen evolution. The chemically conjugated bonds between the two units contribute to fast photogenerated electron transfer and thereby promote the proton reduction reaction. The Salen cobalt-based COF showed the best hydrogen evolution activity (1378 μmol g-1 h-1 ), which is superior to the previously reported nonnoble metal based COF photocatalysts. This work provides a strategy to construct atom-efficient photocatalysts by the heterogenization of molecular catalysts into covalent organic frameworks.
Collapse
Affiliation(s)
- Wei Zhou
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, No. 72, Binhai Road, Qingdao, Shandong, 266237, China
| | - Qi-Wen Deng
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, No. 72, Binhai Road, Qingdao, Shandong, 266237, China
| | - Hui-Jie He
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, No. 72, Binhai Road, Qingdao, Shandong, 266237, China
| | - Li Yang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, No. 72, Binhai Road, Qingdao, Shandong, 266237, China
| | - Tian-Yi Liu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, No. 72, Binhai Road, Qingdao, Shandong, 266237, China
| | - Xiao Wang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, No. 72, Binhai Road, Qingdao, Shandong, 266237, China
| | - Dao-Yuan Zheng
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, No. 72, Binhai Road, Qingdao, Shandong, 266237, China
| | - Zhang-Ben Dai
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Lei Sun
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, No. 72, Binhai Road, Qingdao, Shandong, 266237, China
| | - Chengcheng Liu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, No. 72, Binhai Road, Qingdao, Shandong, 266237, China
| | - Hao Wu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, No. 72, Binhai Road, Qingdao, Shandong, 266237, China
| | - Zhen Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, No. 72, Binhai Road, Qingdao, Shandong, 266237, China
| | - Wei-Qiao Deng
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, No. 72, Binhai Road, Qingdao, Shandong, 266237, China
| |
Collapse
|
5
|
McQueen E, Bai Y, Sprick RS. Impact of Interfaces, and Nanostructure on the Performance of Conjugated Polymer Photocatalysts for Hydrogen Production from Water. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4299. [PMID: 36500922 PMCID: PMC9739915 DOI: 10.3390/nano12234299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The direct conversion of sunlight into hydrogen through water splitting, and by converting carbon dioxide into useful chemical building blocks and fuels, has been an active area of research since early reports in the 1970s. Most of the semiconductors that drive these photocatalytic processes have been inorganic semiconductors, but since the first report of carbon nitride organic semiconductors have also been considered. Conjugated materials have been relatively extensively studied as photocatalysts for solar fuels generation over the last 5 years due to the synthetic control over composition and properties. The understanding of materials' properties, its impact on performance and underlying factors is still in its infancy. Here, we focus on the impact of interfaces, and nanostructure on fundamental processes which significantly contribute to performance in these organic photocatalysts. In particular, we focus on presenting explicit examples in understanding the interface of polymer photocatalysts with water and how it affects performance. Wetting has been shown to be a clear factor and we present strategies for increased wettability in conjugated polymer photocatalysts through modifications of the material. Furthermore, the limited exciton diffusion length in organic polymers has also been identified to affect the performance of these materials. Addressing this, we also discuss how increased internal and external surface areas increase the activity of organic polymer photocatalysts for hydrogen production from water.
Collapse
Affiliation(s)
- Ewan McQueen
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Yang Bai
- Institute of Materials Research and Engineering, Agency for Science Technology and Research, #08-03, 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Reiner Sebastian Sprick
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| |
Collapse
|
6
|
Reyes Cruz EA, Nishiori D, Wadsworth BL, Nguyen NP, Hensleigh LK, Khusnutdinova D, Beiler AM, Moore GF. Molecular-Modified Photocathodes for Applications in Artificial Photosynthesis and Solar-to-Fuel Technologies. Chem Rev 2022; 122:16051-16109. [PMID: 36173689 DOI: 10.1021/acs.chemrev.2c00200] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nature offers inspiration for developing technologies that integrate the capture, conversion, and storage of solar energy. In this review article, we highlight principles of natural photosynthesis and artificial photosynthesis, drawing comparisons between solar energy transduction in biology and emerging solar-to-fuel technologies. Key features of the biological approach include use of earth-abundant elements and molecular interfaces for driving photoinduced charge separation reactions that power chemical transformations at global scales. For the artificial systems described in this review, emphasis is placed on advancements involving hybrid photocathodes that power fuel-forming reactions using molecular catalysts interfaced with visible-light-absorbing semiconductors.
Collapse
Affiliation(s)
- Edgar A Reyes Cruz
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Daiki Nishiori
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Brian L Wadsworth
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Nghi P Nguyen
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Lillian K Hensleigh
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Diana Khusnutdinova
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Anna M Beiler
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - G F Moore
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| |
Collapse
|
7
|
Recent advances and perspectives in cobalt-based heterogeneous catalysts for photocatalytic water splitting, CO2 reduction, and N2 fixation. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63939-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
8
|
Sun Z, Xu C, Li Z, Guo F, Liu B, Liu J, Zhou J, Yu Z, He X, Jiang D. Construction of organic–inorganic hybrid photoanodes with metal phthalocyanine complexes to improve photoelectrochemical water splitting performance. NEW J CHEM 2022. [DOI: 10.1039/d2nj00762b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The modification of cobalt phthalocyanine complexes on BiVO4 could promote the charge carrier migration and accelerate the water oxidation kinetics, thus significantly enhancing the photoelectrochemical water splitting.
Collapse
Affiliation(s)
- Zijun Sun
- Research Centre of Materials Science and Engineering, School of Electrical and Information Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
- Liuzhou key laboratory for new energy vehicle power lithium battery, Liuzhou 545006, China
| | - Chengwen Xu
- Research Centre of Materials Science and Engineering, School of Electrical and Information Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
- Liuzhou key laboratory for new energy vehicle power lithium battery, Liuzhou 545006, China
| | - Zhen Li
- Research Centre of Materials Science and Engineering, School of Electrical and Information Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
- Liuzhou key laboratory for new energy vehicle power lithium battery, Liuzhou 545006, China
| | - Fei Guo
- Research Centre of Materials Science and Engineering, School of Electrical and Information Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
- Liuzhou key laboratory for new energy vehicle power lithium battery, Liuzhou 545006, China
| | - Baosheng Liu
- Research Centre of Materials Science and Engineering, School of Electrical and Information Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
- Liuzhou key laboratory for new energy vehicle power lithium battery, Liuzhou 545006, China
| | - Jinghua Liu
- Research Centre of Materials Science and Engineering, School of Electrical and Information Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
- Liuzhou key laboratory for new energy vehicle power lithium battery, Liuzhou 545006, China
| | - Jin Zhou
- Research Centre of Materials Science and Engineering, School of Electrical and Information Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Zhiqiang Yu
- Research Centre of Materials Science and Engineering, School of Electrical and Information Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Xiong He
- Research Centre of Materials Science and Engineering, School of Electrical and Information Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
- Liuzhou key laboratory for new energy vehicle power lithium battery, Liuzhou 545006, China
| | - Daochuan Jiang
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| |
Collapse
|
9
|
Nikoloudakis E, Pati PB, Charalambidis G, Budkina DS, Diring S, Planchat A, Jacquemin D, Vauthey E, Coutsolelos AG, Odobel F. Dye-Sensitized Photoelectrosynthesis Cells for Benzyl Alcohol Oxidation Using a Zinc Porphyrin Sensitizer and TEMPO Catalyst. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02609] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Emmanouil Nikoloudakis
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Voutes Campus, 70013 Heraklion, Crete, Greece
| | - Palas Baran Pati
- Université de Nantes, CNRS, UMR 6230, Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), 2 rue de la Houssinière, 44322 Nantes Cedex 3, France
| | - Georgios Charalambidis
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Voutes Campus, 70013 Heraklion, Crete, Greece
| | - Darya S. Budkina
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland
| | - Stéphane Diring
- Université de Nantes, CNRS, UMR 6230, Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), 2 rue de la Houssinière, 44322 Nantes Cedex 3, France
| | - Aurélien Planchat
- Université de Nantes, CNRS, UMR 6230, Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), 2 rue de la Houssinière, 44322 Nantes Cedex 3, France
| | - Denis Jacquemin
- Université de Nantes, CNRS, UMR 6230, Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), 2 rue de la Houssinière, 44322 Nantes Cedex 3, France
| | - Eric Vauthey
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland
| | - Athanassios G. Coutsolelos
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Voutes Campus, 70013 Heraklion, Crete, Greece
| | - Fabrice Odobel
- Université de Nantes, CNRS, UMR 6230, Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), 2 rue de la Houssinière, 44322 Nantes Cedex 3, France
| |
Collapse
|
10
|
Fukuzumi S, Lee YM, Nam W. Recent progress in production and usage of hydrogen peroxide. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63767-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
Chen H, Li J, Yang W, Balaghi SE, Triana CA, Mavrokefalos CK, Patzke GR. The Role of Surface States on Reduced TiO2@BiVO4 Photoanodes: Enhanced Water Oxidation Performance through Improved Charge Transfer. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00686] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Hang Chen
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Jingguo Li
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Wooseok Yang
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - S. Esmael Balaghi
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - C. A. Triana
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Christos K. Mavrokefalos
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Greta R. Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
12
|
Zeng J, Xu L, Yang Y, Luo X, Li HJ, Xiong SX, Wang LL. Boosting the photocatalytic hydrogen evolution performance of monolayer C 2N coupled with MoSi 2N 4: density-functional theory calculations. Phys Chem Chem Phys 2021; 23:8318-8325. [PMID: 33875996 DOI: 10.1039/d1cp00364j] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Very recently, an important two-dimensional material, MoSi2N4, was successfully synthesized. However, pure MoSi2N4 has some inherent shortcomings when used in photocatalytic water splitting to produce hydrogen, especially a low separation rate of photogenerated electron-hole pairs and a poor visible light response. Interestingly, we find that the MoSi2N4 can be used as a good modification material, and it can be coupled with C2N to form an efficient heterojunction photocatalyst. Here, using density functional theory, a type-II heterojunction, C2N/MoSi2N4, is designed and systematically studied. Based on AIMD simulations and phonon dispersion verification, C2N/MoSi2N4 shows sufficient thermodynamic stability. As well as its perfect interface electronic properties, its large interlayer charge transfer and good visible light response lay the foundation for its excellent photocatalytic performance. In addition, the oxidation and reduction potentials of the C2N/MoSi2N4 heterojunction not only can meet the requirements of water splitting well but can also maintain a delicate balance between oxidation and reduction reactions. More importantly, the |ΔGH*| value of the C2N/MoSi2N4 heterojunction is very close to zero, indicating great application potential in the field of photocatalytic water splitting. In brief, our research paves the way for the design of future MoSi2N4-based efficient heterojunction photocatalysts.
Collapse
Affiliation(s)
- Jian Zeng
- Energy Materials Computing Center, School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Design of Experiment for the Optimization of Pesticide Removal from Wastewater by Photo-Electrochemical Oxidation with TiO2 Nanotubes. Catalysts 2020. [DOI: 10.3390/catal10050512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The Design of Experiment (DoE) technique has been used to investigate the photo-electrochemical removal of diuron (DRN) from wastewater. The process is carried out in a photo-electrochemical flow reactor, in which titania nanotubular electrode is irradiated with a simulated solar light. Different operative conditions have been investigated, in a planned 23 full factorial design in which imposed current density, flow rate and initial concentration have been varied at two levels. The removal process of DRN was investigated in terms of specific removal rate (K) and cell voltage (E), which were assumed as objective functions: the results show that the applied current has a paramount effect on both of the objective functions. From the analyses of the intermediates, it appears that the investigated parameters may exert different effects on the distribution of the reaction products: the initial concentration of diuron and the electrode potential seem to play a more important role, in this case.
Collapse
|
14
|
Thalluri SM, Bai L, Lv C, Huang Z, Hu X, Liu L. Strategies for Semiconductor/Electrocatalyst Coupling toward Solar-Driven Water Splitting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902102. [PMID: 32195077 PMCID: PMC7080548 DOI: 10.1002/advs.201902102] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/20/2019] [Indexed: 05/09/2023]
Abstract
Hydrogen (H2) has a significant potential to enable the global energy transition from the current fossil-dominant system to a clean, sustainable, and low-carbon energy system. While presently global H2 production is predominated by fossil-fuel feedstocks, for future widespread utilization it is of paramount importance to produce H2 in a decarbonized manner. To this end, photoelectrochemical (PEC) water splitting has been proposed to be a highly desirable approach with minimal negative impact on the environment. Both semiconductor light-absorbers and hydrogen/oxygen evolution reaction (HER/OER) catalysts are essential components of an efficient PEC cell. It is well documented that loading electrocatalysts on semiconductor photoelectrodes plays significant roles in accelerating the HER/OER kinetics, suppressing surface recombination, reducing overpotentials needed to accomplish HER/OER, and extending the operational lifetime of semiconductors. Herein, how electrocatalyst coupling influences the PEC performance of semiconductor photoelectrodes is outlined. The focus is then placed on the major strategies developed so far for semiconductor/electrocatalyst coupling, including a variety of dry processes and wet chemical approaches. This Review provides a comprehensive account of advanced methodologies adopted for semiconductor/electrocatalyst coupling and can serve as a guideline for the design of efficient and stable semiconductor photoelectrodes for use in water splitting.
Collapse
Affiliation(s)
| | - Lichen Bai
- Laboratory of Inorganic Synthesis & CatalysisEcole Polytechnique Federale de LausanneEPFL ISIC LSCI, BCH 3305CH‐1015LausanneSwitzerland
| | - Cuncai Lv
- School of Chemical Science & EngineeringTongji University200092ShanghaiP. R. China
- College of Physics Science & TechnologyHebei University071002BaodingHebeiP. R. China
| | - Zhipeng Huang
- School of Chemical Science & EngineeringTongji University200092ShanghaiP. R. China
| | - Xile Hu
- Laboratory of Inorganic Synthesis & CatalysisEcole Polytechnique Federale de LausanneEPFL ISIC LSCI, BCH 3305CH‐1015LausanneSwitzerland
| | - Lifeng Liu
- International Iberian Nanotechnology Laboratory (INL)Avenida Mestre Jose Veiga4715‐330BragaPortugal
| |
Collapse
|