1
|
Kamaraj K, H Dixneuf P, Sundaram GB, Reek JNH, Beromeo Bheeter C. Pd/C-Catalyzed Selective N-Monomethylation by Transfer Hydrogenation of Urea Derivatives using Methanol as H 2 and C1 Sources. Chemistry 2024; 30:e202402414. [PMID: 39205531 DOI: 10.1002/chem.202402414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
N-monomethyl amines are useful intermediates in drugs, natural products, paints. Yet their synthesis is a tremendous challenge due to their high reactivity, typically leading to overmethylation. In this contribution, a highly selective catalytic N-methylation methodology is reported, converting urea derivatives to monomethylated amines, using a commercially available heterogeneous Pd/C catalyst and methanol as unique reagent. Methanol provides a sustainable alternative protocol for the selective preparation of mono-methylated derivatives as it acts as both H2 and C1 sources. In addition, several control experiments were performed to provide a proposal for the mechanism, namely dehydrogenation of methanol and subsequent hydrogenation of urea derivatives, followed by reduction of the in situ formed methyl imine. Importantly, the approach is simple, highly productive and enables novel synthetic procedures for the preparation of monomethylamines from urea derivatives.
Collapse
Affiliation(s)
- Kiruthigadevi Kamaraj
- School of Advanced Sciences, Department of Chemistry, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Pierre H Dixneuf
- University of Rennes, ISCR, UMR CNRS 6226, F-35000, Rennes, France
| | - Ganesh Babu Sundaram
- School of Advanced Sciences, Department of Chemistry, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Joost N H Reek
- Homogeneous, Supramolecular and Bio-inspired Catalysis group, Van't Hoff, Institute for Molecular Science (HIMS), University of Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Charles Beromeo Bheeter
- Amity Institute of Applied Sciences, Amity University, Uttar Pradesh, Noida, 201313, India
- School of Advanced Sciences, Department of Chemistry, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| |
Collapse
|
2
|
Bai M, Zhang S, Lin Z, Hao Z, Han Z, Lu GL, Lin J. Ruthenium Complexes with NNN-Pincer Ligands for N-Methylation of Amines Using Methanol. Inorg Chem 2024; 63:11821-11831. [PMID: 38848310 DOI: 10.1021/acs.inorgchem.4c01561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
A series of ruthenium complexes (Ru1-Ru4) bearing new NNN-pincer ligands were synthesized in 58-78% yields. All of the complexes are air and moisture stable and were characterized by IR, NMR, and high-resolution mass spectra (HRMS). In addition, the structures of Ru1-Ru3 were confirmed by X-ray crystallographic analysis. These Ru(II) complexes exhibited high catalytic efficiency and broad functional group tolerance in the N-methylation reaction of amines using CH3OH as both the C1 source and solvent. Experimental results indicated that the electronic effect of the substituents on the ligands considerably affects the catalytic reactivity of the complexes in which Ru3 bearing an electron-donating OMe group showed the highest activity. Deuterium labeling and control experiments suggested that the dehydrogenation of methanol to generate ruthenium hydride species was the rate-determining step in the reaction. Furthermore, this protocol also provided a ready approach to versatile trideuterated N-methylamines under mild conditions using CD3OD as a deuterated methylating agent.
Collapse
Affiliation(s)
- Mengxuan Bai
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Shengxin Zhang
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhengguo Lin
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhiqiang Hao
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhangang Han
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Guo-Liang Lu
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019,Auckland 1142, New Zealand
- Maurice Wilkins Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jin Lin
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
3
|
Templ J, Schnürch M. A Guide for Mono-Selective N-Methylation, N-Ethylation, and N-n-Propylation of Primary Amines, Amides, and Sulfonamides and Their Applicability in Late-Stage Modification. Chemistry 2024; 30:e202304205. [PMID: 38353032 DOI: 10.1002/chem.202304205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Indexed: 03/06/2024]
Abstract
This review provides a comprehensive overview of mono-alkylation methodologies targeting crucial nitrogen moieties - amines, amides, and sulfonamides - found in organic building blocks and pharmaceuticals. Emphasizing the intersection of chemical precision with drug discovery, the central challenge addressed is achieving one-pot mono-selective short-chain N-alkylations (methylations, ethylations, and n-propylations), preventing undesired overalkylation. Additionally, sustainable, safe, and benign alternatives to traditional alkylating agents, including alcohols, carbon dioxide, carboxylic acids, nitriles, alkyl phosphates, quaternary ammonium salts, and alkyl carbonates, are explored. This review, categorized by the nature of the alkylating agent, aids researchers in selecting suitable methods for mono-selective N-alkylation.
Collapse
Affiliation(s)
- Johanna Templ
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060, Vienna, Austria
| | - Michael Schnürch
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060, Vienna, Austria
| |
Collapse
|
4
|
Bera S, Kabadwal LM, Banerjee D. Harnessing alcohols as sustainable reagents for late-stage functionalisation: synthesis of drugs and bio-inspired compounds. Chem Soc Rev 2024; 53:4607-4647. [PMID: 38525675 DOI: 10.1039/d3cs00942d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Alcohol is ubiquitous with unparalleled structural diversity and thus has wide applications as a native functional group in organic synthesis. It is highly prevalent among biomolecules and offers promising opportunities for the development of chemical libraries. Over the last decade, alcohol has been extensively used as an environmentally friendly chemical for numerous organic transformations. In this review, we collectively discuss the utilisation of alcohol from 2015 to 2023 in various organic transformations and their application toward intermediates of drugs, drug derivatives and natural product-like molecules. Notable features discussed are as follows: (i) sustainable approaches for C-X alkylation (X = C, N, or O) including O-phosphorylation of alcohols, (ii) newer strategies using methanol as a methylating reagent, (iii) allylation of alkenes and alkynes including allylic trifluoromethylations, (iv) alkenylation of N-heterocycles, ketones, sulfones, and ylides towards the synthesis of drug-like molecules, (v) cyclisation and annulation to pharmaceutically active molecules, and (vi) coupling of alcohols with aryl halides or triflates, aryl cyanide and olefins to access drug-like molecules. We summarise the synthesis of over 100 drugs via several approaches, where alcohol was used as one of the potential coupling partners. Additionally, a library of molecules consisting over 60 fatty acids or steroid motifs is documented for late-stage functionalisation including the challenges and opportunities for harnessing alcohols as renewable resources.
Collapse
Affiliation(s)
- Sourajit Bera
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Lalit Mohan Kabadwal
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Debasis Banerjee
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
5
|
Ji J, Huo Y, Dai Z, Chen Z, Tu T. Manganese-Catalyzed Mono-N-Methylation of Aliphatic Primary Amines without the Requirement of External High-Hydrogen Pressure. Angew Chem Int Ed Engl 2024; 63:e202318763. [PMID: 38300154 DOI: 10.1002/anie.202318763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/02/2024]
Abstract
The synthesis of mono-N-methylated aliphatic primary amines has traditionally been challenging, requiring noble metal catalysts and high-pressure H2 for achieving satisfactory yields and selectivity. Herein, we developed an approach for the selective coupling of methanol and aliphatic primary amines, without high-pressure hydrogen, using a manganese-based catalyst. Remarkably, up to 98 % yields with broad substrate scope were achieved at low catalyst loadings. Notably, due to the weak base-catalyzed alcoholysis of formamide intermediates, our novel protocol not only obviates the addition of high-pressure H2 but also prevents side secondary N-methylation, supported by control experiments and density functional theory calculations.
Collapse
Affiliation(s)
- Jiale Ji
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Yinghao Huo
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Zhaowen Dai
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Zhening Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, 350002, China
| | - Tao Tu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai, 200032, China
| |
Collapse
|
6
|
Bhatt T, Natte K. Transfer Hydrogenation of N- and O-Containing Heterocycles Including Pyridines with H 3N-BH 3 Under the Catalysis of the Homogeneous Ruthenium Precatalyst. Org Lett 2024; 26:866-871. [PMID: 38270139 DOI: 10.1021/acs.orglett.3c04051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
In this study, we report a transfer hydrogenation protocol that utilizes borane-ammonia (H3N-BH3) as the hydrogen source and a commercially available RuCl3·xH2O precatalyst for the selective aromatic reduction of quinolines, quinoxalines, pyridines, pyrazines, indoles, benzofurans, and furan derivatives to form the corresponding alicyclic heterocycles in good to excellent isolated yields. Applications of this straightforward protocol include the efficient preparation of useful key pharmaceutical intermediates, such as donepezil and flumequine, including a biologically active compound.
Collapse
Affiliation(s)
- Tarun Bhatt
- Laboratory for Sustainable Catalysis and Organic Synthesis, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502 285, Telangana, India
| | - Kishore Natte
- Laboratory for Sustainable Catalysis and Organic Synthesis, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502 285, Telangana, India
| |
Collapse
|
7
|
Patil RD, Pratihar S. Ruthenium(II)-Catalyzed Hydrogenation and Tandem (De)Hydrogenation via Metal-Ligand Cooperation: Base- and Solvent-Assisted Switchable Selectivity. J Org Chem 2024; 89:1361-1378. [PMID: 36283058 DOI: 10.1021/acs.joc.2c01965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A versatile, selective, solvent (methanol vs ethanol)- and base (potassium vs lithium carbonate)-assisted switchable synthesis of saturated ketone and α-methyl saturated ketone from α,β-unsaturated ketone is developed. Mechanistic aspects, evaluated from spectroscopic studies, in situ monitoring of the reaction progress, control studies, and labeling studies, further indicate the involvement of a tandem dehydrogenation-condensation-hydrogenation sequence in the reaction, in which the interconvertible coordination mode (imino N → Ru and amido N-Ru) of coordinated imidazole with Ru(II)-para-cymene is crucial, without which the efficiency and selectivity of the catalyst are completely lost. The catalyst demonstrates good efficiency, selectivity, and functional group tolerance and displays a broad scope (69 examples) for monomethylation and hydrogenation of unsaturated chalcones, double methylation of ketones, and N-methylation of amines.
Collapse
Affiliation(s)
- Rahul Daga Patil
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials and Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India
| | - Sanjay Pratihar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials and Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India
| |
Collapse
|
8
|
Dewangan C, Kumawat S, Bhatt T, Natte K. Homogenous nickel-catalyzed chemoselective transfer hydrogenation of functionalized nitroarenes with ammonia-borane. Chem Commun (Camb) 2023. [PMID: 37997758 DOI: 10.1039/d3cc05173k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Homogeneous Ni-catalyzed highly selective transfer hydrogenation of nitroarenes was successfully established using NH3BH3 as a hydrogen source. A broad range of functional groups were selectively reduced to provide the corresponding anilines in good to high yields. Further, pharmaceutically active compounds can be prepared that would otherwise be challenging to access.
Collapse
Affiliation(s)
- Chitrarekha Dewangan
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502 285, Telangana, India.
| | - Sandeep Kumawat
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502 285, Telangana, India.
| | - Tarun Bhatt
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502 285, Telangana, India.
| | - Kishore Natte
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502 285, Telangana, India.
| |
Collapse
|
9
|
Gao C, Li Y, Wang M, Gong D, Zhao L. Ru(II)-Catalyzed N-Methylation of Amines Using Methanol as the C1 Source. ACS OMEGA 2023; 8:36597-36603. [PMID: 37810663 PMCID: PMC10552110 DOI: 10.1021/acsomega.3c06260] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023]
Abstract
Four ruthenium complexes were used as catalysts for the N-methylation of amines using methanol as the C1 source under weak base conditions. The (DPEPhos)RuCl2PPh3(1a) catalyst showed the best catalytic performance (0.5 mol %, 12 h). The deuterium labeling and control experiments suggested the reaction via the Ru-H mechanism. This study provides a new ruthenium catalyst system for N-methylation with methanol under weak base conditions.
Collapse
Affiliation(s)
- Caiyu Gao
- Key Laboratory
of Preparation
and Application of Environmental Friendly Materials, Ministry of Education,
College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China
| | - Yufei Li
- Key Laboratory
of Preparation
and Application of Environmental Friendly Materials, Ministry of Education,
College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China
| | - Minghao Wang
- Key Laboratory
of Preparation
and Application of Environmental Friendly Materials, Ministry of Education,
College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China
| | - Dawei Gong
- Key Laboratory
of Preparation
and Application of Environmental Friendly Materials, Ministry of Education,
College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China
| | - Lina Zhao
- Key Laboratory
of Preparation
and Application of Environmental Friendly Materials, Ministry of Education,
College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China
| |
Collapse
|
10
|
Goyal V, Bhatt T, Dewangan C, Narani A, Naik G, Balaraman E, Natte K, Jagadeesh RV. Methanol as a Potential Hydrogen Source for Reduction Reactions Enabled by a Commercial Pt/C Catalyst. J Org Chem 2023; 88:2245-2259. [PMID: 36753730 DOI: 10.1021/acs.joc.2c02657] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Catalytic reduction reactions using methanol as a transfer hydrogenating agent is gaining significant attention because this simple alcohol is inexpensive and produced on a bulk scale. Herein, we report the catalytic utilization of methanol as a hydrogen source for the reduction of different functional organic compounds such as nitroarenes, olefins, and carbonyl compounds. The key to the success of this transformation is the use of a commercially available Pt/C catalyst, which enabled the transfer hydrogenation of a series of simple and functionalized nitroarenes-to-anilines, alkenes-to-alkanes, and aldehydes-to-alcohols using methanol as both the solvent and hydrogen donor. The practicability of this Pt-based protocol is showcased by demonstrating catalyst recycling and reusability as well as reaction upscaling. In addition, the Pt/C catalytic system was also adaptable for the N-methylation and N-alkylation of anilines via the borrowing hydrogen process. This work provides a simple and flexible approach to prepare a variety of value-added products from readily available methanol, Pt/C, and other starting materials.
Collapse
Affiliation(s)
- Vishakha Goyal
- Chemical and Material Sciences Division, CSIR─Indian Institute of Petroleum, Mohkampur, Dehradun 248005, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad 201 002, Uttar Pradesh, India
| | - Tarun Bhatt
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502 285, Telangana, India
| | - Chitrarekha Dewangan
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502 285, Telangana, India
| | - Anand Narani
- Chemical and Material Sciences Division, CSIR─Indian Institute of Petroleum, Mohkampur, Dehradun 248005, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad 201 002, Uttar Pradesh, India
| | - Ganesh Naik
- Chemical and Material Sciences Division, CSIR─Indian Institute of Petroleum, Mohkampur, Dehradun 248005, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad 201 002, Uttar Pradesh, India
| | - Ekambaram Balaraman
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, 517507, India
| | - Kishore Natte
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502 285, Telangana, India
| | | |
Collapse
|
11
|
Sun R, Ma SS, Zhang ZH, Zhang YQ, Xu BH. Ruthenium-catalyzed reductive amination of ketones with nitroarenes and nitriles. Org Biomol Chem 2023; 21:1450-1456. [PMID: 36651476 DOI: 10.1039/d2ob02312a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The Ru(dppbsa)-catalyzed reductive amination of ketones with nitroarenes and nitriles using H2 as the environmentally benign hydrogen surrogate is developed in this study. Cross-experiments demonstrated that both reactions are initiated by the reduction of nitroarenes or nitriles to the corresponding amines, followed by condensation with ketones to give imines and thereafter hydrogenation. However, the route to the formation of an amino-ligated Ru complex during the reduction of nitroarenes or nitriles, followed by in situ nucleophilic C-N coupling, cannot be completely excluded. This newly developed versatile method features good functional group tolerance, which provides a novel design platform for homogeneous catalysts in constructing motifs of secondary amines.
Collapse
Affiliation(s)
- Rui Sun
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institution of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.,College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shuang-Shuang Ma
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institution of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.,College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zi-Heng Zhang
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China.,Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Yan-Qiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institution of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.,College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Bao-Hua Xu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institution of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.,College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China. .,Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
12
|
Wang X, Wang H, Zhao K, Yuan H, Shi F, Cui X. Active Pd Catalyst for the Selective Synthesis of Methylated Amines with Methanol. J Org Chem 2023; 88:5025-5035. [PMID: 36692494 DOI: 10.1021/acs.joc.2c02294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Selective N-methylation of amines with methanol is an important reaction in the synthesis of high-value-added fine chemicals, including dyes, surfactants, pharmaceuticals, agrochemicals, and materials. However, N-methylated amines possess higher reactivities and are prone to further transform into N,N-dimethylated amines. Therefore, it is still a challenge to controllably regulate the selectivity of N-methylation using heterogeneous catalysts without the use of base. Herein, we developed a series of Pd/Zn(Al)O catalysts with abundant basic sites, and the selectivity of N-methylation was controlled by a heterogeneous Pd/Zn(Al)O catalyst with a Zn/Al ratio of 10 and a Pd loading of 0.4 wt % in the pressure of H2. The experimental results showed that the appropriate basic properties of the catalyst were beneficial to form the desired N-methylated amine. The low loading of Pd in the catalyst was highly dispersed on the support, providing sufficient active sites. These were attributed to the Zn vacancies formed by Al-doped Zn, which were beneficial to form the highly active and stable Pd sites. Furthermore, a series of amines and nitrobenzenes with different functional groups were well tolerated for the selective synthesis of N-methylated amines in the absence of base.
Collapse
Affiliation(s)
- Xinzhi Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No.18, Tianshui Middle Road, Lanzhou, Gansu 730000, China.,University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049, China
| | - Hongli Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No.18, Tianshui Middle Road, Lanzhou, Gansu 730000, China
| | - Kang Zhao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No.18, Tianshui Middle Road, Lanzhou, Gansu 730000, China
| | - Hangkong Yuan
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No.18, Tianshui Middle Road, Lanzhou, Gansu 730000, China
| | - Feng Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No.18, Tianshui Middle Road, Lanzhou, Gansu 730000, China
| | - Xinjiang Cui
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No.18, Tianshui Middle Road, Lanzhou, Gansu 730000, China
| |
Collapse
|
13
|
Recent advances in the catalytic N-methylation and N-trideuteromethylation reactions using methanol and deuterated methanol. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Sheetal, Mehara P, Das P. Methanol as a greener C1 synthon under non-noble transition metal-catalyzed conditions. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Mondal A, Karattil Suresh A, Sivakumar G, Balaraman E. Sustainable and Affordable Synthesis of (Deuterated) N-Methyl/Ethyl Amines from Nitroarenes. Org Lett 2022; 24:8990-8995. [DOI: 10.1021/acs.orglett.2c03595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Akash Mondal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Abhijith Karattil Suresh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Ganesan Sivakumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Ekambaram Balaraman
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| |
Collapse
|
16
|
Gianolio S, Roura Padrosa D, Paradisi F. Combined chemoenzymatic strategy for sustainable continuous synthesis of the natural product hordenine. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2022; 24:8434-8440. [PMID: 36353210 PMCID: PMC9621339 DOI: 10.1039/d2gc02767d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
To improve sustainability, safety and cost-efficiency of synthetic methodologies, biocatalysis can be a helpful ally. In this work, a novel chemoenzymatic stategy ensures the rapid synthesis of hordenine, a valuable phenolic phytochemical under mild working conditions. In a two-step cascade, the immobilized tyrosine decarboxylase from Lactobacillus brevis (LbTDC) is here coupled with the chemical reductive amination of tyramine. Starting from the abundant and cost-effective amino acid l-tyrosine, the complete conversion to hordenine is achieved in less than 5 minutes residence time in a fully-automated continuous flow system. Compared to the metal-catalyzed N,N-dimethylation of tyramine, this biocatalytic approach reduces the process environmental impact and improves its STY to 2.68 g L-1 h-1.
Collapse
Affiliation(s)
- Stefania Gianolio
- Department of Chemistry, Biochemistry and Pharmacology, University of Bern Freistrasse 3 Bern Switzerland
| | - David Roura Padrosa
- Department of Chemistry, Biochemistry and Pharmacology, University of Bern Freistrasse 3 Bern Switzerland
| | - Francesca Paradisi
- Department of Chemistry, Biochemistry and Pharmacology, University of Bern Freistrasse 3 Bern Switzerland
| |
Collapse
|
17
|
A Reusable FeCl3∙6H2O/Cationic 2,2′-Bipyridyl Catalytic System for Reduction of Nitroarenes in Water. Catalysts 2022. [DOI: 10.3390/catal12080924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The association of a commercially-available iron (III) chloride hexahydrate (FeCl3∙6H2O) with cationic 2,2′-bipyridyl in water was proven to be an operationally simple and reusable catalytic system for the highly-selective reduction of nitroarenes to anilines. This procedure was conducted under air using 1–2 mol% of catalyst in the presence of nitroarenes and 4 equiv of hydrazine monohydrate (H2NNH2∙H2O) in neat water at 100 °C for 12 h, and provided high to excellent yields of aniline derivatives. After separation of the aqueous catalytic system from the organic product, the residual aqueous solution could be applied for subsequent reuse, without any catalyst retreatment or regeneration, for several runs with only a slight decrease in activity, proving this process eco-friendly.
Collapse
|
18
|
Pospelov E, Boyko Y, Ioffe SL, Sukhorukov A. Synthesis of Bis(β‐oximinoalkyl)malonates and Their Catalytic Reductive Cyclization to Piperidines. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Evgeny Pospelov
- N. D. Zelinsky Institute of Organic Chemistry RUSSIAN FEDERATION
| | | | | | | |
Collapse
|
19
|
Natte K, Naik G, Sarki N, Goyal V, Narani A. Recent Trends in Upgrading of CO2 as a C1 Reactant in N‐ and C‐Methylation Reactions. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Kishore Natte
- Indian Institute of Technology Hyderabad Chemistry Kandi--- Sangareddy INDIA
| | - Ganesh Naik
- Indian Institute of Petroleum CSIR Chemistry INDIA
| | - Naina Sarki
- Indian Institute of Petroleum CSIR Chemistry INDIA
| | | | - Anand Narani
- Indian Institute of Petroleum CSIR Chemistry INDIA
| |
Collapse
|
20
|
González-Lainez M, Jiménez MV, Azpiroz R, Passarelli V, Modrego FJ, Pérez-Torrente JJ. N-Methylation of Amines with Methanol Catalyzed by Iridium(I) Complexes Bearing an N,O-Functionalized NHC Ligand. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Miguel González-Lainez
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| | - M. Victoria Jiménez
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| | - Ramón Azpiroz
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| | - Vincenzo Passarelli
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| | - F. Javier Modrego
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| | - Jesús J. Pérez-Torrente
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| |
Collapse
|
21
|
Concentration of n-3 polyunsaturated fatty acid glycerides by Candida antarctica lipase A-catalyzed selective methanolysis. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Investigation of NNN Pincer Ruthenium(II) Complexes with a Pendant Hydroxyl Group for N‐Monomethylation of amines and Nitroarenes by Methanol. ChemCatChem 2022. [DOI: 10.1002/cctc.202101630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Cho JH, Ha Y, Cho A, Park J, Choi J, Won Y, Kim H, Kim BM. A bimetallic PdCu–Fe 3O 4 catalyst with an optimal d-band centre for selective N-methylation of aromatic amines with methanol. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00065b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Highly efficient and selective N-methylation of aniline with methanol is possible with Pd1Cu0.6–Fe3O4 nanoparticle catalyst.
Collapse
Affiliation(s)
- Jin Hee Cho
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwank-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Yoonhoo Ha
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ahra Cho
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwank-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jihye Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jaeyoon Choi
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwank-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Youngdae Won
- The Research Institute of Basic Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Byeong Moon Kim
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwank-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
24
|
Sarki N, Goyal V, Natte K, Jagadeesh RV. Base Metal‐Catalyzed C‐Methylation Reactions Using Methanol. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100762] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Naina Sarki
- Chemical and Material Science Division CSIR – Indian Institute of Petroleum Haridwar road, Mohkampur Dehradun 248005 India
| | - Vishakha Goyal
- Chemical and Material Science Division CSIR – Indian Institute of Petroleum Haridwar road, Mohkampur Dehradun 248005 India
| | - Kishore Natte
- Chemical and Material Science Division CSIR – Indian Institute of Petroleum Haridwar road, Mohkampur Dehradun 248005 India
| | | |
Collapse
|
25
|
Goyal V, Naik G, Narani A, Natte K, Jagadeesh RV. Recent developments in reductive N-methylation with base-metal catalysts. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132414] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Hernández‐Ruiz R, Rubio‐Presa R, Suárez‐Pantiga S, Pedrosa MR, Fernández‐Rodríguez MA, Tapia MJ, Sanz R. Mo-Catalyzed One-Pot Synthesis of N-Polyheterocycles from Nitroarenes and Glycols with Recycling of the Waste Reduction Byproduct. Substituent-Tuned Photophysical Properties. Chemistry 2021; 27:13613-13623. [PMID: 34288167 PMCID: PMC8518888 DOI: 10.1002/chem.202102000] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Indexed: 12/26/2022]
Abstract
A catalytic domino reduction-imine formation-intramolecular cyclization-oxidation for the general synthesis of a wide variety of biologically relevant N-polyheterocycles, such as quinoxaline- and quinoline-fused derivatives, and phenanthridines, is reported. A simple, easily available, and environmentally friendly dioxomolybdenum(VI) complex has proven to be a highly efficient and versatile catalyst for transforming a broad range of starting nitroarenes involving several redox processes. Not only is this a sustainable, step-economical as well as air- and moisture-tolerant method, but also it is worth highlighting that the waste byproduct generated in the first step of the sequence is recycled and incorporated in the final target molecule, improving the overall synthetic efficiency. Moreover, selected indoloquinoxalines have been photophysically characterized in cyclohexane and toluene with exceptional fluorescence quantum yields above 0.7 for the alkyl derivatives.
Collapse
Affiliation(s)
- Raquel Hernández‐Ruiz
- Departamento de QuímicaFacultad de CienciasUniversidad de BurgosPza. Misael Bañuelos s/n09001-BurgosSpain
| | - Rubén Rubio‐Presa
- Departamento de QuímicaFacultad de CienciasUniversidad de BurgosPza. Misael Bañuelos s/n09001-BurgosSpain
| | - Samuel Suárez‐Pantiga
- Departamento de QuímicaFacultad de CienciasUniversidad de BurgosPza. Misael Bañuelos s/n09001-BurgosSpain
| | - María R. Pedrosa
- Departamento de QuímicaFacultad de CienciasUniversidad de BurgosPza. Misael Bañuelos s/n09001-BurgosSpain
| | - Manuel A. Fernández‐Rodríguez
- Departamento de QuímicaFacultad de CienciasUniversidad de BurgosPza. Misael Bañuelos s/n09001-BurgosSpain
- Current address: Departamento de Química Orgánica y Química InorgánicaCampus Científico-TecnológicoFacultad de FarmaciaUniversidad de AlcaláAutovía A-II, Km 33.128805-Alcalá de HenaresMadridSpain
| | - M. José Tapia
- Departamento de QuímicaFacultad de CienciasUniversidad de BurgosPza. Misael Bañuelos s/n09001-BurgosSpain
| | - Roberto Sanz
- Departamento de QuímicaFacultad de CienciasUniversidad de BurgosPza. Misael Bañuelos s/n09001-BurgosSpain
| |
Collapse
|
27
|
Wang X, Zhao K, Wang H, Shi F. Selective synthesis of N-monomethyl amines with primary amines and nitro compounds. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01177d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The development of the selective N-monomethylation of primary amines and nitro compounds by using various methylating agents, such as MeX, carbon dioxide, methanol, formaldehyde, formic acid and dimethyl carbonate.
Collapse
Affiliation(s)
- Xinzhi Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing, 100049, China
| | - Kang Zhao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing, 100049, China
| | - Hongli Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, 730000, China
| | - Feng Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, 730000, China
| |
Collapse
|
28
|
Ma SS, Sun R, Zhang ZH, Yu ZK, Xu BH. Ruthenium-catalysed chemoselective alkylation of nitroarenes with alkanols. Org Chem Front 2021. [DOI: 10.1039/d1qo01269j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The alkylation of nitroarenes with akanols catalysed by the phosphinesulfonate ruthenium complex was reported. It displays different reactivity and chemoselectivity depending on the acid–base conditions, delivering diverse anilines from nitroarenes.
Collapse
Affiliation(s)
- Shuang-Shuang Ma
- Beijing Key Laboratory of Ionic Liquids Clean Processes, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Sun
- Beijing Key Laboratory of Ionic Liquids Clean Processes, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Heng Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Processes, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Zheng-Kun Yu
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| | - Bao-Hua Xu
- Beijing Key Laboratory of Ionic Liquids Clean Processes, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
29
|
Goyal V, Sarki N, Poddar MK, Narani A, Tripathi D, Ray A, Natte K. Biorenewable carbon-supported Ru catalyst for N-alkylation of amines with alcohols and selective hydrogenation of nitroarenes. NEW J CHEM 2021. [DOI: 10.1039/d1nj01654g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A renewable carbon-supported Ru catalyst (Ru/PNC-700) facilely prepared via simple impregnation followed by the pyrolysis process for N-alkylation of anilines with benzyl alcohol and chemoselective hydrogenation of nitroarenes.
Collapse
Affiliation(s)
- Vishakha Goyal
- Chemical and Material Sciences Division
- Light Stock Processing Division
- Biofuels Division
- Analytical Sciences Division
- CSIR–Indian Institute of Petroleum
| | - Naina Sarki
- Chemical and Material Sciences Division
- Light Stock Processing Division
- Biofuels Division
- Analytical Sciences Division
- CSIR–Indian Institute of Petroleum
| | - Mukesh Kumar Poddar
- Chemical and Material Sciences Division
- Light Stock Processing Division
- Biofuels Division
- Analytical Sciences Division
- CSIR–Indian Institute of Petroleum
| | - Anand Narani
- Chemical and Material Sciences Division
- Light Stock Processing Division
- Biofuels Division
- Analytical Sciences Division
- CSIR–Indian Institute of Petroleum
| | - Deependra Tripathi
- Chemical and Material Sciences Division
- Light Stock Processing Division
- Biofuels Division
- Analytical Sciences Division
- CSIR–Indian Institute of Petroleum
| | - Anjan Ray
- Chemical and Material Sciences Division
- Light Stock Processing Division
- Biofuels Division
- Analytical Sciences Division
- CSIR–Indian Institute of Petroleum
| | - Kishore Natte
- Chemical and Material Sciences Division
- Light Stock Processing Division
- Biofuels Division
- Analytical Sciences Division
- CSIR–Indian Institute of Petroleum
| |
Collapse
|
30
|
Kabadwal LM, Bera S, Banerjee D. Recent advances in sustainable organic transformations using methanol: expanding the scope of hydrogen-borrowing catalysis. Org Chem Front 2021. [DOI: 10.1039/d1qo01412a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Recent progress relating to sustainable approaches using methanol as a C1-alkylating agent for C–Me and N–Me bond formation is discussed.
Collapse
Affiliation(s)
- Lalit Mohan Kabadwal
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India
| | - Sourajit Bera
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India
| | - Debasis Banerjee
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India
| |
Collapse
|