1
|
Liu M, Li N, Meng S, Yang S, Jing B, Zhang J, Jiang J, Qiu S, Deng F. Bio-inspired Cu 2O cathode for O 2 capturing and oxidation boosting in electro-Fenton for sulfathiazole decay. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135484. [PMID: 39173382 DOI: 10.1016/j.jhazmat.2024.135484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
A hydrophobic Cu2O cathode (CuxO-L) was designed to solve the challenge of low oxidation ability in electro-Fenton (EF) for treating emerging pollutants. This fabrication process involved forming Cu(OH)2 nanorods by oxidizing copper foam (Cu-F) with (NH4)2S2O8, followed by coating them with glucose via hydrothermal treatment. Finally, a self-assembled monolayer of 1-octadecanethiol was introduced to create a low-surface-energy, functionalized CuxO-L cathode. Results exhibited an approximately 7.9-fold increase in hydroxyl radical (·OH) generation compared to the initial Cu-F. This enhancement was attributed to two key factors: (Ⅰ) the superior O2-capturing ability of CuxO-L cathode, which led to high H2O2 production due to a 2 nm thick hydrophobic gas layer facilitated O2-capturing; (Ⅱ) a relative high concentration of Cu+ at the CuxO-L cathode promoted the activation of H2O2 into·OH. In addition, the performance of EF with the CuxO-L cathode using sulfathiazole (STZ) as a model pollutant was evaluated. This study offers valuable insights into the design of O2-capturing cathodes in EF processes, particularly for treating emerging organic pollutants.
Collapse
Affiliation(s)
- Minghui Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Neng Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070 China
| | - Shiyu Meng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shilin Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Baojian Jing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jiayu Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jizhou Jiang
- School of Environmental Ecology and Biological Engineering, School of Chemical Engineering and Pharmacy, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Novel Catalytic Materials of Hubei Engineering Research Center, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shan Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Fengxia Deng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
2
|
Azevedo Beluomini M, Ramos Stradiotto N, Boldrin Zanoni MV, Carta M, McKeown NB, Fletcher PJ, Sain S, Li Z, Marken F. Triphasic Oxygen Storage in Wet Nanoparticulate Polymer of Intrinsic Microporosity (PIM-1) on Platinum: An Electrochemical Investigation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37865-37873. [PMID: 38995231 DOI: 10.1021/acsami.4c04459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The triphasic interaction of gases with electrode surfaces immersed in aqueous electrolyte is crucial in electrochemical technologies (fuel cells, batteries, sensors). Some microporous materials modify this interaction locally via triphasic storage capacity for gases in aqueous environments linked to changes in apparent oxygen concentration and diffusivity (as well as activity and reactivity). Here, a nanoparticulate polymer of intrinsic microporosity (PIM-1) in aqueous electrolyte is shown to store oxygen gas and thereby enhance electrochemical signals for oxygen reduction in aqueous media. Oxygen reduction current transient data at platinum disk electrodes suggest that the reactivity of ambient oxygen in aqueous electrolyte (typically Doxygen = 2.8 × 10-9 m2 s-1; coxygen = 0.3 mM) is substantially modified (to approximately Dapp,oxygen = 1.6 (±0.3) × 10-12 m2 s-1; capp,oxygen = 50 (±5) mM) with important implications for triphasic electrode processes. The considerable apparent concentration of oxygen even for ambient oxygen levels is important. Potential applications in oxygen sensing, oxygen storage, oxygen catalysis, or applications associated with other types of gases are discussed.
Collapse
Affiliation(s)
- Maisa Azevedo Beluomini
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
- Institute of Chemistry, São Paulo State University (UNESP), 14800-060 Araraquara, São Paulo, Brazil
| | - Nelson Ramos Stradiotto
- Institute of Chemistry, São Paulo State University (UNESP), 14800-060 Araraquara, São Paulo, Brazil
| | | | - Mariolino Carta
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, U.K
| | - Neil B McKeown
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, Scotland EH9 3JF, U.K
| | - Philip J Fletcher
- Materials & Chemical Characterisation Facility, MC2, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Sunanda Sain
- Materials & Chemical Characterisation Facility, MC2, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Zhongkai Li
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Frank Marken
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| |
Collapse
|
3
|
Deng F, Yang S, Jing B, Qiu S. Activated carbon filled in a microporous titanium-foam air diffusion electrode for boosting H 2O 2 accumulation. CHEMOSPHERE 2023; 321:138147. [PMID: 36796525 DOI: 10.1016/j.chemosphere.2023.138147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/05/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
In the electro-Fenton process, there still suffers concern of low H2O2 generation caused by inadequate mass transfer of oxygen and low selectivity of oxygen reduction reaction (ORR). To solve it, in this study, various particle sizes (850 μm, 150 μm, and 75 μm) of granular activated carbon filled in a microporous titanium-foam substate was used to develop a gas diffusion electrode (AC@Ti-F GDE). This facile-prepared cathode has seen a 176.15% improvement in H2O2 formation compared to the conventional one. Aside from a much higher oxygen mass transfer by creating gas-liquid-solid three-phase interfaces coupled with much high dissolved oxygen, the filled AC played a significant role in H2O2 accumulation. Among these particle sizes of AC, the one in 850 μm has observed the highest H2O2 accumulation, reaching 1487 μM in 2 h electrolysis. Because there is a balance between chemical nature for H2O2 formation and micropore-dominant porous structure for H2O2 decomposition, resulting in an electron transfer of 2.12 and H2O2 selectivity of 96.79% during ORR. In a word, the facial AC@Ti-F GDE configuration is promising for H2O2 accumulation.
Collapse
Affiliation(s)
- Fengxia Deng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Shilin Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Baojian Jing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Shan Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
4
|
Deng F, Olvera-Vargas H, Zhou M, Qiu S, Sirés I, Brillas E. Critical Review on the Mechanisms of Fe 2+ Regeneration in the Electro-Fenton Process: Fundamentals and Boosting Strategies. Chem Rev 2023; 123:4635-4662. [PMID: 36917618 DOI: 10.1021/acs.chemrev.2c00684] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
This review presents an exhaustive overview on the mechanisms of Fe3+ cathodic reduction within the context of the electro-Fenton (EF) process. Different strategies developed to improve the reduction rate are discussed, dividing them into two categories that regard the mechanistic feature that is promoted: electron transfer control and mass transport control. Boosting the Fe3+ conversion to Fe2+ via electron transfer control includes: (i) the formation of a series of active sites in both carbon- and metal-based materials and (ii) the use of other emerging strategies such as single-atom catalysis or confinement effects. Concerning the enhancement of Fe2+ regeneration by mass transport control, the main routes involve the application of magnetic fields, pulse electrolysis, interfacial Joule heating effects, and photoirradiation. Finally, challenges are singled out, and future prospects are described. This review aims to clarify the Fe3+/Fe2+ cycling process in the EF process, eventually providing essential ideas for smart design of highly effective systems for wastewater treatment and valorization at an industrial scale.
Collapse
Affiliation(s)
- Fengxia Deng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China.,Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Hugo Olvera-Vargas
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México (IER-UNAM), Priv. Xochicalco S/N, Col. Centro, Temixco, Morelos CP 62580, México
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Shan Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| |
Collapse
|
5
|
Deng F, Jiang J, Sirés I. State-of-the-art review and bibliometric analysis on electro-Fenton process. CARBON LETTERS 2023; 33. [PMCID: PMC9594000 DOI: 10.1007/s42823-022-00420-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 06/04/2023]
Abstract
The electro-Fenton (EF) process was first proposed in 1996 and, since then, considerable development has been achieved for its application in wastewater treatment, especially at lab and pilot scale. After more than 25 years, the high efficiency, versatility and environmental compatibility of EF process has been demonstrated. In this review, bibliometrics has been adopted as a tool that allows quantifying the development of EF as well as introducing some useful correlations. As a result, information is summarized in a more visual manner that can be easily analyzed and interpreted as compared to conventional reviewing. During the recent decades under review, 83 countries have contributed to the dramatic growth of EF publications, with China, Spain and France leading the publication output. The top 12 most cited articles, along with the top 32 most productive authors in the EF field, have been screened. Four stages have been identified as main descriptors of the development of EF throughout these years, being each stage characterized by relevant breakthroughs. To conclude, a general cognitive model for the EF process is proposed, including atomic, microscopic and macroscopic views, and future perspectives are discussed.
Collapse
Affiliation(s)
- Fengxia Deng
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090 People’s Republic of China
- Laboratori d’Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Jizhou Jiang
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205 People’s Republic of China
| | - Ignasi Sirés
- Laboratori d’Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| |
Collapse
|
6
|
Polymer of intrinsic microporosity (PIM-1) enhances hydrogen peroxide production at Gii-Sens graphene foam electrodes. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
7
|
Antonangelo AR, Hawkins N, Tocci E, Muzzi C, Fuoco A, Carta M. Tröger's Base Network Polymers of Intrinsic Microporosity (TB-PIMs) with Tunable Pore Size for Heterogeneous Catalysis. J Am Chem Soc 2022; 144:15581-15594. [PMID: 35973136 PMCID: PMC9437925 DOI: 10.1021/jacs.2c04739] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Heterogeneous catalysis plays a pivotal role in the preparation
of value-added chemicals, and it works more efficiently when combined
with porous materials and supports. Because of that, a detailed assessment
of porosity and pore size is essential when evaluating the performance
of new heterogeneous catalysts. Herein, we report the synthesis and
characterization of a series of novel microporous Tröger’s
base polymers and copolymers (TB-PIMs) with tunable pore size. The
basicity of TB sites is exploited to catalyze the Knoevenagel condensation
of benzaldehydes and malononitrile, and the dimension of the pores
can be systematically adjusted with an appropriate selection of monomers
and comonomers. The tunability of the pore size provides the enhanced
accessibility of the catalytic sites for substrates, which leads to
a great improvement in conversions, with the best results achieving
completion in only 20 min. In addition, it enables the use of large
benzaldehydes, which is prevented when using polymers with very small
pores, typical of conventional PIMs. The catalytic reaction is more
efficient than the corresponding homogeneous counterpart and is ultimately
optimized with the addition of a small amount of a solvent, which
facilitates the swelling of the pores and leads to a further improvement
in the performance and to a better carbon economy. Molecular dynamic
modeling of the copolymers’ structures is employed to describe
the swellability of flexible chains, helping the understanding of
the improved performance and demonstrating the great potential of
these novel materials.
Collapse
Affiliation(s)
- Ariana R Antonangelo
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Grove Building, Singleton Park, Swansea SA2 8PP, U.K
| | - Natasha Hawkins
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Grove Building, Singleton Park, Swansea SA2 8PP, U.K
| | - Elena Tocci
- Institute on Membrane Technology, National Research Council of Italy (CNR-ITM), via P. Bucci 17/C, Rende (CS) 87036, Italy
| | - Chiara Muzzi
- Institute on Membrane Technology, National Research Council of Italy (CNR-ITM), via P. Bucci 17/C, Rende (CS) 87036, Italy
| | - Alessio Fuoco
- Institute on Membrane Technology, National Research Council of Italy (CNR-ITM), via P. Bucci 17/C, Rende (CS) 87036, Italy
| | - Mariolino Carta
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Grove Building, Singleton Park, Swansea SA2 8PP, U.K
| |
Collapse
|
8
|
Zhao Y, Wang L, Malpass-Evans R, McKeown NB, Carta M, Lowe JP, Lyall CL, Castaing R, Fletcher PJ, Kociok-Köhn G, Wenk J, Guo Z, Marken F. Effects of g-C 3N 4 Heterogenization into Intrinsically Microporous Polymers on the Photocatalytic Generation of Hydrogen Peroxide. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19938-19948. [PMID: 35466666 PMCID: PMC9073839 DOI: 10.1021/acsami.1c23960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Graphitic carbon nitride (g-C3N4) is known to photogenerate hydrogen peroxide in the presence of hole quenchers in aqueous environments. Here, the g-C3N4 photocatalyst is embedded into a host polymer of intrinsic microporosity (PIM-1) to provide recoverable heterogenized photocatalysts without loss of activity. Different types of g-C3N4 (including Pt@g-C3N4, Pd@g-C3N4, and Au@g-C3N4) and different quenchers are investigated. Exploratory experiments yield data that suggest binding of the quencher either (i) directly by adsorption onto the g-C3N4 (as shown for α-glucose) or (ii) indirectly by absorption into the microporous polymer host environment (as shown for Triton X-100) enhances the overall photochemical H2O2 production process. The amphiphilic molecule Triton X-100 is shown to interact only weakly with g-C3N4 but strongly with PIM-1, resulting in accumulation and enhanced H2O2 production due to the microporous polymer host.
Collapse
Affiliation(s)
- Yuanzhu Zhao
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Lina Wang
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Richard Malpass-Evans
- EaStCHEM
School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster
Road, Edinburgh, Scotland EH9 3JF, UK
| | - Neil B. McKeown
- EaStCHEM
School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster
Road, Edinburgh, Scotland EH9 3JF, UK
| | - Mariolino Carta
- Department
of Chemistry, Swansea University, College
of Science, Grove Building, Singleton Park, Swansea SA2 8PP, UK
| | - John P. Lowe
- University
of Bath, Materials & Chemical Characterisation
Facility, MC, Bath BA2 7AY, UK
| | - Catherine L. Lyall
- University
of Bath, Materials & Chemical Characterisation
Facility, MC, Bath BA2 7AY, UK
| | - Rémi Castaing
- University
of Bath, Materials & Chemical Characterisation
Facility, MC, Bath BA2 7AY, UK
| | - Philip J. Fletcher
- University
of Bath, Materials & Chemical Characterisation
Facility, MC, Bath BA2 7AY, UK
| | - Gabriele Kociok-Köhn
- University
of Bath, Materials & Chemical Characterisation
Facility, MC, Bath BA2 7AY, UK
| | - Jannis Wenk
- Department
of Chemical Engineering and Water Innovation Research Centre, WIRC, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Zhenyu Guo
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, London, SW7 2AZ, UK
| | - Frank Marken
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| |
Collapse
|
9
|
|
10
|
Antonangelo AR, Hawkins N, Carta M. Polymers of intrinsic microporosity (PIMs) for catalysis: a perspective. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2021.100766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Zhang Y, Daniel G, Lanzalaco S, Isse AA, Facchin A, Wang A, Brillas E, Durante C, Sirés I. H 2O 2 production at gas-diffusion cathodes made from agarose-derived carbons with different textural properties for acebutolol degradation in chloride media. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127005. [PMID: 34479080 DOI: 10.1016/j.jhazmat.2021.127005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
The excessive cost, unsustainability or complex production of new highly selective electrocatalysts for H2O2 production, especially noble-metal-based ones, is prohibitive in the water treatment sector. To solve this conundrum, biomass-derived carbons with adequate textural properties were synthesized via agarose double-step pyrolysis followed by steam activation. A longer steam treatment enhanced the graphitization and porosity, even surpassing commercial carbon black. Steam treatment for 20 min yielded the greatest surface area (1248 m2 g-1), enhanced the mesopore/micropore volume distribution and increased the activity (E1/2 = 0.609 V) and yield of H2O2 (40%) as determined by RRDE. The upgraded textural properties had very positive impact on the ability of the corresponding gas-diffusion electrodes (GDEs) to accumulate H2O2, reaching Faradaic current efficiencies of ~95% at 30 min. Acidic solutions of β-blocker acebutolol were treated by photoelectro-Fenton (PEF) process in synthetic media with and without chloride. In urban wastewater, total drug disappearance was reached at 60 min with almost 50% mineralization after 360 min at only 10 mA cm-2. Up to 14 degradation products were identified in the Cl--containing medium.
Collapse
Affiliation(s)
- Yanyu Zhang
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain; Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing 100044, China
| | - Giorgia Daniel
- Department of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy
| | - Sonia Lanzalaco
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain
| | - Abdirisak Ahmed Isse
- Department of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy
| | - Alessandro Facchin
- Department of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy
| | - Aimin Wang
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing 100044, China
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Christian Durante
- Department of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy.
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
12
|
Marken F, Carta M, McKeown NB. Polymers of Intrinsic Microporosity in the Design of Electrochemical Multicomponent and Multiphase Interfaces. Anal Chem 2021; 93:1213-1220. [PMID: 33369401 DOI: 10.1021/acs.analchem.0c04554] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polymers of intrinsic microporosity (or PIMs) provide porous materials due to their highly contorted and rigid macromolecular structures, which prevent space-efficient packing. PIMs are readily dissolved in solvents and can be cast into robust microporous coatings and membranes. With a typical micropore size range of around 1 nm and a typical surface area of 700-1000 m2 g-1, PIMs offer channels for ion/molecular transport and pores for gaseous species, solids, and liquids to coexist. Electrode surfaces are readily modified with coatings or composite films to provide interfaces for solid|solid|liquid or solid|liquid|liquid or solid|liquid|gas multiphase electrode processes.
Collapse
Affiliation(s)
- Frank Marken
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Mariolino Carta
- Department of Chemistry, Swansea University, College of Science, Grove Building, Singleton Park, Swansea SA2 8PP, U.K
| | - Neil B McKeown
- EaStCHEM, School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, Scotland EH9 3JF, U.K
| |
Collapse
|
13
|
Fan B, Zhao Y, Putra BR, Harito C, Bavykin D, Walsh FC, Carta M, Malpass‐Evans R, McKeown NB, Marken F. Photoelectroanalytical Oxygen Detection with Titanate Nanosheet – Platinum Hybrids Immobilised into a Polymer of Intrinsic Microporosity (PIM‐1). ELECTROANAL 2020. [DOI: 10.1002/elan.202060353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Bingbing Fan
- Department of Chemistry University of Bath Claverton Down BA2 7AY UK
- School of Material Science and Engineering Zhengzhou University Henan 450001 China
| | - Yuanzhu Zhao
- Department of Chemistry University of Bath Claverton Down BA2 7AY UK
| | - Budi Riza Putra
- Department of Chemistry University of Bath Claverton Down BA2 7AY UK
- Department of Chemistry Faculty of Mathematics and Natural Sciences Bogor Agricultural University Bogor West Java Indonesia
| | - Christian Harito
- Industrial Engineering Department Faculty of Engineering Bina Nusantara University Jakarta Indonesia 11480
- Energy Technology Research Group Faculty of Engineering and Physical Science University of Southampton SO17 1BJ Southampton UK
| | - Dmitry Bavykin
- Energy Technology Research Group Faculty of Engineering and Physical Science University of Southampton SO17 1BJ Southampton UK
| | - Frank C. Walsh
- Energy Technology Research Group Faculty of Engineering and Physical Science University of Southampton SO17 1BJ Southampton UK
| | - Mariolino Carta
- Department of Chemistry Swansea University College of Science, Grove Building Singleton Park Swansea SA2 8PP UK
| | - Richard Malpass‐Evans
- EaStCHEM School of Chemistry University of Edinburgh, Joseph Black Building David Brewster Road Edinburgh Scotland EH9 3JF UK
| | - Neil B. McKeown
- EaStCHEM School of Chemistry University of Edinburgh, Joseph Black Building David Brewster Road Edinburgh Scotland EH9 3JF UK
| | - Frank Marken
- Department of Chemistry University of Bath Claverton Down BA2 7AY UK
| |
Collapse
|
14
|
Wang L, Zhao Y, Fan B, Carta M, Malpass-Evans R, McKeown NB, Marken F. Polymer of intrinsic microporosity (PIM) films and membranes in electrochemical energy storage and conversion: A mini-review. Electrochem commun 2020. [DOI: 10.1016/j.elecom.2020.106798] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
15
|
Perry SC, Gateman SM, Malpass-Evans R, McKeown N, Wegener M, Nazarovs P, Mauzeroll J, Wang L, Ponce de León C. Polymers with intrinsic microporosity (PIMs) for targeted CO 2 reduction to ethylene. CHEMOSPHERE 2020; 248:125993. [PMID: 32004889 DOI: 10.1016/j.chemosphere.2020.125993] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
CO2 reduction offers an attractive alternative green synthetic route for ethylene, especially where CO2 could be sourced from industrial exhausts and in combination with green power sources. However, practical applications are currently limited due to the unfortunately low selectivity of cathode materials towards ethylene. This work uses polymers with intrinsic microporosity (PIMs) to improve the performance of copper gas diffusion electrodes for CO2 reduction to ethylene. We report an improved selectivity and activity towards ethylene with the addition of a thin PIMs layer, which is seen as improved Faradaic efficiency, increased stability and a shift in the reduction to lower overpotential. This improvement is highly dependent on the thickness of the added polymer layer, with too thick a layer having a detrimental impact on the hydrophobicity of the gas diffusion layer. With a compromise in loading, PIMs can be used to enhance the activity and selectivity of catalysts for targeted CO2 reduction to ethylene.
Collapse
Affiliation(s)
- Samuel C Perry
- Electrochemical Engineering Laboratory, Faculty of Engineering and Physical Sciences, University of Southampton, University Rd., Southampton, SO17 1BJ, UK.
| | - Samantha M Gateman
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, QC, H3A 0B8, Canada
| | - Richard Malpass-Evans
- EaStChem School of Chemistry, University of Edinburgh, David Brewster Rd., Edinburgh, Scotland, EH9 3FJ, UK
| | - Neil McKeown
- EaStChem School of Chemistry, University of Edinburgh, David Brewster Rd., Edinburgh, Scotland, EH9 3FJ, UK
| | - Moritz Wegener
- Schaeffler Technologies AG & Co. KG, Industriestrasse 1-3, 91074, Germany
| | - Pāvels Nazarovs
- SIA Schaeffler Baltic, Ganibu dambis 24a-52, Riga, LV-1005, Latvia
| | - Janine Mauzeroll
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, QC, H3A 0B8, Canada
| | - Ling Wang
- Electrochemical Engineering Laboratory, Faculty of Engineering and Physical Sciences, University of Southampton, University Rd., Southampton, SO17 1BJ, UK; National Centre of Advanced Tribology at Southampton (NCATS). Faculty of Engineering and Physical Sciences, University of Southampton, University Rd., Southampton, SO17 1BJ, UK
| | - Carlos Ponce de León
- Electrochemical Engineering Laboratory, Faculty of Engineering and Physical Sciences, University of Southampton, University Rd., Southampton, SO17 1BJ, UK; National Centre of Advanced Tribology at Southampton (NCATS). Faculty of Engineering and Physical Sciences, University of Southampton, University Rd., Southampton, SO17 1BJ, UK
| |
Collapse
|
16
|
Zhao Y, Dobson J, Harabajiu C, Madrid E, Kanyanee T, Lyall C, Reeksting S, Carta M, McKeown NB, Torrente-Murciano L, Black K, Marken F. Indirect photo-electrochemical detection of carbohydrates with Pt@g-C 3N 4 immobilised into a polymer of intrinsic microporosity (PIM-1) and attached to a palladium hydrogen capture membrane. Bioelectrochemistry 2020; 134:107499. [PMID: 32179453 DOI: 10.1016/j.bioelechem.2020.107499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 01/10/2023]
Abstract
An "indirect" photo-electrochemical sensor is presented for the measurement of a mixture of analytes including reducing sugars (e.g. glucose, fructose) and non-reducing sugars (e.g. sucrose, trehalose). Its innovation relies on the use of a palladium film creating a two-compartment cell to separate the electrochemical and the photocatalytic processes. In this original way, the electrochemical detection is separated from the potential complex matrix of the analyte (i.e. colloids, salts, additives, etc.). Hydrogen is generated in the photocatalytic compartment by a Pt@g-C3N4 photocatalyst embedded into a hydrogen capture material composed of a polymer of intrinsic microporosity (PIM-1). The immobilised photocatalyst is deposited onto a thin palladium membrane, which allows rapid pure hydrogen diffusion, which is then monitored by chronopotentiometry (zero current) response in the electrochemical compartment. The concept is demonstrated herein for the analysis of sugar content in commercial soft drinks. There is no requirement for the analyte to be conducting with electrolyte or buffered. In this way, samples (biological or not) can be simply monitored by their exposition to blue LED light, opening the door to additional energy conversion and waste-to-energy applications.
Collapse
Affiliation(s)
- Yuanzhu Zhao
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Joshua Dobson
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Catajina Harabajiu
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Elena Madrid
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Tinakorn Kanyanee
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK; Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Catherine Lyall
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK; Material & Chemical Characterisation Facility MC(2), University of Bath, Bath BA2 7AY, UK
| | - Shaun Reeksting
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK; Material & Chemical Characterisation Facility MC(2), University of Bath, Bath BA2 7AY, UK
| | - Mariolino Carta
- Department of Chemistry, Swansea University, College of Science, Grove Building, Singleton Park, Swansea SA2 8PP, UK
| | - Neil B McKeown
- School of Chemistry, University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh, Scotland EH9 3JJ, UK
| | - Laura Torrente-Murciano
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Kate Black
- University of Liverpool, School of Engineering, Liverpool L69 3BX, UK
| | - Frank Marken
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| |
Collapse
|
17
|
Marken F, Madrid E, Zhao Y, Carta M, McKeown NB. Polymers of Intrinsic Microporosity in Triphasic Electrochemistry: Perspectives. ChemElectroChem 2019. [DOI: 10.1002/celc.201900717] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Frank Marken
- Department of Chemistry University of Bath Bath BA2 7AY UK
| | - Elena Madrid
- Department of Chemistry University of Bath Bath BA2 7AY UK
| | - Yuanzhu Zhao
- Department of Chemistry University of Bath Bath BA2 7AY UK
| | - Mariolino Carta
- Department of Chemistry Swansea University, College of Science Grove Building Singleton Park Swansea SA2 8PP UK
| | - Neil B. McKeown
- EAstChem School of Chemistry University of Edinburgh, Joseph Black Building David Brewster Rd. Edinburgh, Scotland EH9 3FJ UK
| |
Collapse
|
18
|
Zhao Y, Al Abass NA, Malpass-Evans R, Carta M, McKeown NB, Madrid E, Fletcher PJ, Marken F. Photoelectrochemistry of immobilised Pt@g-C3N4 mediated by hydrogen and enhanced by a polymer of intrinsic microporosity PIM-1. Electrochem commun 2019. [DOI: 10.1016/j.elecom.2019.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
19
|
Mahajan A, Bhattacharya SK, Rochat S, Burrows AD, Fletcher PJ, Rong Y, Dalton AB, McKeown NB, Marken F. Polymer of Intrinsic Microporosity (PIM‐7) Coating Affects Triphasic Palladium Electrocatalysis. ChemElectroChem 2018. [DOI: 10.1002/celc.201801359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ankita Mahajan
- Department of ChemistryUniversity of Bath Claverton Down BA2 7AY UK
- Physical Chemistry Section Department of ChemistryJadavpur University Kolkata 700032 India
| | - Swapan K. Bhattacharya
- Physical Chemistry Section Department of ChemistryJadavpur University Kolkata 700032 India
| | - Sébastien Rochat
- Department of ChemistryUniversity of Bath Claverton Down BA2 7AY UK
| | | | - Philip J. Fletcher
- Materials and Chemical Characterisation Facility (MC2)University of Bath Claverton Down BA2 7AY UK
| | - Yuanyang Rong
- School of Physics and AstronomyUniversity of Sussex Brighton BN1 9RH UK
| | - Alan B. Dalton
- School of Physics and AstronomyUniversity of Sussex Brighton BN1 9RH UK
| | - Neil B. McKeown
- School of ChemistryUniversity of Edinburgh Joseph Black Building West Mains Road Edinburgh Scotland EH9 3JJ, UK
| | - Frank Marken
- Department of ChemistryUniversity of Bath Claverton Down BA2 7AY UK
| |
Collapse
|
20
|
Adamik RK, Hernández-Ibáñez N, Iniesta J, Edwards JK, Howe AGR, Armstrong RD, Taylor SH, Roldan A, Rong Y, Malpass-Evans R, Carta M, McKeown NB, He D, Marken F. Platinum Nanoparticle Inclusion into a Carbonized Polymer of Intrinsic Microporosity: Electrochemical Characteristics of a Catalyst for Electroless Hydrogen Peroxide Production. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E542. [PMID: 30021972 PMCID: PMC6071093 DOI: 10.3390/nano8070542] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/07/2018] [Accepted: 07/11/2018] [Indexed: 11/17/2022]
Abstract
The one-step vacuum carbonization synthesis of a platinum nano-catalyst embedded in a microporous heterocarbon (Pt@cPIM) is demonstrated. A nitrogen-rich polymer of an intrinsic microporosity (PIM) precursor is impregnated with PtCl₆2- to give (after vacuum carbonization at 700 °C) a nitrogen-containing heterocarbon with embedded Pt nanoparticles of typically 1⁻4 nm diameter (with some particles up to 20 nm diameter). The Brunauer-Emmett-Teller (BET) surface area of this hybrid material is 518 m² g-1 (with a cumulative pore volume of 1.1 cm³ g-1) consistent with the surface area of the corresponding platinum-free heterocarbon. In electrochemical experiments, the heterocarbon-embedded nano-platinum is observed as reactive towards hydrogen oxidation, but essentially non-reactive towards bigger molecules during methanol oxidation or during oxygen reduction. Therefore, oxygen reduction under electrochemical conditions is suggested to occur mainly via a 2-electron pathway on the outer carbon shell to give H₂O₂. Kinetic selectivity is confirmed in exploratory catalysis experiments in the presence of H₂ gas (which is oxidized on Pt) and O₂ gas (which is reduced on the heterocarbon surface) to result in the direct formation of H₂O₂.
Collapse
Affiliation(s)
- Robert K Adamik
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - Naiara Hernández-Ibáñez
- Departamento de Química Física e Instituto Universitario de Electroquímica, Universidad de Alicante, Apartado 99, 03080 Alicante, Spain.
| | - Jesus Iniesta
- Departamento de Química Física e Instituto Universitario de Electroquímica, Universidad de Alicante, Apartado 99, 03080 Alicante, Spain.
| | - Jennifer K Edwards
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK.
| | - Alexander G R Howe
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK.
| | - Robert D Armstrong
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK.
| | - Stuart H Taylor
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK.
| | - Alberto Roldan
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK.
| | - Yuanyang Rong
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - Richard Malpass-Evans
- East Chem, School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, Scotland EH9 3FJ, UK.
| | - Mariolino Carta
- Department of Chemistry, Swansea University, College of Science, Grove Building, Singleton Park, Swansea SA2 8PP, UK.
| | - Neil B McKeown
- East Chem, School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, Scotland EH9 3FJ, UK.
| | - Daping He
- Hubei Engineering Research Center of RF-Microwave Technology and Application, School of Science, Wuhan University of Technology, Wuhan 430070, China.
| | - Frank Marken
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| |
Collapse
|