• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4631400)   Today's Articles (223)   Subscriber (49874)
For: Yu J, Kwok SCT, Lu Z, Effat MB, Lyu YQ, Yuen MMF, Ciucci F. A Ceramic-PVDF Composite Membrane with Modified Interfaces as an Ion-Conducting Electrolyte for Solid-State Lithium-Ion Batteries Operating at Room Temperature. ChemElectroChem 2018. [DOI: 10.1002/celc.201800643] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Number Cited by Other Article(s)
1
Wang J, Ma X, Liu M, Wu Q, Guan X, Wang F, Liu H, Xu J. A general strategy for all-solid-state batteries with agglomeration-free and high conductivity achieved by improving the interface compatibility of fillers and polymer matrix. J Colloid Interface Sci 2024;671:248-257. [PMID: 38810339 DOI: 10.1016/j.jcis.2024.05.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/04/2024] [Accepted: 05/18/2024] [Indexed: 05/31/2024]
2
Lin W, Chen D, Yu J. Manipulating the ionic conductivity and interfacial compatibility of polymer-in-dual-salt electrolytes enables extended-temperature quasi-solid metal batteries. J Colloid Interface Sci 2024;666:189-200. [PMID: 38593653 DOI: 10.1016/j.jcis.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/20/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
3
Yu J, Zhou G, Li Y, Wang Y, Chen D, Ciucci F. Improving Room-Temperature Li-Metal Battery Performance by In Situ Creation of Fast Li+ Transport Pathways in a Polymer-Ceramic Electrolyte. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023;19:e2302691. [PMID: 37279776 DOI: 10.1002/smll.202302691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Indexed: 06/08/2023]
4
Cao S, Chen F, Shen Q, Zhang L. Dual-Coordination-Induced Poly(vinylidene fluoride)/Li6.4Ga0.2La3Zr2O12/Succinonitrile Composite Solid Electrolytes Toward Enhanced Rate Performance in All-Solid-State Lithium Batteries. ACS APPLIED MATERIALS & INTERFACES 2023;15:37422-37432. [PMID: 37497870 DOI: 10.1021/acsami.3c06179] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
5
Wang Y, Chen Z, Wu Y, Li Y, Yue Z, Chen M. PVDF-HFP/PAN/PDA@LLZTO Composite Solid Electrolyte Enabling Reinforced Safety and Outstanding Low-Temperature Performance for Quasi-Solid-State Lithium Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2023;15:21526-21536. [PMID: 37071843 DOI: 10.1021/acsami.3c02678] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
6
Castillo J, Robles-Fernandez A, Cid R, González-Marcos JA, Armand M, Carriazo D, Zhang H, Santiago A. Dehydrofluorination Process of Poly(vinylidene difluoride) PVdF-Based Gel Polymer Electrolytes and Its Effect on Lithium-Sulfur Batteries. Gels 2023;9:gels9040336. [PMID: 37102948 PMCID: PMC10137538 DOI: 10.3390/gels9040336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023]  Open
7
Rath PC, Liu MS, Lo ST, Dhaka RS, Bresser D, Yang CC, Lee SW, Chang JK. Suppression of Dehydrofluorination Reactions of a Li0.33La0.557TiO3-Nanofiber-Dispersed Poly(vinylidene fluoride-co-hexafluoropropylene) Electrolyte for Quasi-Solid-State Lithium-Metal Batteries by a Fluorine-Rich Succinonitrile Interlayer. ACS APPLIED MATERIALS & INTERFACES 2023;15:15429-15438. [PMID: 36920173 DOI: 10.1021/acsami.2c22268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
8
In situ polymerization infiltrated three-dimensional garnet-based framework for quasi-solid lithium metal batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
9
Du SY, Ren GX, Zhang N, Liu XS. High-Performance Poly(vinylidene fluoride-hexafluoropropylene)-Based Composite Electrolytes with Excellent Interfacial Compatibility for Room-Temperature All-Solid-State Lithium Metal Batteries. ACS OMEGA 2022;7:19631-19639. [PMID: 35721924 PMCID: PMC9202062 DOI: 10.1021/acsomega.2c01338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
10
Peng L, Lu Z, Zhong L, Jian J, Rong Y, Yang R, Xu Y, Jin C. Enhanced ionic conductivity and interface compatibility of PVDF-LLZTO composite solid electrolytes by interfacial maleic acid modification. J Colloid Interface Sci 2022;613:368-375. [PMID: 35042034 DOI: 10.1016/j.jcis.2022.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 10/19/2022]
11
Lin W, Liu J, Xue L, Li Y, Yu H, Xiong Y, Chen D, Ciucci F, Yu J. Nonflammable, robust and flexible electrolytes enabled by phosphate coupled polymer-polymer for Li-metal batteries. J Colloid Interface Sci 2022;621:222-231. [PMID: 35461137 DOI: 10.1016/j.jcis.2022.04.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 02/06/2023]
12
Ge M, Cao C, Biesold GM, Sewell CD, Hao SM, Huang J, Zhang W, Lai Y, Lin Z. Recent Advances in Silicon-Based Electrodes: From Fundamental Research toward Practical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021;33:e2004577. [PMID: 33686697 DOI: 10.1002/adma.202004577] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/17/2020] [Indexed: 06/12/2023]
13
Walle KZ, Musuvadhi Babulal L, Wu SH, Chien WC, Jose R, Lue SJ, Chang JK, Yang CC. Electrochemical Characteristics of a Polymer/Garnet Trilayer Composite Electrolyte for Solid-State Lithium-Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2021;13:2507-2520. [PMID: 33406841 DOI: 10.1021/acsami.0c17422] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
14
Beshahwured SL, Wu YS, Wu SH, Chien WC, Jose R, Lue SJ, Yang CC. Flexible hybrid solid electrolyte incorporating ligament-shaped Li6.25Al0.25La3Zr2O12 filler for all-solid-state lithium-metal batteries. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137348] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
15
Chen S, Zhang J, Nie L, Hu X, Huang Y, Yu Y, Liu W. All-Solid-State Batteries with a Limited Lithium Metal Anode at Room Temperature using a Garnet-Based Electrolyte. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021;33:e2002325. [PMID: 33241602 DOI: 10.1002/adma.202002325] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 10/21/2020] [Indexed: 06/11/2023]
16
Submicron-Sized Nb-Doped Lithium Garnet for High Ionic Conductivity Solid Electrolyte and Performance of Quasi-Solid-State Lithium Battery. MATERIALS 2020;13:ma13030560. [PMID: 31991551 PMCID: PMC7040616 DOI: 10.3390/ma13030560] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 11/17/2022]
17
Zhang Y, Fei H, An Y, Wei C, Feng J. High Voltage, Flexible and Low Cost All‐Solid‐State Lithium Metal Batteries with a Wide Working Temperature Range. ChemistrySelect 2020. [DOI: 10.1002/slct.201904206] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
18
Liu K, Zhang R, Sun J, Wu M, Zhao T. Polyoxyethylene (PEO)|PEO-Perovskite|PEO Composite Electrolyte for All-Solid-State Lithium Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2019;11:46930-46937. [PMID: 31765131 DOI: 10.1021/acsami.9b16936] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
19
Huang T, Long M, Wu G, Wang Y, Wang X. Poly(ionic liquid)‐Based Hybrid Hierarchical Free‐Standing Electrolytes with Enhanced Ion Transport and Fire Retardancy Towards Long‐Cycle‐Life and Safe Lithium Batteries. ChemElectroChem 2019. [DOI: 10.1002/celc.201900686] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
20
Ionic conductivity promotion of polymer membranes with oxygen-ion conducting nanowires for rechargeable lithium batteries. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
21
Sun Y, Zhan X, Hu J, Wang Y, Gao S, Shen Y, Cheng YT. Improving Ionic Conductivity with Bimodal-Sized Li7La3Zr2O12 Fillers for Composite Polymer Electrolytes. ACS APPLIED MATERIALS & INTERFACES 2019;11:12467-12475. [PMID: 30855127 DOI: 10.1021/acsami.8b21770] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
22
Lun P, Chen Z, Zhang Z, Tan S, Chen D. Enhanced ionic conductivity in halloysite nanotube-poly(vinylidene fluoride) electrolytes for solid-state lithium-ion batteries. RSC Adv 2018;8:34232-34240. [PMID: 35548647 PMCID: PMC9086941 DOI: 10.1039/c8ra06856a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 09/28/2018] [Indexed: 11/21/2022]  Open
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA