1
|
Kost M, Kornherr M, Zehetmaier P, Illner H, Jeon DS, Gasteiger H, Döblinger M, Fattakhova-Rohlfing D, Bein T. Chemical Epitaxy of Iridium Oxide on Tin Oxide Enhances Stability of Supported OER Catalyst. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404118. [PMID: 39165199 DOI: 10.1002/smll.202404118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Indexed: 08/22/2024]
Abstract
Significantly reducing the iridium content in oxygen evolution reaction (OER) catalysts while maintaining high electrocatalytic activity and stability is a key priority in the development of large-scale proton exchange membrane (PEM) electrolyzers. In practical catalysts, this is usually achieved by depositing thin layers of iridium oxide on a dimensionally stable metal oxide support material that reduces the volumetric packing density of iridium in the electrode assembly. By comparing two support materials with different structure types, it is shown that the chemical nature of the metal oxide support can have a strong influence on the crystallization of the iridium oxide phase and the direction of crystal growth. Epitaxial growth of crystalline IrO2 is achieved on the isostructural support material SnO2, both of which have a rutile structure with very similar lattice constants. Crystallization of amorphous IrOx on an SnO2 substrate results in interconnected, ultrasmall IrO2 crystallites that grow along the surface and are firmly anchored to the substrate. Thereby, the IrO2 phase enables excellent conductivity and remarkable stability of the catalyst at higher overpotentials and current densities at a very low Ir content of only 14 at%. The chemical epitaxy described here opens new horizons for the optimization of conductivity, activity and stability of electrocatalysts and the development of other epitaxial materials systems.
Collapse
Affiliation(s)
- Melisande Kost
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13 (E), 81377, Munich, Germany
| | - Matthias Kornherr
- Department of Chemistry, Catalysis Research Center and Chair of Technical Electrochemistry, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Peter Zehetmaier
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13 (E), 81377, Munich, Germany
| | - Hannah Illner
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13 (E), 81377, Munich, Germany
| | - Djung Sue Jeon
- Department of Chemistry, Catalysis Research Center and Chair of Technical Electrochemistry, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Hubert Gasteiger
- Department of Chemistry, Catalysis Research Center and Chair of Technical Electrochemistry, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Markus Döblinger
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13 (E), 81377, Munich, Germany
| | - Dina Fattakhova-Rohlfing
- Institute of Energy Materials and Devices (IMD-2): Materials Synthesis and Processing, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Strasse, 52425, Jülich, Germany
- Faculty of Engineering and Center for Nanointegration, Duisburg-Essen (CENIDE), Universität Duisburg-Essen, Lotharstraße 1, 47057, Duisburg, Germany
| | - Thomas Bein
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13 (E), 81377, Munich, Germany
| |
Collapse
|
2
|
Belami D, Lindley M, Jonnalagadda US, Goncalves Bullock AM, Fan Q, Liu W, Haigh SJ, Kwan J, Regmi YN, King LA. Active and highly durable supported catalysts for proton exchange membrane electrolysers. EES CATALYSIS 2024; 2:1139-1151. [PMID: 39246682 PMCID: PMC11375952 DOI: 10.1039/d4ey00026a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/12/2024] [Indexed: 09/10/2024]
Abstract
The design and development of supported catalysts for the oxygen evolution reaction (OER) is a promising pathway to reducing iridium loading in proton exchange membrane water electrolysers. However, supported catalysts often suffer from poor activity and durability, particularly when deployed in membrane electrode assemblies. In this work, we deploy iridium coated hollow titanium dioxide particles as OER catalysts to achieve higher Ir mass activities than the leading commercial catalysts. Critically, we demonstrate state-of-the-art durabilities for supported iridium catalysts when compared against the previously reported values for analogous device architectures, operating conditions and accelerated stress test profiles. Through extensive materials characterisations alongside rotating disk electrode measurements, we investigate the role of conductivity, morphology, oxidation state and crystallinity on the OER electrochemical performance. Our work highlights a new supported catalyst design that unlocks high-performance OER activity and durability in commercially relevant testing configurations.
Collapse
Affiliation(s)
- Debora Belami
- Faculty of Science and Engineering, Manchester Metropolitan University Chester Street M1 5GD UK
| | - Matthew Lindley
- Department of Materials, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Umesh S Jonnalagadda
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 62 Nanyang Drive 637459 Singapore
| | | | - Qianwenhao Fan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 62 Nanyang Drive 637459 Singapore
| | - Wen Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 62 Nanyang Drive 637459 Singapore
| | - Sarah J Haigh
- Department of Materials, University of Manchester Oxford Road Manchester M13 9PL UK
| | - James Kwan
- Department of Engineering Science, University of Oxford Parks Road Oxford OX1 3PJ UK
| | - Yagya N Regmi
- Faculty of Science and Engineering, Manchester Metropolitan University Chester Street M1 5GD UK
| | - Laurie A King
- Faculty of Science and Engineering, Manchester Metropolitan University Chester Street M1 5GD UK
| |
Collapse
|
3
|
Wang Y, Zhao Z, Liang X, Zhao X, Wang X, Jana S, Wu YA, Zou Y, Li L, Chen H, Zou X. Supported IrO 2 Nanocatalyst with Multilayered Structure for Proton Exchange Membrane Water Electrolysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407717. [PMID: 39113326 DOI: 10.1002/adma.202407717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/25/2024] [Indexed: 09/28/2024]
Abstract
The design of a low-iridium-loading anode catalyst layer with high activity and durability is a key challenge for a proton exchange membrane water electrolyzer (PEMWE). Here, the synthesis of a novel supported IrO2 nanocatalyst with a tri-layered structure, dubbed IrO2@TaOx@TaB that is composed of ultrasmall IrO2 nanoparticles anchored on amorphous TaOx overlayer of TaB nanorods is reported. The composite electrocatalyst shows great activity and stability toward the oxygen evolution reaction (OER) in acid, thanks to its dual-interface structural feature. The electronic interaction in IrO2/TaOx interface can regulate the coverage of surface hydroxyl groups, the Ir3+/ Ir4+ ratio, and the redox peak potential of IrO2 for enhancing OER activity, while the dense TaOx overlayer can prevent further oxidation of TaB substrate and stabilize the IrO2 catalytic layers for improving structural stability during OER. The IrO2@TaOx@TaB can be used to fabricate an anode catalyst layer of PEMWE with an iridium-loading as low as 0.26 mg cm-2. The low-iridium-loading PEMWE delivers high current densities at low cell voltages (e.g., 3.9 A cm-2@2.0 V), and gives excellent activity retention for more than 1500 h at 2.0 A cm-2 current density.
Collapse
Affiliation(s)
- Yuannan Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zicheng Zhao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiao Liang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiao Zhao
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| | - Xiyang Wang
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Subhajit Jana
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Yimin A Wu
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Yongcun Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Lu Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Hui Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiaoxin Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
4
|
Hoffmeister D, Finger S, Fiedler L, Ma T, Körner A, Zlatar M, Fritsch B, Bodnar KW, Carl S, Götz A, Zubiri BA, Will J, Spiecker E, Cherevko S, Freiberg ATS, Mayrhofer KJJ, Thiele S, Hutzler A, van Pham C. Photodeposition-Based Synthesis of TiO 2@IrO x Core-Shell Catalyst for Proton Exchange Membrane Water Electrolysis with Low Iridium Loading. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402991. [PMID: 38874424 PMCID: PMC11321668 DOI: 10.1002/advs.202402991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/17/2024] [Indexed: 06/15/2024]
Abstract
The widespread application of green hydrogen production technologies requires cost reduction of crucial elements. To achieve this, a viable pathway to reduce the iridium loading in proton exchange membrane water electrolysis (PEMWE) is explored. Herein, a scalable synthesis method based on a photodeposition process for a TiO2@IrOx core-shell catalyst with a reduced iridium content as low as 40 wt.% is presented. Using this synthesis method, titania support particles homogeneously coated with a thin iridium oxide shell of only 2.1 ± 0.4 nm are obtained. The catalyst exhibits not only high ex situ activity, but also decent stability compared to commercially available catalysts. Furthermore, the unique core-shell structure provides a threefold increased electrical powder conductivity compared to structures without the shell. In addition, the low iridium content facilitates the fabrication of sufficiently thick catalyst layers at decreased iridium loadings mitigating the impact of crack formation in the catalyst layer during PEMWE operation. It is demonstrated that the novel TiO2@IrOx core-shell catalyst clearly outperforms the commercial reference in single-cell tests with an iridium loading below 0.3 mgIr cm-2 exhibiting a superior iridium-specific power density of 17.9 kW gIr -1 compared to 10.4 kW gIr -1 for the commercial reference.
Collapse
Affiliation(s)
- Darius Hoffmeister
- Forschungszentrum Jülich GmbHHelmholtz Institute Erlangen‐Nürnberg for Renewable Energy91058ErlangenGermany
- Department Chemical and Biological EngineeringFriedrich‐Alexander‐Universität Erlangen‐Nürnberg91058ErlangenGermany
| | - Selina Finger
- Forschungszentrum Jülich GmbHHelmholtz Institute Erlangen‐Nürnberg for Renewable Energy91058ErlangenGermany
- Department Chemical and Biological EngineeringFriedrich‐Alexander‐Universität Erlangen‐Nürnberg91058ErlangenGermany
| | - Lena Fiedler
- Forschungszentrum Jülich GmbHHelmholtz Institute Erlangen‐Nürnberg for Renewable Energy91058ErlangenGermany
- Department Chemical and Biological EngineeringFriedrich‐Alexander‐Universität Erlangen‐Nürnberg91058ErlangenGermany
| | - Tien‐Ching Ma
- Forschungszentrum Jülich GmbHHelmholtz Institute Erlangen‐Nürnberg for Renewable Energy91058ErlangenGermany
- Department Chemical and Biological EngineeringFriedrich‐Alexander‐Universität Erlangen‐Nürnberg91058ErlangenGermany
| | - Andreas Körner
- Forschungszentrum Jülich GmbHHelmholtz Institute Erlangen‐Nürnberg for Renewable Energy91058ErlangenGermany
| | - Matej Zlatar
- Forschungszentrum Jülich GmbHHelmholtz Institute Erlangen‐Nürnberg for Renewable Energy91058ErlangenGermany
- Department Chemical and Biological EngineeringFriedrich‐Alexander‐Universität Erlangen‐Nürnberg91058ErlangenGermany
| | - Birk Fritsch
- Forschungszentrum Jülich GmbHHelmholtz Institute Erlangen‐Nürnberg for Renewable Energy91058ErlangenGermany
| | - Kerstin Witte Bodnar
- Fraunhofer Institute for Microstructure of Materials and Systems (IMWS)06120HalleGermany
- Fraunhofer Center for Silicon Photovoltaics06120HalleGermany
| | - Simon Carl
- Institute of Micro‐ and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM)Interdisciplinary Center for Nanostructured Films (IZNF)Friedrich‐Alexander‐Universität Erlangen‐Nürnberg91058ErlangenGermany
| | - Alexander Götz
- Institute of Micro‐ and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM)Interdisciplinary Center for Nanostructured Films (IZNF)Friedrich‐Alexander‐Universität Erlangen‐Nürnberg91058ErlangenGermany
| | - Benjamin Apeleo Zubiri
- Institute of Micro‐ and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM)Interdisciplinary Center for Nanostructured Films (IZNF)Friedrich‐Alexander‐Universität Erlangen‐Nürnberg91058ErlangenGermany
| | - Johannes Will
- Institute of Micro‐ and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM)Interdisciplinary Center for Nanostructured Films (IZNF)Friedrich‐Alexander‐Universität Erlangen‐Nürnberg91058ErlangenGermany
| | - Erdmann Spiecker
- Institute of Micro‐ and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM)Interdisciplinary Center for Nanostructured Films (IZNF)Friedrich‐Alexander‐Universität Erlangen‐Nürnberg91058ErlangenGermany
| | - Serhiy Cherevko
- Forschungszentrum Jülich GmbHHelmholtz Institute Erlangen‐Nürnberg for Renewable Energy91058ErlangenGermany
| | - Anna T. S. Freiberg
- Forschungszentrum Jülich GmbHHelmholtz Institute Erlangen‐Nürnberg for Renewable Energy91058ErlangenGermany
- Department Chemical and Biological EngineeringFriedrich‐Alexander‐Universität Erlangen‐Nürnberg91058ErlangenGermany
| | - Karl J. J. Mayrhofer
- Forschungszentrum Jülich GmbHHelmholtz Institute Erlangen‐Nürnberg for Renewable Energy91058ErlangenGermany
- Department Chemical and Biological EngineeringFriedrich‐Alexander‐Universität Erlangen‐Nürnberg91058ErlangenGermany
| | - Simon Thiele
- Forschungszentrum Jülich GmbHHelmholtz Institute Erlangen‐Nürnberg for Renewable Energy91058ErlangenGermany
- Department Chemical and Biological EngineeringFriedrich‐Alexander‐Universität Erlangen‐Nürnberg91058ErlangenGermany
| | - Andreas Hutzler
- Forschungszentrum Jülich GmbHHelmholtz Institute Erlangen‐Nürnberg for Renewable Energy91058ErlangenGermany
| | - Chuyen van Pham
- Forschungszentrum Jülich GmbHHelmholtz Institute Erlangen‐Nürnberg for Renewable Energy91058ErlangenGermany
| |
Collapse
|
5
|
Alaufey R, Keith JA, Tang M. A Co-Doping Materials Design Strategy for Selective Ozone Electrocatalysts. J Phys Chem Lett 2024; 15:7351-7356. [PMID: 38990156 PMCID: PMC11261613 DOI: 10.1021/acs.jpclett.4c01150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/17/2024] [Accepted: 07/09/2024] [Indexed: 07/12/2024]
Abstract
Catalysts for electrochemical ozone production (EOP) face inherent selectivity challenges stemming from thermodynamic constraints. This work establishes a design strategy for minimizing these limitations and inducing EOP activity in tin oxide, which is an intrinsically EOP-inactive material. We propose that selective ozone production using tin oxide catalysts can be broadly achieved by co-doping with two elements: first, n-type dopants to enhance electrical conductivity, and second, transition metal dopants that leach and homogeneously generate essential hydroperoxyl radical intermediates. Synthesizing tantalum, antimony, and tungsten n-type dopants with nickel, cobalt, and iron as transition metal dopants confirms that properly co-doping tin oxide yields EOP-active catalysts. This study offers a robust framework for advancing EOP catalyst design and serves as a case study for the application of fundamental co-catalysis and solid-state physics principles to induce catalytic activity in inert materials.
Collapse
Affiliation(s)
- Rayan Alaufey
- Department
of Chemical and Biological Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - John A. Keith
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, 3700 O’Hara Street, Pittsburgh, Pennsylvania 15261, United States
| | - Maureen Tang
- Department
of Chemical and Biological Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
6
|
Bornet A, Pittkowski R, Nielsen TM, Berner E, Maletzko A, Schröder J, Quinson J, Melke J, Jensen KMØ, Arenz M. Influence of Temperature on the Performance of Carbon- and ATO-supported Oxygen Evolution Reaction Catalysts in a Gas Diffusion Electrode Setup. ACS Catal 2023; 13:7568-7577. [PMID: 37288094 PMCID: PMC10242686 DOI: 10.1021/acscatal.3c01193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/09/2023] [Indexed: 06/09/2023]
Abstract
State-of-the-art industrial electrocatalysts for the oxygen evolution reaction (OER) under acidic conditions are Ir-based. Considering the scarce supply of Ir, it is imperative to use the precious metal as efficiently as possible. In this work, we immobilized ultrasmall Ir and Ir0.4Ru0.6 nanoparticles on two different supports to maximize their dispersion. One high-surface-area carbon support serves as a reference but has limited technological relevance due to its lack of stability. The other support, antimony-doped tin oxide (ATO), has been proposed in the literature as a possible better support for OER catalysts. Temperature-dependent measurements performed in a recently developed gas diffusion electrode (GDE) setup reveal that surprisingly the catalysts immobilized on commercial ATO performed worse than their carbon-immobilized counterparts. The measurements suggest that the ATO support deteriorates particularly fast at elevated temperatures.
Collapse
Affiliation(s)
- Aline Bornet
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Rebecca Pittkowski
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Tobias M. Nielsen
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Etienne Berner
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Annabelle Maletzko
- Department
for Applied Electrochemistry, Fraunhofer-Institute
for Chemical Technology ICT, Joseph-von-Fraunhofer Strasse 7, 76327 Pfinztal, Germany
| | - Johanna Schröder
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Jonathan Quinson
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
- Biochemical
and Chemical Engineering Department, Aarhus
University, Åbogade 40, 8200 Aarhus, Denmark
| | - Julia Melke
- Department
for Applied Electrochemistry, Fraunhofer-Institute
for Chemical Technology ICT, Joseph-von-Fraunhofer Strasse 7, 76327 Pfinztal, Germany
| | - Kirsten M. Ø. Jensen
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Matthias Arenz
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
7
|
Evaluating the Stability of Ir Single Atom and Ru Atomic Cluster Oxygen Evolution Reaction Electrocatalysts. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
8
|
Krivina RA, Zlatar M, Stovall TN, Lindquist GA, Eascalera-López D, Cook AK, Hutchison JE, Cherevko S, Boettcher SW. Oxygen Evolution Electrocatalysis in Acids: Atomic Tuning of the Stability Number for Submonolayer IrO x on Conductive Oxides from Molecular Precursors. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Raina A. Krivina
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Matej Zlatar
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, 91058 Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - T. Nathan Stovall
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Grace A. Lindquist
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Daniel Eascalera-López
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, 91058 Erlangen, Germany
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, 14195 Berlin, Germany
| | - Amanda K. Cook
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - James E. Hutchison
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, 91058 Erlangen, Germany
| | - Shannon W. Boettcher
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
9
|
Koderman Podboršek G, Suhadolnik L, Lončar A, Bele M, Hrnjić A, Marinko Ž, Kovač J, Kokalj A, Gašparič L, Surca AK, Kamšek AR, Dražić G, Gaberšček M, Hodnik N, Jovanovič P. Iridium Stabilizes Ceramic Titanium Oxynitride Support for Oxygen Evolution Reaction. ACS Catal 2022; 12:15135-15145. [PMID: 36570081 PMCID: PMC9764282 DOI: 10.1021/acscatal.2c04160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/17/2022] [Indexed: 11/30/2022]
Abstract
Decreasing iridium loading in the electrocatalyst presents a crucial challenge in the implementation of proton exchange membrane (PEM) electrolyzers. In this respect, fine dispersion of Ir on electrically conductive ceramic supports is a promising strategy. However, the supporting material needs to meet the demanding requirements such as structural stability and electrical conductivity under harsh oxygen evolution reaction (OER) conditions. Herein, nanotubular titanium oxynitride (TiON) is studied as a support for iridium nanoparticles. Atomically resolved structural and compositional transformations of TiON during OER were followed using a task-specific advanced characterization platform. This combined the electrochemical treatment under floating electrode configuration and identical location transmission electron microscopy (IL-TEM) analysis of an in-house-prepared Ir-TiON TEM grid. Exhaustive characterization, supported by density functional theory (DFT) calculations, demonstrates and confirms that both the Ir nanoparticles and single atoms induce a stabilizing effect on the ceramic support via marked suppression of the oxidation tendency of TiON under OER conditions.
Collapse
Affiliation(s)
- Gorazd Koderman Podboršek
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, SI-1000Ljubljana, Slovenia,Jožef
Stefan International Postgraduate School, Jamova 39, SI-1000Ljubljana, Slovenia
| | - Luka Suhadolnik
- Department
for Nanostructured Materials, Jožef
Stefan Institute, Jamova 39, SI-1000Ljubljana, Slovenia,Department
of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, 34127Trieste, Italy,
| | - Anja Lončar
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, SI-1000Ljubljana, Slovenia,University
of Nova Gorica, Vipavska
13, SI-5000Nova
Gorica, Slovenia
| | - Marjan Bele
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, SI-1000Ljubljana, Slovenia,
| | - Armin Hrnjić
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, SI-1000Ljubljana, Slovenia,University
of Nova Gorica, Vipavska
13, SI-5000Nova
Gorica, Slovenia
| | - Živa Marinko
- Jožef
Stefan International Postgraduate School, Jamova 39, SI-1000Ljubljana, Slovenia,Department
for Nanostructured Materials, Jožef
Stefan Institute, Jamova 39, SI-1000Ljubljana, Slovenia
| | - Janez Kovač
- Department
of Surface Engineering, Jožef Stefan
Institute, Jamova 39, SI-1000Ljubljana, Slovenia
| | - Anton Kokalj
- Jožef
Stefan International Postgraduate School, Jamova 39, SI-1000Ljubljana, Slovenia,Department
of Physical and Organic Chemistry, Jožef
Stefan Institute, Jamova
39, SI-1000Ljubljana, Slovenia
| | - Lea Gašparič
- Jožef
Stefan International Postgraduate School, Jamova 39, SI-1000Ljubljana, Slovenia,Department
of Physical and Organic Chemistry, Jožef
Stefan Institute, Jamova
39, SI-1000Ljubljana, Slovenia,Centre
of Excellence for Low-Carbon Technologies, Hajdrihova 19, SI-1000Ljubljana, Slovenia
| | - Angelja Kjara Surca
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, SI-1000Ljubljana, Slovenia
| | - Ana Rebeka Kamšek
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, SI-1000Ljubljana, Slovenia,Faculty
of Chemistry and Chemical Engineering, University
of Ljubljana, Večna
pot 113, SI-1000Ljubljana, Slovenia
| | - Goran Dražić
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, SI-1000Ljubljana, Slovenia,Jožef
Stefan International Postgraduate School, Jamova 39, SI-1000Ljubljana, Slovenia
| | - Miran Gaberšček
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, SI-1000Ljubljana, Slovenia
| | - Nejc Hodnik
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, SI-1000Ljubljana, Slovenia,Jožef
Stefan International Postgraduate School, Jamova 39, SI-1000Ljubljana, Slovenia,University
of Nova Gorica, Vipavska
13, SI-5000Nova
Gorica, Slovenia
| | - Primož Jovanovič
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, SI-1000Ljubljana, Slovenia,
| |
Collapse
|
10
|
Kreider ME, Kamat GA, Zamora Zeledón JA, Wei L, Sokaras D, Gallo A, Stevens MB, Jaramillo TF. Understanding the Stability of Manganese Chromium Antimonate Electrocatalysts through Multimodal In Situ and Operando Measurements. J Am Chem Soc 2022; 144:22549-22561. [PMID: 36453840 DOI: 10.1021/jacs.2c08600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Improving electrocatalyst stability is critical for the development of electrocatalytic devices. Herein, we utilize an on-line electrochemical flow cell coupled with an inductively coupled plasma-mass spectrometer (ICP-MS) to characterize the impact of composition and reactant gas on the multielement dissolution of Mn(-Cr)-Sb-O electrocatalysts. Compared to Mn2O3 and Cr2O3 oxides, the antimonate framework stabilizes Mn at OER potentials and Cr at both ORR and OER potentials. Furthermore, dissolution of Mn and Cr from Mn(-Cr) -Sb-O is driven by the ORR reaction rate, with minimal dissolution under N2. We observe preferential dissolution of Cr totaling 13% over 10 min at 0.3, 0.6, and 0.9 V vs RHE, with only 1.5% loss of Mn, indicating an enrichment of Mn at the surface of the particles. Despite this asymmetric dissolution, operando X-ray absorption spectroscopy (XAS) showed no measurable changes in the Mn K-edge at comparable potentials. This could suggest that modification to the Mn oxidation state and/or phase in the surface layer is too small or that the layer is too thin to be measured with the bulk XAS measurement. Lastly, on-line ICP-MS was used to assess the effects of applied potential, scan rate, and current on Mn-Cr-Sb-O during cyclic voltammetry and accelerated stress tests. With this deeper understanding of the interplay between oxygen reduction and dissolution, testing procedures were identified to maximize both activity and stability. This work highlights the use of multimodal in situ characterization techniques in tandem to build a more complete model of stability and develop protocols for optimizing catalyst performance.
Collapse
Affiliation(s)
- Melissa E Kreider
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States.,SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Gaurav A Kamat
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States.,SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - José A Zamora Zeledón
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States.,SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Lingze Wei
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States.,SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Dimosthenis Sokaras
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Alessandro Gallo
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Michaela Burke Stevens
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Thomas F Jaramillo
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States.,SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
11
|
Kim EJ, Kim KH, Bak J, Lee K, Cho E. Carbon nanotube-titanium dioxide nanocomposite support for improved activity and stability of an iridium catalyst toward the oxygen evolution reaction. RSC Adv 2022; 12:35943-35949. [PMID: 36545110 PMCID: PMC9753482 DOI: 10.1039/d2ra05027g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022] Open
Abstract
In order to improve the electrocatalytic activity and stability of an iridium (Ir) nanoparticle catalyst toward the oxygen evolution reaction (OER) in acidic electrolyte, carbon nanotube and titanium dioxide nanocomposites (CNT@TiO2) are presented as a high-performance support. TiO2 was synthesized on CNTs by using a novel layer-by-layer solution coating method that mimics atomic layer deposition (ALD) but is cost-effective and scalable. In the nanocomposites, CNTs serve as the electron pathways and the surface TiO2 layers protect CNTs from corrosion under the harsh OER conditions. Thus, CNT@TiO2 demonstrates excellent corrosion resistance as well as a high electrical conductivity (1.6 ± 0.2 S cm-1) comparable to that of Vulcan carbon (1.4 S cm-1). The interaction between Ir and TiO2 promotes the formation of Ir(iii) species, thereby enhancing the OER activity and stability of the Ir nanoparticle catalyst. Compared to commercial carbon-supported Ir (Ir/C) and Ir black catalysts, CNT@TiO2-supported Ir exhibits superior OER activity and stability.
Collapse
Affiliation(s)
- Eom Ji Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro Yuseong-gu Daejeon 34141 Republic of Korea
| | - Ki Hyun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro Yuseong-gu Daejeon 34141 Republic of Korea
| | - Junu Bak
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro Yuseong-gu Daejeon 34141 Republic of Korea
| | - KwangHo Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro Yuseong-gu Daejeon 34141 Republic of Korea
| | - EunAe Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro Yuseong-gu Daejeon 34141 Republic of Korea
| |
Collapse
|
12
|
Moriau L, Smiljanić M, Lončar A, Hodnik N. Supported Iridium-based Oxygen Evolution Reaction Electrocatalysts - Recent Developments. ChemCatChem 2022; 14:e202200586. [PMID: 36605357 PMCID: PMC9804445 DOI: 10.1002/cctc.202200586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/28/2022] [Indexed: 01/09/2023]
Abstract
The commercialization of acidic proton exchange membrane water electrolyzers (PEMWE) is heavily hindered by the price and scarcity of oxygen evolution reaction (OER) catalyst, i. e. iridium and its oxides. One of the solutions to enhance the utilization of this precious metal is to use a support to distribute well dispersed Ir nanoparticles. In addition, adequately chosen support can also impact the activity and stability of the catalyst. However, not many materials can sustain the oxidative and acidic conditions of OER in PEMWE. Hereby, we critically and extensively review the different materials proposed as possible supports for OER in acidic media and the effect they have on iridium performances.
Collapse
Affiliation(s)
- Leonard Moriau
- Department of Materials ChemistryNational Institute of ChemistryHajdrihova 191001LjubljanaSlovenia
| | - Milutin Smiljanić
- Department of Materials ChemistryNational Institute of ChemistryHajdrihova 191001LjubljanaSlovenia
| | - Anja Lončar
- Department of Materials ChemistryNational Institute of ChemistryHajdrihova 191001LjubljanaSlovenia
- University of Nova GoricaVipavska 135000Nova GoricaSlovenia
| | - Nejc Hodnik
- Department of Materials ChemistryNational Institute of ChemistryHajdrihova 191001LjubljanaSlovenia
- University of Nova GoricaVipavska 135000Nova GoricaSlovenia
| |
Collapse
|
13
|
Nguyen TD, Hoogeveen DA, Cherepanov PV, Dinh KN, van Zeil D, Varga JF, MacFarlane DR, Simonov AN. Metallic Inverse Opal Frameworks as Catalyst Supports for High-Performance Water Electrooxidation. CHEMSUSCHEM 2022; 15:e202200858. [PMID: 35875904 PMCID: PMC9825931 DOI: 10.1002/cssc.202200858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/22/2022] [Indexed: 06/15/2023]
Abstract
High intrinsic activity of oxygen evolution reaction (OER) catalysts is often limited by their low electrical conductivity. To address this, we introduce copper inverse opal (IO) frameworks offering a well-developed network of interconnected pores as highly conductive high-surface-area supports for thin catalytic coatings, for example, the extremely active but poorly conducting nickel-iron layered double hydroxides (NiFe LDH). Such composites exhibit significantly higher OER activity in 1 m KOH than NiFe LDH supported on a flat substrate or deposited as inverse opals. The NiFe LDH/Cu IO catalyst enables oxygen evolution rates of 100 mA cm-2 (727±4 A gcatalyst -1 ) at an overpotential of 0.305±0.003 V with a Tafel slope of 0.044±0.002 V dec-1 . This high performance is achieved with 2.2±0.4 μm catalyst layers, suggesting compatibility of the inverse-opal-supported catalysts with membrane electrolyzers, in contrast to similarly performing 103 -fold thicker electrodes based on foams and other substrates.
Collapse
Affiliation(s)
- Tam D. Nguyen
- School of ChemistryMonash UniversityClaytonVIC 3800Australia
- Energys Australia Pty Ltd2 Anzed CourtMulgraveVIC 3170Australia
| | | | | | - Khang N. Dinh
- School of ChemistryMonash UniversityClaytonVIC 3800Australia
| | - Daniel van Zeil
- School of ChemistryMonash UniversityClaytonVIC 3800Australia
| | - Joseph F. Varga
- Energys Australia Pty Ltd2 Anzed CourtMulgraveVIC 3170Australia
| | | | | |
Collapse
|
14
|
Li G, Jia H, Liu H, Yang X, Lin MC. Nanostructured IrO x supported on N-doped TiO 2 as an efficient electrocatalyst towards acidic oxygen evolution reaction. RSC Adv 2022; 12:28929-28936. [PMID: 36320779 PMCID: PMC9552315 DOI: 10.1039/d2ra05374h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/04/2022] [Indexed: 01/25/2023] Open
Abstract
Reducing the Ir consumption without compromising the catalytic performance for the oxygen evolution reaction (OER) is highly paramount to promote the extensive development of the environmentally-friendly solid polymer electrolyte water electrolysis (SPEWE) system. Herein, TiO2 is doped with N through facile NH3 gas treatment and innovatively employed to support IrO x nanoparticles towards acidic OER. N-doping action not only dramatically boosts the electrical conductivity and dispersing/anchoring effects of TiO2, but also effectively improves the electron-transfer procedure. As a result, the IrO x /N-TiO2 electrocatalyst exhibits prominent catalyst utilization, catalytic activity and stability. Specifically, the overpotential required to deliver 10 mA cm-2 is only 270 mV, and the mass activity climbs to 278.7 A gIr -1 @ 1.55 VRHE. Moreover, the single cell voltage is only 1.761 V @ 2.0 A cm-2 when adopting IrO x /N-TiO2 as the anode catalyst, which is 44 mV lower than that of the commercial IrO2 counterpart.
Collapse
Affiliation(s)
- Guoqiang Li
- College of Energy Storage Technology, Shandong University of Science and Technology Qingdao 266590 China
| | - Hongrui Jia
- College of Energy Storage Technology, Shandong University of Science and Technology Qingdao 266590 China
| | - Huan Liu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao 266101 China
| | - Xin Yang
- College of Energy Storage Technology, Shandong University of Science and Technology Qingdao 266590 China
| | - Meng-Chang Lin
- College of Energy Storage Technology, Shandong University of Science and Technology Qingdao 266590 China
| |
Collapse
|
15
|
Lončar A, Escalera‐López D, Cherevko S, Hodnik N. Inter-relationships between Oxygen Evolution and Iridium Dissolution Mechanisms. Angew Chem Int Ed Engl 2022; 61:e202114437. [PMID: 34942052 PMCID: PMC9305877 DOI: 10.1002/anie.202114437] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Indexed: 11/08/2022]
Abstract
The widespread utilization of proton exchange membrane (PEM) electrolyzers currently remains uncertain, as they rely on the use of highly scarce iridium as the only viable catalyst for the oxygen evolution reaction (OER), which is known to present the major energy losses of the process. Understanding the mechanistic origin of the different activities and stabilities of Ir-based catalysts is, therefore, crucial for a scale-up of green hydrogen production. It is known that structure influences the dissolution, which is the main degradation mechanism and shares common intermediates with the OER. In this Minireview, the state-of-the-art understanding of dissolution and its relationship with the structure of different iridium catalysts is gathered and correlated to different mechanisms of the OER. A perspective on future directions of investigation is also given.
Collapse
Affiliation(s)
- Anja Lončar
- Laboratory for ElectrocatalysisDepartment of Materials ChemistryNational Institute of ChemistryHajdrihova 191000LjubljanaSlovenia
- University of Nova GoricaVipavska 135000Nova GoricaSlovenia
| | - Daniel Escalera‐López
- Helmholtz-Institute Erlangen-Nürnberg for Renewable EnergyForschungszentrum JülichCauerstrasse 191058ErlangenGermany
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen-Nürnberg for Renewable EnergyForschungszentrum JülichCauerstrasse 191058ErlangenGermany
| | - Nejc Hodnik
- Laboratory for ElectrocatalysisDepartment of Materials ChemistryNational Institute of ChemistryHajdrihova 191000LjubljanaSlovenia
- University of Nova GoricaVipavska 135000Nova GoricaSlovenia
| |
Collapse
|
16
|
Lončar A, Escalera‐López D, Cherevko S, Hodnik N. Inter‐relationships between Oxygen Evolution and Iridium Dissolution Mechanisms. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anja Lončar
- Laboratory for Electrocatalysis Department of Materials Chemistry National Institute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
- University of Nova Gorica Vipavska 13 5000 Nova Gorica Slovenia
| | - Daniel Escalera‐López
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy Forschungszentrum Jülich Cauerstrasse 1 91058 Erlangen Germany
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy Forschungszentrum Jülich Cauerstrasse 1 91058 Erlangen Germany
| | - Nejc Hodnik
- Laboratory for Electrocatalysis Department of Materials Chemistry National Institute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
- University of Nova Gorica Vipavska 13 5000 Nova Gorica Slovenia
| |
Collapse
|
17
|
Lončar A, Escalera-López D, Ruiz-Zepeda F, Hrnjić A, Šala M, Jovanovič P, Bele M, Cherevko S, Hodnik N. Sacrificial Cu Layer Mediated the Formation of an Active and Stable Supported Iridium Oxygen Evolution Reaction Electrocatalyst. ACS Catal 2021; 11:12510-12519. [PMID: 34676130 PMCID: PMC8524421 DOI: 10.1021/acscatal.1c02968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/03/2021] [Indexed: 02/03/2023]
Abstract
![]()
The production of
hydrogen via a proton-exchange membrane water
electrolyzer (PEM-WE) is directly dependent on the rational design
of electrocatalysts for the anodic oxygen evolution reaction (OER),
which is the bottleneck of the process. Here, we present a smart design
strategy for enhancing Ir utilization and stabilization. We showcase
it on a catalyst, where Ir nanoparticles are efficiently anchored
on a conductive support titanium oxynitride (TiONx) dispersed over carbon-based Ketjen Black and covered by
a thin layer of copper (Ir/CuTiONx/C),
which gets removed in the preconditioning step. Electrochemical OER
activity, stability, and structural changes were compared to the Ir-based
catalyst, where Ir nanoparticles without Cu are deposited on the same
support (Ir/TiONx/C). To study the effect
of the sacrificial less-noble metal layer on the catalytic performance
of the synthesized material, characterization methods, namely X-ray
powder diffraction, X-ray photoemission spectroscopy, and identical
location transmission electron microscopy were employed and complemented
with scanning flow cell coupled to an inductively coupled plasma mass
spectrometer, which allowed studying the online dissolution during
the catalytic reaction. Utilization of these advanced methods revealed
that the sacrificial Cu layer positively affects both Ir OER mass
activity and its durability, which was assessed via S-number, a recently
reported stability metric. Improved activity of Cu analogue was ascribed
to the higher surface area of smaller Ir nanoparticles, which are
better stabilized through a strong metal–support interaction
(SMSI) effect.
Collapse
Affiliation(s)
- Anja Lončar
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- University of Nova Gorica, Vipavska 13, 5000 Nova Gorica, Slovenia
| | - Daniel Escalera-López
- Helmholtz-Institute Erlangen−Nürnberg for Renewable Energy, Forschungszentrum Jülich, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Francisco Ruiz-Zepeda
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Armin Hrnjić
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- University of Nova Gorica, Vipavska 13, 5000 Nova Gorica, Slovenia
| | - Martin Šala
- Department of Analytical Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Primož Jovanovič
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Marjan Bele
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen−Nürnberg for Renewable Energy, Forschungszentrum Jülich, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Nejc Hodnik
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- University of Nova Gorica, Vipavska 13, 5000 Nova Gorica, Slovenia
| |
Collapse
|
18
|
Mathew S, Kim CY, Kim M, Kim KC, Chung WS, Cho Y. Effect of Infrared Oxide Catalysts on Water Splitting for Green Energy. ChemElectroChem 2021. [DOI: 10.1002/celc.202100626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sobin Mathew
- Division of Materials Science and Engineering Pusan National University Busan 46241, Republic of Korea
| | - Chan Yang Kim
- Division of Materials Science and Engineering Pusan National University Busan 46241, Republic of Korea
| | - Min‐Kyun Kim
- Division of Materials Science and Engineering Pusan National University Busan 46241, Republic of Korea
| | - Kyung Chun Kim
- School of Mechanical Engineering Pusan National University Busan 46241, Republic of Korea
| | - Won Sub Chung
- Division of Materials Science and Engineering Pusan National University Busan 46241, Republic of Korea
| | - Young‐Rae Cho
- Division of Materials Science and Engineering Pusan National University Busan 46241, Republic of Korea
| |
Collapse
|
19
|
Escalera-López D, Czioska S, Geppert J, Boubnov A, Röse P, Saraçi E, Krewer U, Grunwaldt JD, Cherevko S. Phase- and Surface Composition-Dependent Electrochemical Stability of Ir-Ru Nanoparticles during Oxygen Evolution Reaction. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01682] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel Escalera-López
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Erlangen, Germany Egerlandstr. 3, 91058 Erlangen, Germany
| | - Steffen Czioska
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Janis Geppert
- Institute of Applied Materials-Electrochemical Technologies (IAM-ET), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Alexey Boubnov
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Philipp Röse
- Institute of Applied Materials-Electrochemical Technologies (IAM-ET), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Erisa Saraçi
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Ulrike Krewer
- Institute of Applied Materials-Electrochemical Technologies (IAM-ET), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Jan-Dierk Grunwaldt
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Erlangen, Germany Egerlandstr. 3, 91058 Erlangen, Germany
| |
Collapse
|
20
|
On the limitations in assessing stability of oxygen evolution catalysts using aqueous model electrochemical cells. Nat Commun 2021; 12:2231. [PMID: 33850142 PMCID: PMC8044118 DOI: 10.1038/s41467-021-22296-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/09/2021] [Indexed: 11/09/2022] Open
Abstract
Recent research indicates a severe discrepancy between oxygen evolution reaction catalysts dissolution in aqueous model systems and membrane electrode assemblies. This questions the relevance of the widespread aqueous testing for real world application. In this study, we aim to determine the processes responsible for the dissolution discrepancy. Experimental parameters known to diverge in both systems are individually tested for their influence on dissolution of an Ir-based catalyst. Ir dissolution is studied in an aqueous model system, a scanning flow cell coupled to an inductively coupled plasma mass spectrometer. Real dissolution rates of the Ir OER catalyst in membrane electrode assemblies are measured with a specifically developed, dedicated setup. Overestimated acidity in the anode catalyst layer and stabilization over time in real devices are proposed as main contributors to the dissolution discrepancy. The results shown here lead to clear guidelines for anode electrocatalyst testing parameters to resemble realistic electrolyzer operating conditions.
Collapse
|
21
|
Dhawan H, Secanell M, Semagina N. State-of-the-Art Iridium-Based Catalysts for Acidic Water Electrolysis: A Minireview of Wet-Chemistry Synthesis Methods : Preparation routes for active and durable iridium catalysts. JOHNSON MATTHEY TECHNOLOGY REVIEW 2021. [DOI: 10.1595/205651321x16013966874707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
With the increasing demand for clean hydrogen production, both as a fuel and an indispensable reagent for chemical industries, acidic water electrolysis has attracted considerable attention in academic and industrial research. Iridium is a well-accepted active and corrosion-resistant
component of catalysts for oxygen evolution reaction (OER). However, its scarcity demands breakthroughs in catalyst preparation technologies to ensure its most efficient utilisation. This minireview focusses on the wet-chemistry synthetic methods of the most active and (potentially) durable
iridium catalysts for acidic OER, selected from the recent publications in the open literature. The catalysts are classified by their synthesis methods, with authors’ opinion on their practicality. The review may also guide the selection of the state-of-the-art iridium catalysts for
benchmarking purposes.
Collapse
Affiliation(s)
- Himanshi Dhawan
- Department of Chemical and Materials Engineering, University of Alberta 12th Floor, Donadeo Innovation Centre for Engineering, 9211 - 116 Street, NW Edmonton, Alberta, T6G 1H9 Canada
| | - Marc Secanell
- Department of Mechanical Engineering, University of Alberta 10-203 Donadeo Innovation Centre for Engineering, 9211 - 116 Street, NW Edmonton, Alberta, T6G 1H9 Canada
| | - Natalia Semagina
- Department of Chemical and Materials Engineering, University of Alberta 12th Floor, Donadeo Innovation Centre for Engineering, 9211 - 116 Street, NW Edmonton, Alberta, T6G 1H9 Canada
| |
Collapse
|
22
|
Daiane Ferreira da Silva C, Claudel F, Martin V, Chattot R, Abbou S, Kumar K, Jiménez-Morales I, Cavaliere S, Jones D, Rozière J, Solà-Hernandez L, Beauger C, Faustini M, Peron J, Gilles B, Encinas T, Piccolo L, Barros de Lima FH, Dubau L, Maillard F. Oxygen Evolution Reaction Activity and Stability Benchmarks for Supported and Unsupported IrOx Electrocatalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04613] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Camila Daiane Ferreira da Silva
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000, Grenoble, France
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador Saocarlense, 400, São Carlos, SP Brazil
| | - Fabien Claudel
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000, Grenoble, France
| | - Vincent Martin
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000, Grenoble, France
| | - Raphaël Chattot
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000, Grenoble, France
| | - Sofyane Abbou
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000, Grenoble, France
| | - Kavita Kumar
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000, Grenoble, France
| | | | - Sara Cavaliere
- ICGM, University Montpellier, CNRS, ENSCM, 34095, Montpellier, France
- Institut Universitaire de France (IUF), 75231 Paris, France
| | - Deborah Jones
- ICGM, University Montpellier, CNRS, ENSCM, 34095, Montpellier, France
| | - Jacques Rozière
- ICGM, University Montpellier, CNRS, ENSCM, 34095, Montpellier, France
| | - Lluís Solà-Hernandez
- PSL University, Center for Processes, Renewable Energy and Energy Systems (PERSEE), MINES ParisTech, CS 10207 rue Claude Daunesse, F-06904, Sophia Antipolis, Cedex, France
| | - Christian Beauger
- PSL University, Center for Processes, Renewable Energy and Energy Systems (PERSEE), MINES ParisTech, CS 10207 rue Claude Daunesse, F-06904, Sophia Antipolis, Cedex, France
| | - Marco Faustini
- Laboratoire Chimie de la Matière Condensée de Paris, UMR 7574, Sorbonne Université CNRS, 75005 Paris, France
| | - Jennifer Peron
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, F-75013 Paris, France
| | - Bruno Gilles
- Université Grenoble Alpes, CNRS, Grenoble INP, SIMAP, 38000 Grenoble, France
| | - Thierry Encinas
- Université Grenoble Alpes, Grenoble INP, CMTC, 38000 Grenoble, France
| | - Laurent Piccolo
- Univ Lyon, Université Claude Bernard - Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Avenue Albert Einstein, F-69626 Villeurbanne CEDEX, France
| | - Fabio Henrique Barros de Lima
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador Saocarlense, 400, São Carlos, SP Brazil
| | - Laetitia Dubau
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000, Grenoble, France
| | - Frédéric Maillard
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000, Grenoble, France
| |
Collapse
|
23
|
Moriau L, Bele M, Marinko Ž, Ruiz-Zepeda F, Koderman Podboršek G, Šala M, Šurca AK, Kovač J, Arčon I, Jovanovič P, Hodnik N, Suhadolnik L. Effect of the Morphology of the High-Surface-Area Support on the Performance of the Oxygen-Evolution Reaction for Iridium Nanoparticles. ACS Catal 2021; 11:670-681. [PMID: 33489433 PMCID: PMC7818501 DOI: 10.1021/acscatal.0c04741] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/16/2020] [Indexed: 12/20/2022]
Abstract
The development of affordable, low-iridium-loading, scalable, active, and stable catalysts for the oxygen-evolution reaction (OER) is a requirement for the commercialization of proton-exchange membrane water electrolyzers (PEMWEs). However, the synthesis of high-performance OER catalysts with minimal use of the rare and expensive element Ir is very challenging and requires the identification of electrically conductive and stable high-surface-area support materials. We developed a synthesis procedure for the production of large quantities of a nanocomposite powder containing titanium oxynitride (TiON x ) and Ir. The catalysts were synthesized with an anodic oxidation process followed by detachment, milling, thermal treatment, and the deposition of Ir nanoparticles. The anodization time was varied to grow three different types of nanotubular structures exhibiting different lengths and wall thicknesses and thus a variety of properties. A comparison of milled samples with different degrees of nanotubular clustering and morphology retention, but with identical chemical compositions and Ir nanoparticle size distributions and dispersions, revealed that the nanotubular support morphology is the determining factor governing the catalyst's OER activity and stability. Our study is supported by various state-of-the-art materials' characterization techniques, like X-ray photoelectron spectroscopy, scanning and transmission electron microscopies, X-ray powder diffraction and absorption spectroscopy, and electrochemical cyclic voltammetry. Anodic oxidation proved to be a very suitable way to produce high-surface-area powder-type catalysts as the produced material greatly outperformed the IrO2 benchmarks as well as the Ir-supported samples on morphologically different TiON x from previous studies. The highest activity was achieved for the sample prepared with 3 h of anodization, which had the most appropriate morphology for the effective removal of oxygen bubbles.
Collapse
Affiliation(s)
- Leonard Moriau
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
- Jožef
Stefan International Postgraduate School, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Marjan Bele
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Živa Marinko
- Jožef
Stefan International Postgraduate School, Jamova 39, SI-1000 Ljubljana, Slovenia
- Department
for Nanostructured Materials, Jožef
Stefan Institute, Jamova
39, SI-1000 Ljubljana, Slovenia
| | - Francisco Ruiz-Zepeda
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Gorazd Koderman Podboršek
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
- Jožef
Stefan International Postgraduate School, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Martin Šala
- Department
of Analytical Chemistry, National Institute
of Chemistry, Hajdrihova
19, SI-1000 Ljubljana, Slovenia
| | - Angelja Kjara Šurca
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Janez Kovač
- Department
of Surface Engineering, Jožef Stefan
Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Iztok Arčon
- Laboratory
of Quantum Optics, University of Nova Gorica, Vipavska 13, SI-5000 Nova Gorica, Slovenia
- Department
of Medium and Low Energy Physics, Jožef
Stefan Institute, Jamova
39, SI-1000 Ljubljana, Slovenia
| | - Primož Jovanovič
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Nejc Hodnik
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
- Jožef
Stefan International Postgraduate School, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Luka Suhadolnik
- Department
for Nanostructured Materials, Jožef
Stefan Institute, Jamova
39, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
24
|
Rajan ZSHS, Binninger T, Kooyman PJ, Susac D, Mohamed R. Organometallic chemical deposition of crystalline iridium oxide nanoparticles on antimony-doped tin oxide support with high-performance for the oxygen evolution reaction. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00470g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organometallic chemical deposition (OMCD) of epitaxially anchored rutile IrO2 nanoparticles on Sb-doped SnO2 support, with high-performance towards the oxygen evolution reaction (OER).
Collapse
Affiliation(s)
- Ziba S. H. S. Rajan
- HySA/Catalysis Centre of Competence
- Catalysis Institute
- Department of Chemical Engineering
- University of Cape Town
- South Africa
| | | | - Patricia J. Kooyman
- Centre for Catalysis Research
- Catalysis Institute
- Department of Chemical Engineering
- University of Cape Town
- South Africa
| | - Darija Susac
- HySA/Catalysis Centre of Competence
- Catalysis Institute
- Department of Chemical Engineering
- University of Cape Town
- South Africa
| | - Rhiyaad Mohamed
- HySA/Catalysis Centre of Competence
- Catalysis Institute
- Department of Chemical Engineering
- University of Cape Town
- South Africa
| |
Collapse
|