1
|
Body N, Lefebvre C, Eeckhout S, Léonard AS, Troian-Gautier L, Hermans S, Riant O. Structure-Activity Relationship of Benzophenazine Derivatives for Homogeneous and Heterogenized Photooxygenation Catalysis. Chemistry 2024; 30:e202400242. [PMID: 38805006 DOI: 10.1002/chem.202400242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 05/29/2024]
Abstract
Singlet oxygen is a powerful oxidant used in various applications, such as organic synthesis, medicine, and environmental remediation. Organic and inorganic photosensitizers are commonly used to generate this reactive species through energy transfer with the triplet ground state of oxygen. We describe here a series of novel benzophenazine derivatives as a promising class of photosensitizers for singlet oxygen photosensitization. In this study, we investigated the structure-activity relationship of these benzophenazine derivatives. Akin to a molecular compass, the southern fragment was first functionalized with either aromatic tertiary amines, alkyl tertiary amines, aromatic sulfur groups, alkyl sulfur groups, or cyclic ethers. Enhanced photophysical properties (in terms of triplet excited-state lifetime, absorption wavelength, triplet state energy, and O2 quenching capabilities) were obtained with cyclic ether and sulfur groups. Conversely, the presence of an amine moiety was detrimental to the photocatalysts. The western and northern fragments were also investigated and slightly undesirable to negligible changes in photophysical properties were observed. The most promising candidate was then immobilized on silica nanoparticles and its photoactivity was evaluated in the citronellol photooxidation reaction. A high NMR yield of 97 % in desired product was obtained, with only a slight decrease over several recycling runs (85 % in the fourth run). These results provide insights into the design of efficient photosensitizers for singlet oxygen generation and the development of heterogeneous systems.
Collapse
Affiliation(s)
- Nathalie Body
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| | - Corentin Lefebvre
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| | - Sarah Eeckhout
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| | - Anne-Sophie Léonard
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| | - Ludovic Troian-Gautier
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
- Wel Research Institute, Avenue Pasteur 6, 1300, Wavre, Belgium
| | - Sophie Hermans
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| | - Olivier Riant
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
2
|
Sailaja STN, Maisuls I, Hepp A, Brünink D, Doltsinis NL, Faust A, Hermann S, Strassert CA. Dual Emissive Zn(II) Naphthalocyanines: Synthesis, Structural and Photophysical Characterization with Theory-Supported Insights towards Soluble Coordination Compounds with Visible and Near-Infrared Emission. Int J Mol Sci 2024; 25:2605. [PMID: 38473852 DOI: 10.3390/ijms25052605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
Metal phthalocyaninates and their higher homologues are recognized as deep-red luminophores emitting from their lowest excited singlet state. Herein, we report on the design, synthesis, and in-depth characterization of a new class of dual-emissive (visible and NIR) metal naphthalocyaninates. A 4-N,N-dimethylaminophen-4-yl-substituted naphthalocyaninato zinc(II) complex (Zn-NMe2Nc) and the derived water-soluble coordination compound (Zn-NMe3Nc) exhibit a near-infrared fluorescence from the lowest ligand-centered state, along with a unique push-pull-supported luminescence in the visible region of the electromagnetic spectrum. An unprecedentedly broad structural (2D-NMR spectroscopy and mass spectrometry) as well as photophysical characterization (steady-state state and time-resolved photoluminescence spectroscopy) is presented. The unique dual emission was assigned to two independent sets of singlet states related to the intrinsic Q-band of the macrocycle and to the push-pull substituents in the molecular periphery, respectively, as predicted by TD-DFT calculations. In general, the elusive chemical aspects of these macrocyclic compounds are addressed, involving both reaction conditions, thorough purification, and in-depth characterization. Besides the fundamental aspects that are investigated herein, the photoacoustic properties were exemplarily examined using phantom gels to assess their tomographic imaging capabilities. Finally, the robust luminescence in the visible range arising from the push-pull character of the peripheral moieties demonstrated a notable independence from aggregation and was exemplarily implemented for optical imaging (FLIM) through time-resolved multiphoton micro(spectro)scopy.
Collapse
Affiliation(s)
- Sidharth Thulaseedharan Nair Sailaja
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
- CeNTech, CiMIC, SoN, Universität Münster, Heisenbergstraße 11, 48149 Münster, Germany
| | - Iván Maisuls
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
- CeNTech, CiMIC, SoN, Universität Münster, Heisenbergstraße 11, 48149 Münster, Germany
| | - Alexander Hepp
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Dana Brünink
- Institute for Solid State Theory and Center for Multiscale Theory and Computation, Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Nikos L Doltsinis
- Institute for Solid State Theory and Center for Multiscale Theory and Computation, Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Andreas Faust
- European Institute for Molecular Imaging, Universität Münster, Röntgenstraße 16, 48149 Münster, Germany
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging, Universität Münster, Röntgenstraße 16, 48149 Münster, Germany
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Cristian A Strassert
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
- CeNTech, CiMIC, SoN, Universität Münster, Heisenbergstraße 11, 48149 Münster, Germany
| |
Collapse
|
3
|
Homma S, Momotake A, Ikeue T, Yamamoto Y. A Photochemical Study of Photo-Induced Electron Transfer from DNAs to a Cationic Phthalocyanine Derivative. J Fluoresc 2023; 33:2431-2439. [PMID: 37093333 DOI: 10.1007/s10895-023-03230-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023]
Abstract
Water-soluble cationic gallium(III)-Pc complex (GaPc) is capable of photogenerating ROSs but does not exhibit photocytotoxicity in vivo. GaPc binds selectively, through a π-π stacking interaction, to the 5'-terminal G-quartet of a G-quadruplex DNA. The photo-excited state of GaPc of the complex is effectively quenched through electron transfer (ET) from the ground state of DNA guanine (G) bases to the photo-excited state of GaPc (ET(G-GaPc)). Hence the loss of the photocytotoxicity of GaPc in vivo is most likely to be due to the effective quenching of its photo-excited state through ET(G-GaPc). In this study, we investigated the photochemical properties of GaPc in the presence of duplex DNAs formed from a series of sequences to elucidate the nature of ET(G-GaPc). We found that ET(G-GaPc) is allowed in electrostatic complexes between GaPc and G-containing duplex DNAs and that the rate of ET(G-GaPc) (kET(G-GaPc)) can be reasonably interpreted in terms of the distance between Pc moiety of GaPc and DNA G base in the complex. We also found that the quantum yields of singlet oxygen (1O2) generation (ΦΔs) determined for the GaPc-duplex DNA complexes were similar to the value reported for free GaPc (Fujishiro R, Sonoyama H, Ide Y, et al (2019) J Inorg Biochem 192:7-16), indicating that ET(G-GaPc) in the complex is rather limited. These results clearly demonstrated that photocytotoxicity of GaPc is crucially affected by ET(G-GaPc). Thus elucidation of interaction of a photosensitizer with biomolecules, i.e., an initial process in PDT, would be helpful to understand its subsequent photochemical processes.
Collapse
Affiliation(s)
- Shiori Homma
- Department of Chemistry, University of Tsukuba, Tsukuba, 305-8571, Japan
| | - Atsuya Momotake
- Department of Chemistry, University of Tsukuba, Tsukuba, 305-8571, Japan
- Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, Tsukuba, 305-8571, Japan
| | - Takahisa Ikeue
- Department of Materials Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
| | - Yasuhiko Yamamoto
- Department of Chemistry, University of Tsukuba, Tsukuba, 305-8571, Japan.
| |
Collapse
|
4
|
Gamelas SRD, Vieira C, Bartolomeu M, Faustino MAF, Tomé JPC, Tomé AC, Almeida A, Lourenço LMO. Photodynamic inactivation of pathogenic Gram-negative and Gram-positive bacteria mediated by Si(IV) phthalocyanines bearing axial ammonium units. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 233:112502. [PMID: 35759946 DOI: 10.1016/j.jphotobiol.2022.112502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The photodynamic inactivation (PDI) of microorganisms has gained interest as an efficient option for conventional antibiotic treatments. Recently, Si(IV) phthalocyanines (SiPcs) have been highlighted as promising photosensitizers (PSs) to the PDI of microorganisms due to their remarkable absorption and emission features. To increase the potential of cationic SiPcs as PS drugs, one novel (1a) and two previously described (2a and 3a) axially substituted PSs with di-, tetra-, and hexa-ammonium units, respectively, were synthesized and characterized. Their PDI effect was evaluated for the first time against Escherichia coli and Staphylococcus aureus, a Gram-negative and a Gram-positive bacterium, respectively. The photodynamic treatments were conducted with PS concentrations of 3.0 and 6.0 μM under 60 min of white light irradiation (150 mW.cm-2). The biological results show high photodynamic efficiency for di- and tetra-cationic PSs 1a and 2a (6.0 μM), reducing the E. coli viability in 5.2 and 3.9 log, respectively (after 15 min of dark incubation before irradiation). For PS 3a, a similar bacterial reduction (3.6 log) was achieved but only with an extended dark incubation period (30 min). Under the same experimental conditions, the photodynamic effect of cationic PSs 1a-3a on S. aureus was even more promising, with abundance reductions of ca. 8.0 log after 45-60 min of PDI treatment. These results reveal the high PDI efficiency of PSs bearing ammonium groups and suggest their promising application as a broad-spectrum antimicrobial to control infections caused by Gram-negative and Gram-positive bacteria.
Collapse
Affiliation(s)
- Sara R D Gamelas
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Cátia Vieira
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria Bartolomeu
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria A F Faustino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João P C Tomé
- CQE, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Augusto C Tomé
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Adelaide Almeida
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Leandro M O Lourenço
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
5
|
Yalazan H, Barut B, Yıldırım S, Yalçın CÖ, Kantekin H. Axially disubstituted silicon (IV) phthalocyanines containing different isoxazolyl groups: Design, syntheses, binding and in vitro phototoxic activities against SH-SY5Y cells. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Zhao D, Ouyang A, Wang X, Zhang W, Cheng G, Lv B, Liu W. Synthesis, crystal structure and biological evaluation of thyroid cancer targeting photosensitizer for photodynamic therapy. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Ribeiro CP, Lourenço LM. Overview of cationic phthalocyanines for effective photoinactivation of pathogenic microorganisms. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2021.100422] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Dong X, Yuan X, Song Z, Wang Q. The development of an Amber-compatible organosilane force field for drug-like small molecules. Phys Chem Chem Phys 2021; 23:12582-12591. [PMID: 34037028 DOI: 10.1039/d1cp01169c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As members of the group IVA elements, silicon and carbon have long been thought of as isosteres of each other in drug design. However, the lack of silicon parameters in current main stream force fields hinders the computational study of this important element in drug discovery. Thus, in this study, we attempted to supplement the parameters of organosilanes in the General Amber Force Field (GAFF2). The parameters have been designed following the principles of GAFF2 to make it compatible with the Amber force field family. The accuracy of the parameters was discussed by comparing the pair interaction energy, the liquid properties, and the structures and alchemical binding free energy differences for a set of protein-ligand complexes.
Collapse
Affiliation(s)
- Xue Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China.
| | - Xinghang Yuan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China.
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China.
| | - Qiantao Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China.
| |
Collapse
|
9
|
Willis JA, Cheburkanov V, Kassab G, Soares JM, Blanco KC, Bagnato VS, Yakovlev VV. Photodynamic viral inactivation: Recent advances and potential applications. APPLIED PHYSICS REVIEWS 2021; 8:021315. [PMID: 34084253 PMCID: PMC8132927 DOI: 10.1063/5.0044713] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/13/2021] [Indexed: 05/04/2023]
Abstract
Antibiotic-resistant bacteria, which are growing at a frightening rate worldwide, has put the world on a long-standing alert. The COVID-19 health crisis reinforced the pressing need to address a fast-developing pandemic. To mitigate these health emergencies and prevent economic collapse, cheap, practical, and easily applicable infection control techniques are essential worldwide. Application of light in the form of photodynamic action on microorganisms and viruses has been growing and is now successfully applied in several areas. The efficacy of this approach has been demonstrated in the fight against viruses, prompting additional efforts to advance the technique, including safety use protocols. In particular, its application to suppress respiratory tract infections and to provide decontamination of fluids, such as blood plasma and others, can become an inexpensive alternative strategy in the fight against viral and bacterial infections. Diverse early treatment methods based on photodynamic action enable an accelerated response to emerging threats prior to the availability of preventative drugs. In this review, we evaluate a vast number of photodynamic demonstrations and first-principle proofs carried out on viral control, revealing its potential and encouraging its rapid development toward safe clinical practice. This review highlights the main research trends and, as a futuristic exercise, anticipates potential situations where photodynamic treatment can provide a readily available solution.
Collapse
Affiliation(s)
- Jace A. Willis
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Vsevolod Cheburkanov
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Giulia Kassab
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Jennifer M. Soares
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Kate C. Blanco
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
| | | | - Vladislav V. Yakovlev
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
10
|
Rodrigues CV, Johnson KR, Lombardi VC, Rodrigues MO, Sobrinho JA, de Bettencourt-Dias A. Photocytotoxicity of Thiophene- and Bithiophene-Dipicolinato Luminescent Lanthanide Complexes. J Med Chem 2021; 64:7724-7734. [PMID: 34018753 DOI: 10.1021/acs.jmedchem.0c01805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
New thiophene-dipicolinato-based compounds, K2nTdpa (n = 1, 2), were isolated. Their anions are sensitizers of lanthanide ion (LnIII) luminescence and singlet oxygen generation (1O2). Emission in the visible and near-infrared regions was observed for the LnIII complexes with efficiencies (ϕLn) ϕEu = 33% and ϕYb = 0.31% for 1Tdpa2- and ϕYb = 0.07% for 2Tdpa2-. The latter does not sensitize EuIII emission. Fluorescence imaging of HeLa live cells incubated with K3[Eu(1Tdpa)3] indicates that the complex permeates the cell membrane and localizes in the mitochondria. All complexes generate 1O2 in solution with efficiencies (ϕO12) as high as 13 and 23% for the GdIII complexes of 1Tdpa2- and 2Tdpa2-, respectively. [Ln(nTdpa)3]3- (n = 1, 2) are phototoxic to HeLa cells when irradiated with UV light with IC50 values as low as 4.2 μM for [Gd(2Tdpa)3]3- and 91.8 μM for [Eu(1Tdpa)3]3-. Flow cytometric analyses indicate both apoptotic and necrotic cell death pathways.
Collapse
Affiliation(s)
- Carime V Rodrigues
- Department of Chemistry, University of Nevada, Reno, Reno, Nevada 89557, United States.,Laboratório de Inorgânica e Materiais, Instituto de Química, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasilia 70910-900 DF, Brazil
| | - Katherine R Johnson
- Department of Chemistry, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - Vincent C Lombardi
- Department of Microbiology and Immunology, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - Marcelo O Rodrigues
- Laboratório de Inorgânica e Materiais, Instituto de Química, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasilia 70910-900 DF, Brazil
| | - Josiane A Sobrinho
- Department of Chemistry, University of Nevada, Reno, Reno, Nevada 89557, United States
| | | |
Collapse
|
11
|
Zhang Y, Cheung YK, Ng DKP, Fong WP. Enhancement of innate and adaptive anti-tumor immunity by serum obtained from vascular photodynamic therapy-cured BALB/c mouse. Cancer Immunol Immunother 2021; 70:3217-3233. [PMID: 33821298 DOI: 10.1007/s00262-021-02917-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 03/14/2021] [Indexed: 02/03/2023]
Abstract
Photodynamic therapy (PDT) is a clinically approved treatment for various types of cancer. Besides killing the tumor cells directly, PDT has also been reported to trigger anti-tumor immunity. In our previous study, BAM-SiPc-based PDT was shown to induce immunogenic cell death on CT26 murine colon tumor cells in vitro. Using the BALB/c mouse animal model and a vascular-PDT (VPDT) approach, it could also eradicate tumor in ∼ 70% of tumor-bearing mice and elicit an anti-tumor immune response. In the present study, the serum obtained from the VPDT-cured mice was studied and found to possess various immunomodulatory properties. In in vitro studies, it stimulated cytokine secretions of IL-6 and C-X-C motif chemokine ligands 1-3 in CT26 cells through the NF-κB and MAPK pathways. The complement protein C5a boosted in the serum was shown to be involved in the process. The serum also induced calreticulin exposure on CT26 cells and activated dendritic cells. It contained CT26-targeting antibodies which, through the Fc region, induced macrophage engulfment of the tumor cells. In in vivo studies, inoculation of the serum-treated CT26 cells to mice demonstrated a retarded tumor growth with leukocytes, particularly T cells, attracted to the tumor site. In addition, the VPDT-cured mice showed different degrees of resistance against challenge of other types of murine tumor cells, for example, the breast tumor 4T1 and EMT6 cells.
Collapse
Affiliation(s)
- Ying Zhang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Ying-Kit Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Wing-Ping Fong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
12
|
Zhang Y, Cheung YK, Ng DKP, Fong WP. Immunogenic necroptosis in the anti-tumor photodynamic action of BAM-SiPc, a silicon(IV) phthalocyanine-based photosensitizer. Cancer Immunol Immunother 2021; 70:485-495. [PMID: 32839829 PMCID: PMC10992937 DOI: 10.1007/s00262-020-02700-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 08/14/2020] [Indexed: 12/21/2022]
Abstract
Photodynamic therapy (PDT) is an anti-tumor modality which employs three individually non-toxic substances, including photosensitizer, light and oxygen, to produce a toxic effect. Besides causing damage to blood vessels that supply oxygen and nutrients to the tumor and killing the tumor by a direct cytotoxic effect, PDT has also been known to trigger an anti-tumor immune response. For instance, our previous study showed that PDT with BAM-SiPc, a silicon(IV) phthalocyanine based-photosensitizer, can not only eradicate the mouse CT26 tumor cells in a Balb/c mouse model, but also protect the mice against further re-challenge of the tumor cells through an immunomodulatory mechanism. To understand more about the immune effect, the biochemical actions of BAM-SiPc-PDT on CT26 cells were studied in the in vitro system. It was confirmed that the PDT treatment could induce immunogenic necroptosis in the tumor cells. Upon treatment, different damage-associated molecular patterns were exposed onto the cell surface or released from the cells. Among them, calreticulin was found to translocate to the cell membrane through a pathway similar to that in chemotherapy. The activation of immune response was also demonstrated by an increase in the expression of different chemokines.
Collapse
Affiliation(s)
- Ying Zhang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Ying-Kit Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Wing-Ping Fong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
13
|
Mitra K, Hartman MCT. Silicon phthalocyanines: synthesis and resurgent applications. Org Biomol Chem 2021; 19:1168-1190. [DOI: 10.1039/d0ob02299c] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Their unique axial bonds and NIR optical properties have made silicon phthalocyanines (SiPcs) valuable compounds. Herein, we present key synthetic strategies and emerging applications of SiPcs over the past decade.
Collapse
Affiliation(s)
- Koushambi Mitra
- Department of Chemistry
- Virginia Commonwealth University
- Richmond
- USA
- Massey Cancer Center
| | - Matthew C. T. Hartman
- Department of Chemistry
- Virginia Commonwealth University
- Richmond
- USA
- Massey Cancer Center
| |
Collapse
|
14
|
Johnson KR, Lombardi VC, Bettencourt‐Dias A. Photocytotoxicity of Oligothienyl‐Functionalized Chelates That Sensitize LnIIILuminescence and Generate1O2. Chemistry 2020; 26:12060-12066. [DOI: 10.1002/chem.202001568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/22/2020] [Indexed: 01/11/2023]
Affiliation(s)
| | - Vincent C. Lombardi
- Department of Microbiology and ImmunologyUniversity of Nevada, Reno Reno NV 89557 USA
| | | |
Collapse
|
15
|
Johnson KR, Vittardi SB, Gracia‐Nava MA, Rack JJ, Bettencourt‐Dias A. Wavelength‐Dependent Singlet Oxygen Generation in Luminescent Lanthanide Complexes with a Pyridine‐Bis(Carboxamide)‐Terthiophene Sensitizer. Chemistry 2020; 26:7274-7280. [DOI: 10.1002/chem.202000587] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/03/2020] [Indexed: 12/11/2022]
Affiliation(s)
| | - Sebastian B. Vittardi
- Department of Chemistry and Chemical Biology University of New Mexico Albuquerque NM 87131 USA
| | | | - Jeffrey J. Rack
- Department of Chemistry and Chemical Biology University of New Mexico Albuquerque NM 87131 USA
| | | |
Collapse
|
16
|
Tanaka S, Enoki T, Imoto H, Ooyama Y, Ohshita J, Kato T, Naka K. Highly Efficient Singlet Oxygen Generation and High Oxidation Resistance Enhanced by Arsole-Polymer-Based Photosensitizer: Application as a Recyclable Photooxidation Catalyst. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02620] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Susumu Tanaka
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Toshiaki Enoki
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yousuke Ooyama
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
| | - Joji Ohshita
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
| | - Takuji Kato
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
17
|
Johnson KR, Vittardi SB, Gracia-Nava MA, Rack JJ, de Bettencourt-Dias A. Luminescent lanthanide complexes with a pyridine-bis(carboxamide)-bithiophene sensitizer showing wavelength-dependent singlet oxygen generation. Dalton Trans 2020; 49:6661-6667. [DOI: 10.1039/d0dt01034k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A new pyridine-bis(carboxamide)-based ligand with a bithiophene pendant, 2Tcbx, was synthesized.
Collapse
Affiliation(s)
| | | | | | - Jeffrey J. Rack
- Department of Chemistry and Chemical Biology
- University of New Mexico
- Albuquerque
- USA
| | | |
Collapse
|
18
|
Zhang Y, Ng DKP, Fong WP. Antitumor immunity induced by the photodynamic action of BAM-SiPc, a silicon (IV) phthalocyanine photosensitizer. Cell Mol Immunol 2019; 16:676-678. [PMID: 31076728 DOI: 10.1038/s41423-019-0239-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 01/12/2023] Open
Affiliation(s)
- Ying Zhang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing-Ping Fong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
19
|
Chambers P, Kuruppu Arachchige NMK, Taylor AM, Garno JC. Surface Coupling of Octaethylporphyrin with Silicon Tetrachloride. ACS OMEGA 2019; 4:2565-2576. [PMID: 31459493 PMCID: PMC6649131 DOI: 10.1021/acsomega.8b03204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/18/2019] [Indexed: 06/10/2023]
Abstract
The surface assembly of 2,3,7,8,12,13,17,18-octaethylporphyrin (OEP) using silicon tetrachloride as a coupling agent was investigated using atomic force microscopy (AFM). Nanopatterned films of Si-OEP were prepared by protocols of colloidal lithography to evaluate the morphology, thickness, and molecular orientation for samples prepared on Si(111). The natural self-stacking of porphyrins can pose a challenge for molecular patterning. When making films on surfaces, porphyrins will self-associate to form co-planar configurations of random stacks of molecules. There is a tendency for the flat molecules to orient spontaneously in a side-on arrangement that is mediated by physisorption to the substrate as well as by π-π interactions between macrocycles to form a layered arrangement of packed molecules, analogous to a stack of coins. When silicon tetrachloride is introduced to the reaction vessel, the coupling between the surface and porphyrins is mediated through covalent Si-O bonding. For these studies, surface structures of Si-OEP were formed that are connected with a Si-O-Si motif to a silicon atom coordinated to the center of the porphyrin macrocycles. Protocols of colloidal lithography were used as a tool to prepare surface structures and films of Si-OEP to facilitate surface characterizations. Conceptually, by arranging the macrocycles of porphyrins with defined orientation, local AFM surface measurements can be enabled to help address mechanistic questions about how molecules self-assemble and bind to substrates.
Collapse
|
20
|
Synthesis and Encapsulation of a New Zinc Phthalocyanine Photosensitizer into Polymeric Nanoparticles to Enhance Cell Uptake and Phototoxicity. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9030401] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Efforts to enhance the utility of photodynamic therapy as a non-invasive method for treating certain cancers have often involved the design of dye sensitizers with increased singlet oxygen efficiency. More recently, however, sensitizers with greater selectivity for tumor cells than surrounding tissue have been targeted. The present study provides an approach to the modification of the known photosensitizer zinc phthalocyanine (ZnPc), to enhance its solubility and delivery to cancer cells. Targeting a photosensitizer to the site of action improves the efficacy of the sensitizer in photodynamic therapy. In this work we used PLGA-b-PEG to encapsulate a new zinc phthalocyanine derivative, 2(3), 9(10), 16(17), 23(24)-tetrakis-(4’-methyl-benzyloxy) phthalocyanine zinc(II) (ZnPcBCH3), to enhance uptake into A549 cells, a human lung cancer cell line. ZnPcBCH3 exhibited the same photochemical properties as the parent compound ZnPc but gave increased solubility in organic solvents, which allowed for efficient encapsulation. In addition, the encapsulated dye showed a near 500-fold increase in phototoxicity for A549 cancer cells compared to free dye.
Collapse
|
21
|
Furuyama T, Ishii T, Ieda N, Maeda H, Segi M, Uchiyama M, Nakagawa H. Cationic axial ligands on sulfur substituted silicon(iv) phthalocyanines: improved hydrophilicity and exceptionally red-shifted absorption into the NIR region. Chem Commun (Camb) 2019; 55:7311-7314. [DOI: 10.1039/c9cc03022k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report the exceptionally red-shifted absorption of sulfur-substituted silicon(iv) phthalocyanines upon introduction of cationic axial ligands.
Collapse
Affiliation(s)
- Taniyuki Furuyama
- Graduate School of Natural Science and Technology
- Kanazawa University
- Kanazawa
- Japan
- Japan Science and Technology Agency (JST)-PRESTO
| | - Takashi Ishii
- Graduate School of Natural Science and Technology
- Kanazawa University
- Kanazawa
- Japan
| | - Naoya Ieda
- Graduate School of Pharmaceutical Sciences
- Nagoya City University
- Nagoya
- Japan
| | - Hajime Maeda
- Graduate School of Natural Science and Technology
- Kanazawa University
- Kanazawa
- Japan
| | - Masahito Segi
- Graduate School of Natural Science and Technology
- Kanazawa University
- Kanazawa
- Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences
- The University of Tokyo
- Tokyo
- Japan
- Cluster of Pioneering Research (CPR)
| | - Hidehiko Nakagawa
- Graduate School of Pharmaceutical Sciences
- Nagoya City University
- Nagoya
- Japan
| |
Collapse
|
22
|
Synthesis and photodynamic activities of integrin-targeting silicon(IV) phthalocyanine-cRGD conjugates. Eur J Med Chem 2018; 155:24-33. [DOI: 10.1016/j.ejmech.2018.05.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/09/2018] [Accepted: 05/24/2018] [Indexed: 11/19/2022]
|
23
|
Ruiz-González R, Setaro F, Gulías Ò, Agut M, Hahn U, Torres T, Nonell S. Cationic phthalocyanine dendrimers as potential antimicrobial photosensitisers. Org Biomol Chem 2017; 15:9008-9017. [DOI: 10.1039/c7ob02270k] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Synthesis, photophysical properties and photoantimicrobial efficiency of cationic Zn(ii) and Ru(ii) dendrimeric phthalocyanines.
Collapse
Affiliation(s)
| | - Francesca Setaro
- Departamento de Química Orgánica
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | - Òscar Gulías
- Institut Químic de Sarriá
- Universitat Ramon Llull
- Barcelona
- Spain
| | - Montserrat Agut
- Institut Químic de Sarriá
- Universitat Ramon Llull
- Barcelona
- Spain
| | - Uwe Hahn
- Departamento de Química Orgánica
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
- Laboratoire de Chimie des Matériaux Moléculaires
| | - Tomás Torres
- Departamento de Química Orgánica
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
- IMDEA-Nanociencia
| | - Santi Nonell
- Institut Químic de Sarriá
- Universitat Ramon Llull
- Barcelona
- Spain
| |
Collapse
|
24
|
Ooyama Y, Enoki T, Ohshita J, Kamimura T, Ozako S, Koide T, Tani F. Singlet oxygen generation properties of an inclusion complex of cyclic free-base porphyrin dimer and fullerene C60. RSC Adv 2017. [DOI: 10.1039/c7ra02699d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We demonstrate that a cyclic free-base porphyrin dimer and its inclusion complex with fullerene C60 possess the ability to generate singlet oxygen (1O2) under visible light irradiation.
Collapse
Affiliation(s)
- Yousuke Ooyama
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| | - Toshiaki Enoki
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| | - Joji Ohshita
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| | - Takuya Kamimura
- Institute for Materials Chemistry and Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Shuwa Ozako
- Institute for Materials Chemistry and Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Taro Koide
- Institute for Materials Chemistry and Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Fumito Tani
- Institute for Materials Chemistry and Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| |
Collapse
|
25
|
Near-infrared uncaging or photosensitizing dictated by oxygen tension. Nat Commun 2016; 7:13378. [PMID: 27853134 PMCID: PMC5476797 DOI: 10.1038/ncomms13378] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/19/2016] [Indexed: 12/26/2022] Open
Abstract
Existing strategies that use tissue-penetrant near-infrared light for the targeted treatment of cancer typically rely on the local generation of reactive oxygen species. This approach can be impeded by hypoxia, which frequently occurs in tumour microenvironments. Here we demonstrate that axially unsymmetrical silicon phthalocyanines uncage small molecules preferentially in a low-oxygen environment, while efficiently generating reactive oxygen species in normoxic conditions. Mechanistic studies of the uncaging reaction implicate a photoredox pathway involving photoinduced electron transfer to generate a key radical anion intermediate. Cellular studies demonstrate that the biological mechanism of action is O2-dependent, with reactive oxygen species-mediated phototoxicity in normoxic conditions and small molecule uncaging in hypoxia. These studies provide a near-infrared light-targeted treatment strategy with the potential to address the complex tumour landscape through two distinct mechanisms that vary in response to the local O2 environment.
Collapse
|
26
|
Galstyan A, Kauscher U, Block D, Ravoo BJ, Strassert CA. Silicon(IV) Phthalocyanine-Decorated Cyclodextrin Vesicles as a Self-Assembled Phototherapeutic Agent against MRSA. ACS APPLIED MATERIALS & INTERFACES 2016; 8:12631-12637. [PMID: 27098069 DOI: 10.1021/acsami.6b02132] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The host-guest complexation of a tailored Si(IV) phthalocyanine with supramolecular β-cyclodextrin vesicles (CDV) was studied, revealing a reduced aggregation of the photoactive center upon binding to the CDV, even in aqueous environments. For this purpose, a photosensitizing unit axially decorated with one adamantyl group and one pyridinium moiety on the other side was obtained by two successive click reactions on a bis-azido-functionalized derivative of Si(IV) phthalocyanine. To evaluate its potential as a photosensitizer against antibiotic-resistant bacteria, comparative studies of the photophysical properties including absorption and emission spectroscopy, lifetimes as well as fluorescence and singlet oxygen quantum yields were determined for the Si(IV) phthalocyanine alone and upon self-assembly on the CDV surface. In vitro phototoxicity against the methicillin-resistant Staphylococcus aureus (MRSA) USA300 was evaluated, showing an almost complete inactivation.
Collapse
Affiliation(s)
- Anzhela Galstyan
- Physikalisches Institut and CeNTech, Westfälische Wilhelms-Universität Münster , Heisenbergstrasse 11, 48149 Münster, Germany
- European Institute for Molecular Imaging , Waldeyerstrasse 15, 48149 Münster, Germany
| | - Ulrike Kauscher
- Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster , Corrensstrasse 40, 48149 Münster, Germany
| | - Desiree Block
- Institute for Medical Microbiology, University Hospital Münster , Domagkstrasse 10, 48149 Münster, Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster , Corrensstrasse 40, 48149 Münster, Germany
| | - Cristian A Strassert
- Physikalisches Institut and CeNTech, Westfälische Wilhelms-Universität Münster , Heisenbergstrasse 11, 48149 Münster, Germany
| |
Collapse
|
27
|
Ooyama Y, Enoki T, Ohshita J. Development of a D–π–A pyrazinium photosensitizer possessing singlet oxygen generation. RSC Adv 2016. [DOI: 10.1039/c5ra26647e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
(D–π–)2A pyrazinium dyes (OEJ-1 and OEJ-2) bearing a counter anion (X− = Br− or I−) have been newly developed as a photosensitizer possessing singlet oxygen (1O2) generation.
Collapse
Affiliation(s)
- Yousuke Ooyama
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| | - Toshiaki Enoki
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| | - Joji Ohshita
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| |
Collapse
|
28
|
Singh S, Aggarwal A, Bhupathiraju NVSDK, Arianna G, Tiwari K, Drain CM. Glycosylated Porphyrins, Phthalocyanines, and Other Porphyrinoids for Diagnostics and Therapeutics. Chem Rev 2015; 115:10261-306. [PMID: 26317756 PMCID: PMC6011754 DOI: 10.1021/acs.chemrev.5b00244] [Citation(s) in RCA: 367] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sunaina Singh
- Department of Natural Sciences, LaGuardia Community College of the City University of New York, Long Island City, New York 11101, United States
| | - Amit Aggarwal
- Department of Natural Sciences, LaGuardia Community College of the City University of New York, Long Island City, New York 11101, United States
| | - N. V. S. Dinesh K. Bhupathiraju
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, United States
| | - Gianluca Arianna
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, United States
| | - Kirran Tiwari
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, United States
| | - Charles Michael Drain
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, United States
- The Rockefeller University, New York, New York 10065, United States
| |
Collapse
|
29
|
Yeung HY, Lo PC, Ng DKP, Fong WP. Anti-tumor immunity of BAM-SiPc-mediated vascular photodynamic therapy in a BALB/c mouse model. Cell Mol Immunol 2015; 14:223-234. [PMID: 26388236 DOI: 10.1038/cmi.2015.84] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 07/15/2015] [Accepted: 08/10/2015] [Indexed: 12/22/2022] Open
Abstract
In recent decades, accumulating evidence from both animal and clinical studies has suggested that a sufficiently activated immune system may strongly augment various types of cancer treatment, including photodynamic therapy (PDT). Through the generation of reactive oxygen species, PDT eradicates tumors by triggering localized tumor damage and inducing anti-tumor immunity. As the major component of anti-tumor immunity, the involvement of a cell-mediated immune response in PDT has been well investigated in the past decade, whereas the role of humoral immunity has remained relatively unexplored. In the present investigation, using the photosensitizer BAM-SiPc and the CT26 tumor-bearing BALB/c mouse model, it was demonstrated that both cell-mediated and humoral adaptive immune components could be involved in PDT. With a vascular PDT (VPDT) regimen, BAM-SiPc could eradicate the tumors of ∼70% of tumor-bearing mice and trigger an anti-tumor immune response that could last for more than 1 year. An elevation of Th2 cytokines was detected ex vivo after VPDT, indicating the potential involvement of a humoral response. An analysis of serum from the VPDT-cured mice also revealed elevated levels of tumor-specific antibodies. Moreover, this serum could effectively hinder tumor growth and protect the mice against further re-challenge in a T-cell-dependent manner. Taken together, these results show that the humoral components induced after BAM-SiPc-VPDT could assist the development of anti-tumor immunity.
Collapse
Affiliation(s)
- Hing-Yuen Yeung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Pui-Chi Lo
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Wing-Ping Fong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| |
Collapse
|
30
|
Song CJ, Park JM, Yao W, Jung CY, Jaung JY. Synthesis and photophysical properties of silicon(IV) tetrapyrazinoporphyrazines axially substituted with ethylene glycol chains as potential photosensitizer. J PORPHYR PHTHALOCYA 2015. [DOI: 10.1142/s1088424615500698] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Photodynamic therapy involves administration of a tumor-localizing photosensitizer, which may require metabolic conversion, followed by activation of the photosensitizer with light of a specific wavelength. In this paper, we report the design and synthesis of silicon(IV) tetrapyrazinoporphyrazines derived from 5,9,9-trimethyl-5,6,7,8-tetrahydro-5,8-methanoquinoxaline-2,3-dicarbonitrile. The HO –( CH 2 CH 2 O )n– CH 3 groups were introduced at axial positions to give a specific functionality. In particular, poly(ethylene glycol) groups were expected to increase water solubility without changing the λmax.
Collapse
Affiliation(s)
- Cheol Jun Song
- Department of Organic and Nano Engineering, Hanyang University, 17, Haengdang-dong, Seongdong-gu, Seoul 133791, Republic of Korea
| | - Jong Min Park
- Department of Organic and Nano Engineering, Hanyang University, 17, Haengdang-dong, Seongdong-gu, Seoul 133791, Republic of Korea
| | - Wang Yao
- Department of Organic and Nano Engineering, Hanyang University, 17, Haengdang-dong, Seongdong-gu, Seoul 133791, Republic of Korea
| | - Chang Young Jung
- Department of Organic and Nano Engineering, Hanyang University, 17, Haengdang-dong, Seongdong-gu, Seoul 133791, Republic of Korea
| | - Jae Yun Jaung
- Department of Organic and Nano Engineering, Hanyang University, 17, Haengdang-dong, Seongdong-gu, Seoul 133791, Republic of Korea
| |
Collapse
|
31
|
Mehraban N, Freeman HS. Developments in PDT Sensitizers for Increased Selectivity and Singlet Oxygen Production. MATERIALS (BASEL, SWITZERLAND) 2015; 8:4421-4456. [PMID: 28793448 PMCID: PMC5455656 DOI: 10.3390/ma8074421] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 06/29/2015] [Accepted: 07/07/2015] [Indexed: 12/20/2022]
Abstract
Photodynamic therapy (PDT) is a minimally-invasive procedure that has been clinically approved for treating certain types of cancers. This procedure takes advantage of the cytotoxic activity of singlet oxygen (¹O₂) and other reactive oxygen species (ROS) produced by visible and NIR light irradiation of dye sensitizers following their accumulation in malignant cells. The main two concerns associated with certain clinically-used PDT sensitizers that have been influencing research in this arena are low selectivity toward malignant cells and low levels of ¹O₂ production in aqueous media. Solving the selectivity issue would compensate for photosensitizer concerns such as dark toxicity and aggregation in aqueous media. One main approach to enhancing dye selectivity involves taking advantage of key methods used in pharmaceutical drug delivery. This approach lies at the heart of the recent developments in PDT research and is a point of emphasis in the present review. Of particular interest has been the development of polymeric micelles as nanoparticles for delivering hydrophobic (lipophilic) and amphiphilic photosensitizers to the target cells. This review also covers methods employed to increase ¹O₂ production efficiency, including the design of two-photon absorbing sensitizers and triplet forming cyclometalated Ir(III) complexes.
Collapse
Affiliation(s)
- Nahid Mehraban
- Fiber & Polymer Science Program, North Carolina State University, Raleigh, NC 27695-8301, USA
| | - Harold S Freeman
- Fiber & Polymer Science Program, North Carolina State University, Raleigh, NC 27695-8301, USA.
| |
Collapse
|
32
|
Electrochemical and aggregation properties of newly synthesized dendritic axially morpholine-disubstituted silicon phthalocyanine, mono-substituted subphthalocyanine and their quaternized derivatives. INORG CHEM COMMUN 2015. [DOI: 10.1016/j.inoche.2015.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Biyiklioglu Z, Bas H, Alp H. Non-aggregated axially disubstituted silicon phthalocyanines bearing electropolymerizable ligands and their aggregation, electropolymerizaton and thermal properties. Dalton Trans 2015; 44:14054-62. [DOI: 10.1039/c5dt01793a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electropolymerization of a specially synthesised series of silicon(iv) phthalocyanines was studied for the first time by various electrochemical measurements.
Collapse
Affiliation(s)
- Zekeriya Biyiklioglu
- Department of Chemistry
- Faculty of Sciences
- Karadeniz Technical University
- 61080 Trabzon
- Turkey
| | - Huseyin Bas
- Department of Chemistry
- Faculty of Sciences
- Karadeniz Technical University
- 61080 Trabzon
- Turkey
| | - Hakan Alp
- Department of Chemistry
- Faculty of Sciences
- Karadeniz Technical University
- 61080 Trabzon
- Turkey
| |
Collapse
|
34
|
Biyiklioglu Z, Alp H. Electropolymerizable peripherally tetra-{2-[3-(diethylamino)phenoxy]ethoxy} substituted as well as axially (4-phenylpiperazin-1-yl)propanoxy-disubstituted silicon phthalocyanines and their electrochemistry. Dalton Trans 2015; 44:18993-9. [DOI: 10.1039/c5dt03421c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A novel type of peripherally tetra-substituted as well as axially disubstituted silicon(iv) phthalocyanine containing electropolymerizable ligands was designed and synthesized for the first time.
Collapse
Affiliation(s)
- Zekeriya Biyiklioglu
- Department of Chemistry
- Faculty of Sciences
- Karadeniz Technical University
- 61080 Trabzon
- Turkey
| | - Hakan Alp
- Department of Chemistry
- Faculty of Sciences
- Karadeniz Technical University
- 61080 Trabzon
- Turkey
| |
Collapse
|
35
|
Lourenço LMO, Sousa A, Gomes MC, Faustino MAF, Almeida A, Silva AMS, Neves MGPMS, Cavaleiro JAS, Cunha Â, Tomé JPC. Inverted methoxypyridinium phthalocyanines for PDI of pathogenic bacteria. Photochem Photobiol Sci 2015. [DOI: 10.1039/c5pp00145e] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New tetra- and octa-methoxypyridinium phthalocyanines and their efficiency to photoinactivate Escherichia coli.
Collapse
Affiliation(s)
| | - Andreina Sousa
- Department of Biology and CESAM
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Maria C. Gomes
- Department of Chemistry and QOPNA
- University of Aveiro
- 3810-193 Aveiro
- Portugal
- Department of Biology and CESAM
| | | | - Adelaide Almeida
- Department of Biology and CESAM
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Artur M. S. Silva
- Department of Chemistry and QOPNA
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | | | | | - Ângela Cunha
- Department of Biology and CESAM
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - João P. C. Tomé
- Department of Chemistry and QOPNA
- University of Aveiro
- 3810-193 Aveiro
- Portugal
- Department of Organic and Macromolecular Chemistry
| |
Collapse
|
36
|
Pankratov AA, Andreeva TN, Yakubovskaya RI, Kogan BY, Butenin AV, Feizulova RKG, Puchnova VA, Novoseletsky NV, Khromov AV, Lukyanets EA, Vorozhtsov GN. Study of photoinduced antitumor activity of phthalocyanin-based nanostructures as pro-photosensitizers in photodynamic therapy of malignant tumors in vivo. Bull Exp Biol Med 2014; 157:798-803. [PMID: 25342486 DOI: 10.1007/s10517-014-2670-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Indexed: 11/30/2022]
Abstract
Nanoparticles of aluminum and zinc phthalocyanin and metal-free phthalocyanin (AlPc, ZnPc, and H2Pc), whose molecular forms are photosensitizers, can serve as effective "prophotosensitizers" in photodynamic therapy for malignant tumors. Transition (stimulation) of photo-inert nanoparticles into a photoactive photosensitizer is realized locally in the tumor node by its exposure to potent laser pulses. Systemic injection of AlPc, ZnPc, and H2Pc nanoparticles has not led to accumulation of their photoactive form in the skin, which can lead to the development of skin phototoxicity. Effective protocols of photodynamic therapy with ZnPc nanoparticles are determined. The use of these protocols in mice with S-37 sarcoma led to 92-70% tumor growth inhibition, 48% improvement of survival, and cure in 84% cases.
Collapse
Affiliation(s)
- A A Pankratov
- P. A. Hertzen Moscow Oncological Institute, the Ministry of Health of the Russian Federation, Moscow, Russia,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Luan L, Ding L, Shi J, Fang W, Ni Y, Liu W. Effect of Axial Ligands on the Molecular Configurations, Stability, Reactivity, and Photodynamic Activities of Silicon Phthalocyanines. Chem Asian J 2014; 9:3491-7. [DOI: 10.1002/asia.201402813] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/08/2014] [Indexed: 11/11/2022]
|
38
|
Lau JTF, Lo PC, Jiang XJ, Wang Q, Ng DKP. A dual activatable photosensitizer toward targeted photodynamic therapy. J Med Chem 2014; 57:4088-97. [PMID: 24793456 DOI: 10.1021/jm500456e] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An unsymmetrical bisferrocenyl silicon(IV) phthalocyanine has been prepared in which the disulfide and hydrazone linkers can be cleaved by dithiothreitol and acid, respectively. The separation of the ferrocenyl quenchers and the phthalocyanine core greatly enhances the fluorescence emission, singlet oxygen production, intracellular fluorescence intensity, and in vitro photocytotoxicity. The results have been compared with those for the two symmetrical analogues which contain either the disulfide or hydrazone linker and therefore can only be activated by one of these stimuli. For the dual activatable agent, the greatest enhancement can be attained under a slightly acidic environment (pH = 4.5-6.8) and in the presence of dithiothreitol (in millimolar range), which can roughly mimic the acidic and reducing environment of tumor tissues. This compound can also be activated in tumor-bearing nude mice. It exhibits an increase in fluorescence intensity in the tumor over the first 10 h after intratumoral injection and can effectively inhibit the growth of tumor upon illumination.
Collapse
Affiliation(s)
- Janet T F Lau
- Department of Chemistry, The Chinese University of Hong Kong , Shatin, N.T., Hong Kong, China
| | | | | | | | | |
Collapse
|
39
|
Horiuchi H, Hosaka M, Mashio H, Terata M, Ishida S, Kyushin S, Okutsu T, Takeuchi T, Hiratsuka H. Silylation improves the photodynamic activity of tetraphenylporphyrin derivatives in vitro and in vivo. Chemistry 2014; 20:6054-60. [PMID: 24710805 DOI: 10.1002/chem.201303120] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 01/29/2014] [Indexed: 11/06/2022]
Abstract
The effects of silyl and hydrophilic groups on the photodynamic properties of tetraphenylporphyrin (TPP) derivatives have been studied in vitro and in vivo. Silylation led to an improvement in the quantum yield of singlet oxygen sensitization for both sulfo and carboxy derivatives, although the silylation did not affect other photophysical properties. Silylation also improved the cellular uptake efficiency for both sulfo and carboxy derivatives, enhancing the in vitro photodynamic activity of the photosensitizer in U251 human glioma cells. The carboxy derivative (SiTPPC4 ) was found to show higher cellular uptake efficiency and in vitro photodynamic activity than the corresponding sulfo derivative (SiTPPS4 ), which indicates that the carboxy group is a more promising hydrophilic group than the sulfo group in the silylated porphyrin. SiTPPC4 was found to show high selective accumulation efficiency in tumors, although almost no tumor selectivity was observed for the nonsilylated porphyrin. The concentration of SiTPPC4 in tumors was 13 times higher than that in muscle 12 h after drug administration. We also studied tumor response after treatment and found that silylation enhanced in vivo photodynamic activity significantly. SiTPPC4 shows higher photodynamic activity than NPe6 with white light irradiation.
Collapse
Affiliation(s)
- Hiroaki Horiuchi
- Division of Molecular Science and International Education and Research Center for Silicon Science, Faculty of Science and Technology, Gunma University, Kiryu (Japan), Fax: (+81) 277-30-1244.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Yang Y, Campana CF, Cheng G, Peng X, Kenney ME. The structure and properties of a sheathed, low reactivity silicon phthalocyanine and the potential for still more inert phthalocyanines. J PORPHYR PHTHALOCYA 2014. [DOI: 10.1142/s1088424614500060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The structure of a silicon phthalocyanine having a sheath composed of eight 1,4-isobutoxy, four bidentate 2,3-dibenzobarreleno substituents, and two trans-heptacyclopentylpentacyclooctasiloxy ligands has been determined by X-ray crystallography. The macrocycle in this compound is nearly completely covered by its sheath, but there is a channel in it which is large enough to give small diatomic molecules easy access to the macrocycle. In solution, transient channels exist in the sheath because of molecular vibrations. The structure of the compound also has been determined by a PM6 semi-empirical calculation. Except for one understandable difference, the results from this calculation are in good agreement with the results from the crystal determination. The van der Waals volume of the molecule has been determined from both the crystal and PM6 data by a Monte Carlo method. The amount of steric hindrance present in analogs of the compound in which its isobutoxy substituents are replaced by other alkoxy groups has been examined through calculations based on van der Waals volumes. Possible analogs of this sheathed molecule are suggested in which the sheath may be impenetrable to even small molecules and thus that are highly resistant to attack.
Collapse
Affiliation(s)
- Yang Yang
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Charles F. Campana
- Single Crystal Diffraction, Bruker AXS Inc., Madison, Wisconsin 53711, USA
| | - Gongzhen Cheng
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Xinzhan Peng
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Malcolm E. Kenney
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA
| |
Collapse
|
42
|
Ang CY, Tan SY, Zhao Y. Recent advances in biocompatible nanocarriers for delivery of chemotherapeutic cargoes towards cancer therapy. Org Biomol Chem 2014; 12:4776-806. [DOI: 10.1039/c4ob00164h] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
43
|
Wang T, Wang A, Zhou L, Lu S, Jiang W, Lin Y, Zhou J, Wei S. Synthesis of a novel water-soluble zinc phthalocyanine and its CT DNA-damaging studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 115:445-451. [PMID: 23867647 DOI: 10.1016/j.saa.2013.06.082] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 05/06/2013] [Accepted: 06/22/2013] [Indexed: 06/02/2023]
Abstract
A novel 3-(4-methoxybenzylamino) propanoic acid substituted water-soluble zinc phthalocyanine (CNPcZn) was synthesized. The interaction between CNPcZn with calf thymus DNA (CT DNA) was studied using spectroscopic methods. The studies indicated that CNPcZn has strong affinity to CT DNA, and furthermore, CNZnPc showed excellent photodamaging activity to CT DNA. Above results indicated that such CNPcZn has great potential to be used as an effective photosensitizer in the field of photodynamic therapy.
Collapse
Affiliation(s)
- Tianhui Wang
- College of Chemistry and Materials Science, Key Laboratory of Applied Photochemistry, Jiangsu Key Laboratory of Biofunctional Materials, Nanjing Normal University, Nanjing 210046, PR China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Doria F, Manet I, Grande V, Monti S, Freccero M. Water-Soluble Naphthalene Diimides as Singlet Oxygen Sensitizers. J Org Chem 2013; 78:8065-73. [DOI: 10.1021/jo401347z] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Filippo Doria
- Dipartimento di Chimica, Università
di Pavia, V. le Taramelli 10, 27100 Pavia, Italy
| | - Ilse Manet
- Istituto per la Sintesi Organica
e la Fotoreattività, Consiglio Nazionale delle Ricerche, via Gobetti 101, 40129 Bologna, Italy
| | - Vincenzo Grande
- Dipartimento di Chimica, Università
di Pavia, V. le Taramelli 10, 27100 Pavia, Italy
| | - Sandra Monti
- Istituto per la Sintesi Organica
e la Fotoreattività, Consiglio Nazionale delle Ricerche, via Gobetti 101, 40129 Bologna, Italy
| | - Mauro Freccero
- Dipartimento di Chimica, Università
di Pavia, V. le Taramelli 10, 27100 Pavia, Italy
| |
Collapse
|
45
|
Shen XM, Zheng BY, Huang XR, Wang L, Huang JD. The first silicon(iv) phthalocyanine–nucleoside conjugates with high photodynamic activity. Dalton Trans 2013; 42:10398-403. [DOI: 10.1039/c3dt50910a] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
46
|
Synthesis of novel octa-cationic and non-ionic 1,2-ethanediamine substituted zinc (Ⅱ) phthalocyanines and their in vitro anti-cancer activity comparison. Eur J Med Chem 2012; 58:12-21. [DOI: 10.1016/j.ejmech.2012.09.038] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 11/21/2022]
|
47
|
Isago H, Fujita H, Sugimori T. The synthesis and spectral investigation of a novel highly water-soluble, aggregation-free antimony(V)-phthalocyanine absorbing light in optical therapeutical window. J Inorg Biochem 2012; 117:111-7. [DOI: 10.1016/j.jinorgbio.2012.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/17/2012] [Accepted: 08/17/2012] [Indexed: 11/28/2022]
|
48
|
Zhao B, Duan W, Lo PC, Duan L, Wu C, Ng DKP. Mono-PEGylated Zinc(II) Phthalocyanines: Preparation, Nanoparticle Formation, and In Vitro Photodynamic Activity. Chem Asian J 2012; 8:55-9. [DOI: 10.1002/asia.201200897] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Indexed: 12/24/2022]
|
49
|
|
50
|
Isago H, Kagaya Y, Oyama Y, Fujita H, Sugimori T. The syntheses of amphiphilic antimony(V)-phthalocyanines and spectral investigation on their aggregation behaviors in aqueous and non-aqueous solutions. J Inorg Biochem 2012; 111:91-8. [DOI: 10.1016/j.jinorgbio.2012.02.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/09/2011] [Accepted: 02/24/2012] [Indexed: 10/28/2022]
|