1
|
Gallo-Rodriguez C, Rodriguez JB. Organoselenium Compounds in Medicinal Chemistry. ChemMedChem 2024; 19:e202400063. [PMID: 38778500 DOI: 10.1002/cmdc.202400063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
The chemical and biological interest in this element and the molecules bearing selenium has been exponentially growing over the years. Selenium, formerly designated as a toxin, becomes a vital trace element for life that appears as selenocysteine and its dimeric form, selenocystine, in the active sites of selenoproteins, which catalyze a wide variety of reactions, including the detoxification of reactive oxygen species and modulation of redox activities. From the point of view of drug developments, organoselenium drugs are isosteres of sulfur-containing and oxygen-containing drugs with the advantage that the presence of the selenium atom confers antioxidant properties and high lipophilicity, which would increase cell membrane permeation leading to better oral bioavailability. This statement is the paramount relevance considering the big number of clinically employed compounds bearing sulfur or oxygen atoms in their structures including nucleosides and carbohydrates. Thus, in this article we have focused on the relevant features of the application of selenium in medicinal chemistry. With the increasing interest in selenium chemistry, we have attempted to highlight the most significant published data on this subject, mainly concentrating the analysis on the last years. In consequence, the recent advances of relevant pharmacological organoselenium compounds are discussed.
Collapse
Affiliation(s)
- Carola Gallo-Rodriguez
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EHA, Buenos Aires, Argentina
| | - Juan B Rodriguez
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos, Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
2
|
Sonego JM, de Diego SI, Szajnman SH, Gallo-Rodriguez C, Rodriguez JB. Organoselenium Compounds: Chemistry and Applications in Organic Synthesis. Chemistry 2023; 29:e202300030. [PMID: 37378970 DOI: 10.1002/chem.202300030] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/18/2023] [Accepted: 06/28/2023] [Indexed: 06/29/2023]
Abstract
Selenium, originally described as a toxin, turns out to be a crucial trace element for life that appears as selenocysteine and its dimer, selenocystine. From the point of view of drug developments, selenium-containing drugs are isosteres of sulfur and oxygen with the advantage that the presence of the selenium atom confers antioxidant properties and high lipophilicity, which would increase cell membrane permeation leading to better oral bioavailability. In this article, we have focused on the relevant features of the selenium atom, above all, the corresponding synthetic approaches to access a variety of organoselenium molecules along with the proposed reaction mechanisms. The preparation and biological properties of selenosugars, including selenoglycosides, selenonucleosides, selenopeptides, and other selenium-containing compounds will be treated. We have attempted to condense the most important aspects and interesting examples of the chemistry of selenium into a single article.
Collapse
Affiliation(s)
- Juan M Sonego
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Sheila I de Diego
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Sergio H Szajnman
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Carola Gallo-Rodriguez
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EHA, Buenos Aires, Argentina
| | - Juan B Rodriguez
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
3
|
Shit P, Sahaji S, Misra AK. Synthesis of selenoglycosides and selenium linked disaccharides using reductive cleavage of diselenides. Carbohydr Res 2022; 516:108554. [DOI: 10.1016/j.carres.2022.108554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 11/02/2022]
|
4
|
Annunziata A, Cucciolito ME, Esposito R, Traboni S, Tuzi A, Budzelaar PHM, Ruffo F. Oxidative Addition of α‐Glycosyl Halides to a Platinum(0) Olefin Complex: Stereochemistry of Pt−C Bond Formation. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202001088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alfonso Annunziata
- Dipartimento di Scienze Chimiche Università di Napoli Federico II Complesso Universitario di Monte Sant'Angelo Via Cintia 21 80126 Napoli Italy
- Consorzio Interuniversitario di Reattività e Catalisi Via Celso Ulpiani 27 70126 Bari Italy
| | - Maria Elena Cucciolito
- Dipartimento di Scienze Chimiche Università di Napoli Federico II Complesso Universitario di Monte Sant'Angelo Via Cintia 21 80126 Napoli Italy
- Consorzio Interuniversitario di Reattività e Catalisi Via Celso Ulpiani 27 70126 Bari Italy
| | - Roberto Esposito
- Dipartimento di Scienze Chimiche Università di Napoli Federico II Complesso Universitario di Monte Sant'Angelo Via Cintia 21 80126 Napoli Italy
- Consorzio Interuniversitario di Reattività e Catalisi Via Celso Ulpiani 27 70126 Bari Italy
| | - Serena Traboni
- Dipartimento di Scienze Chimiche Università di Napoli Federico II Complesso Universitario di Monte Sant'Angelo Via Cintia 21 80126 Napoli Italy
| | - Angela Tuzi
- Dipartimento di Scienze Chimiche Università di Napoli Federico II Complesso Universitario di Monte Sant'Angelo Via Cintia 21 80126 Napoli Italy
| | - Peter H. M. Budzelaar
- Dipartimento di Scienze Chimiche Università di Napoli Federico II Complesso Universitario di Monte Sant'Angelo Via Cintia 21 80126 Napoli Italy
| | - Francesco Ruffo
- Dipartimento di Scienze Chimiche Università di Napoli Federico II Complesso Universitario di Monte Sant'Angelo Via Cintia 21 80126 Napoli Italy
- Consorzio Interuniversitario di Reattività e Catalisi Via Celso Ulpiani 27 70126 Bari Italy
| |
Collapse
|
5
|
Sweet Selenium: Synthesis and Properties of Selenium-Containing Sugars and Derivatives. Pharmaceuticals (Basel) 2020; 13:ph13090211. [PMID: 32859124 PMCID: PMC7558951 DOI: 10.3390/ph13090211] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
In the last decades, organoselenium compounds gained interest due to their important biological features. However, the lack of solubility, which characterizes most of them, makes their actual clinical exploitability a hard to reach goal. Selenosugars, with their intrinsic polarity, do not suffer from this issue and as a result, they can be conceived as a useful alternative. The aim of this review is to provide basic knowledge of the synthetic aspects of selenosugars, selenonium salts, selenoglycosides, and selenonucleotides. Their biological properties will be briefly detailed. Of course, it will not be a comprehensive dissertation but an analysis of what the authors think is the cream of the crop of this interesting research topic.
Collapse
|
6
|
Chang CW, Lin MH, Wu CH, Chiang TY, Wang CC. Mapping Mechanisms in Glycosylation Reactions with Donor Reactivity: Avoiding Generation of Side Products. J Org Chem 2020; 85:15945-15963. [DOI: 10.1021/acs.joc.0c01313] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Chun-Wei Chang
- Institute of Chemistry, Academia Sinica Taipei 115, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 115, Taiwan
- Department of Chemistry, National Taiwan University Taipei 106, Taiwan
| | - Mei-Huei Lin
- Institute of Chemistry, Academia Sinica Taipei 115, Taiwan
| | - Chia-Hui Wu
- Institute of Chemistry, Academia Sinica Taipei 115, Taiwan
| | - Tsun-Yi Chiang
- Institute of Chemistry, Academia Sinica Taipei 115, Taiwan
| | - Cheng-Chung Wang
- Institute of Chemistry, Academia Sinica Taipei 115, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
7
|
Ding Y, Vara Prasad CVNS, Wang B. Glycosylation on Unprotected or Partially Protected Acceptors. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yili Ding
- Life Science Department; Foshan University; 528000 Foshan Guangdong China
| | | | - Bingyun Wang
- Life Science Department; Foshan University; 528000 Foshan Guangdong China
| |
Collapse
|
8
|
Oldenkamp HF, Vela Ramirez JE, Peppas NA. Re-evaluating the importance of carbohydrates as regenerative biomaterials. Regen Biomater 2019; 6:1-12. [PMID: 30740237 PMCID: PMC6362819 DOI: 10.1093/rb/rby023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/20/2018] [Accepted: 10/03/2018] [Indexed: 02/06/2023] Open
Affiliation(s)
- Heidi F Oldenkamp
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Julia E Vela Ramirez
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Nicholas A Peppas
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
9
|
Yang W, Yang B, Ramadan S, Huang X. Preactivation-based chemoselective glycosylations: A powerful strategy for oligosaccharide assembly. Beilstein J Org Chem 2017; 13:2094-2114. [PMID: 29062430 PMCID: PMC5647719 DOI: 10.3762/bjoc.13.207] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 09/14/2017] [Indexed: 12/14/2022] Open
Abstract
Most glycosylation reactions are performed by mixing the glycosyl donor and acceptor together followed by the addition of a promoter. While many oligosaccharides have been synthesized successfully using this premixed strategy, extensive protective group manipulation and aglycon adjustment often need to be performed on oligosaccharide intermediates, which lower the overall synthetic efficiency. Preactivation-based glycosylation refers to strategies where the glycosyl donor is activated by a promoter in the absence of an acceptor. The subsequent acceptor addition then leads to the formation of the glycoside product. As donor activation and glycosylation are carried out in two distinct steps, unique chemoselectivities can be obtained. Successful glycosylation can be performed independent of anomeric reactivities of the building blocks. In addition, one-pot protocols have been developed that have enabled multiple-step glycosylations in the same reaction flask without the need for intermediate purification. Complex glycans containing both 1,2-cis and 1,2-trans linkages, branched oligosaccharides, uronic acids, sialic acids, modifications such as sulfate esters and deoxy glycosides have been successfully synthesized. The preactivation-based chemoselective glycosylation is a powerful strategy for oligosaccharide assembly complementing the more traditional premixed method.
Collapse
Affiliation(s)
- Weizhun Yang
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, MI 48824, USA
| | - Bo Yang
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, MI 48824, USA
| | - Sherif Ramadan
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, MI 48824, USA
- Chemistry Department, Faculty of Science, Benha University, Benha, Qaliobiya 13518, Egypt
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, MI 48824, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
10
|
Kanie Y, Kanie O. Addressing the glycan complexity by using mass spectrometry: In the pursuit of decoding glycologic. ACTA ACUST UNITED AC 2017. [DOI: 10.7243/2052-9341-5-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Sommer R, Hauck D, Varrot A, Imberty A, Künzler M, Titz A. O-Alkylated heavy atom carbohydrate probes for protein X-ray crystallography: Studies towards the synthesis of methyl 2- O-methyl-L-selenofucopyranoside. Beilstein J Org Chem 2016; 12:2828-2833. [PMID: 28144356 PMCID: PMC5238581 DOI: 10.3762/bjoc.12.282] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/09/2016] [Indexed: 11/23/2022] Open
Abstract
Selenoglycosides are used as reactive glycosyl donors in the syntheses of oligosaccharides. In addition, such heavy atom analogs of natural glycosides are useful tools for structure determination of their lectin receptors using X-ray crystallography. Some lectins, e.g., members of the tectonin family, only bind to carbohydrate epitopes with O-alkylated ring hydroxy groups. In this context, we report the first synthesis of an O-methylated selenoglycoside, specifically methyl 2-O-methyl-L-selenofucopyranoside, a ligand of the lectin tectonin-2 from the mushroom Laccaria bicolor. The synthetic route required a strategic revision and further optimization due to the intrinsic lability of alkyl selenoglycosides, in particular for the labile fucose. Here, we describe a successful synthetic access to methyl 2-O-methyl-L-selenofucopyranoside in 9 linear steps and 26% overall yield starting from allyl L-fucopyranoside.
Collapse
Affiliation(s)
- Roman Sommer
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany; Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Dirk Hauck
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany; Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Annabelle Varrot
- Centre de Recherche sur les Macromolécules Végétales (CERMAV-UPR5301), CNRS and Université Grenoble Alpes, BP53, F-38041 Grenoble cedex 9, France
| | - Anne Imberty
- Centre de Recherche sur les Macromolécules Végétales (CERMAV-UPR5301), CNRS and Université Grenoble Alpes, BP53, F-38041 Grenoble cedex 9, France
| | - Markus Künzler
- Institute of Microbiology, Swiss Federal Institute of Technology (ETH) Zürich, 8093 Zürich, Switzerland
| | - Alexander Titz
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany; Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| |
Collapse
|
12
|
Thadke SA, Hotha S. Efficient synthesis of oligosaccharyl 1,2-O-orthoesters from n-pentenyl glycosides and application to the pentaarabinofuranoside of the mycobacterial cell surface. Org Biomol Chem 2014; 12:9914-20. [DOI: 10.1039/c4ob01395f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
13
|
|
14
|
Ranade SC, Demchenko AV. Mechanism of Chemical Glycosylation: Focus on the Mode of Activation and Departure of Anomeric Leaving Groups. J Carbohydr Chem 2013. [DOI: 10.1080/07328303.2012.749264] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Sneha C. Ranade
- a Department of Chemistry and Biochemistry , University of Missouri , St. Louis , MO , 63121 , USA
| | - Alexei V. Demchenko
- a Department of Chemistry and Biochemistry , University of Missouri , St. Louis , MO , 63121 , USA
| |
Collapse
|
15
|
Affeldt RF, Braga HC, Baldassari LL, Lüdtke DS. Synthesis of selenium-linked neoglycoconjugates and pseudodisaccharides. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.08.075] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Peng P, Ye XS. O,O-Dimethylthiophosphonosulfenyl bromide-silver triflate: a new powerful promoter system for the preactivation of thioglycosides. Org Biomol Chem 2011; 9:616-22. [DOI: 10.1039/c0ob00380h] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Di Bussolo V, Fiasella A, Balzano F, Uccello Barretta G, Crotti P. Stereoselective synthesis of beta-phenylselenoglycosides from glycals and rationalization of the selenoglycosylation processes. J Org Chem 2010; 75:4284-7. [PMID: 20476760 DOI: 10.1021/jo100145s] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Beta-phenylselenoglycosides have been efficiently and stereoselectively synthesized by direct oxidative glycosylation of benzenselenolate (PhSe(-)) with glycals. A rationalization of the presently described beta-selectivity and the opposite alpha-selectivity reported by Danishefsky in the ring-opening of epoxy glycals with benzeneselenol (PhSeH) is proposed.
Collapse
Affiliation(s)
- Valeria Di Bussolo
- Dipartimento di Scienze Farmaceutiche, sede Chimica Biorganica e Biofarmacia, Università di Pisa,Via Bonanno 33, 56126 Pisa, Italy.
| | | | | | | | | |
Collapse
|
18
|
Ruff Y, Buhler E, Candau SJ, Kesselman E, Talmon Y, Lehn JM. Glycodynamers: Dynamic Polymers Bearing Oligosaccharides Residues − Generation, Structure, Physicochemical, Component Exchange, and Lectin Binding Properties. J Am Chem Soc 2010; 132:2573-84. [DOI: 10.1021/ja9082733] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yves Ruff
- Laboratoire de Chimie Supramoléculaire, ISIS, Université de Strasbourg, Allée Gaspard Monge, 67000 Strasbourg, France, Laboratoire Matière et Systèmes Complexes (MSC), UMR CNRS 7057, Bâtiment Condorcet, Université Paris Diderot-Paris 7, 75205 Paris cedex 13, France, and Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Eric Buhler
- Laboratoire de Chimie Supramoléculaire, ISIS, Université de Strasbourg, Allée Gaspard Monge, 67000 Strasbourg, France, Laboratoire Matière et Systèmes Complexes (MSC), UMR CNRS 7057, Bâtiment Condorcet, Université Paris Diderot-Paris 7, 75205 Paris cedex 13, France, and Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Sauveur-Jean Candau
- Laboratoire de Chimie Supramoléculaire, ISIS, Université de Strasbourg, Allée Gaspard Monge, 67000 Strasbourg, France, Laboratoire Matière et Systèmes Complexes (MSC), UMR CNRS 7057, Bâtiment Condorcet, Université Paris Diderot-Paris 7, 75205 Paris cedex 13, France, and Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Ellina Kesselman
- Laboratoire de Chimie Supramoléculaire, ISIS, Université de Strasbourg, Allée Gaspard Monge, 67000 Strasbourg, France, Laboratoire Matière et Systèmes Complexes (MSC), UMR CNRS 7057, Bâtiment Condorcet, Université Paris Diderot-Paris 7, 75205 Paris cedex 13, France, and Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Yeshayahu Talmon
- Laboratoire de Chimie Supramoléculaire, ISIS, Université de Strasbourg, Allée Gaspard Monge, 67000 Strasbourg, France, Laboratoire Matière et Systèmes Complexes (MSC), UMR CNRS 7057, Bâtiment Condorcet, Université Paris Diderot-Paris 7, 75205 Paris cedex 13, France, and Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Jean-Marie Lehn
- Laboratoire de Chimie Supramoléculaire, ISIS, Université de Strasbourg, Allée Gaspard Monge, 67000 Strasbourg, France, Laboratoire Matière et Systèmes Complexes (MSC), UMR CNRS 7057, Bâtiment Condorcet, Université Paris Diderot-Paris 7, 75205 Paris cedex 13, France, and Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
19
|
Komba S, Terauchi T, Machida S. A Regio- and Stereo-selective Parallel Synthesis of Five Types of Trigalactoses on a Solid Support as a Model of a Combinatorial Oligosaccharide Library. J Appl Glycosci (1999) 2010. [DOI: 10.5458/jag.jag.jag-2010_006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
20
|
Zeng Y, Wang Z, Whitfield D, Huang X. Installation of electron-donating protective groups, a strategy for glycosylating unreactive thioglycosyl acceptors using the preactivation-based glycosylation method. J Org Chem 2008; 73:7952-62. [PMID: 18808187 PMCID: PMC2661424 DOI: 10.1021/jo801462r] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Preactivation-based chemoselective glycosylation is a powerful strategy for oligosaccharide synthesis with its successful application in assemblies of many complex oligosaccharides. However, difficulties were encountered in reactions where glycosyl donors bearing multiple electron-withdrawing groups failed to glycosylate hindered unreactive acceptors. In order to overcome this problem, it was discovered that the introduction of electron-donating protective groups onto the glycosyl donors can considerably enhance their glycosylating power, leading to productive glycosylations even with unreactive acceptors. This observation is quite general and can be extended to a wide range of glycosylation reactions, including one-pot syntheses of chondroitin and heparin trisaccharides. The structures of the reactive intermediates formed upon preactivation were determined through low-temperature NMR studies. It was found that for a donor with multiple electron-withdrawing groups, the glycosyl triflate was formed following preactivation, while the dioxalenium ion was the major intermediate with a donor bearing electron-donating protective groups. As donors were all cleanly preactivated prior to the addition of the acceptors, the observed reactivity difference between these donors was not due to selective activation encountered in the traditional armed-disarmed strategy. Rather, it was rationalized by the inherent internal energy difference between the reactive intermediates and associated oxacarbenium ion like transition states during nucleophilic attack by the acceptor.
Collapse
Affiliation(s)
- Youlin Zeng
- Department of Chemistry, Michigan State University, East Lansing, MI 48824 USA
| | - Zhen Wang
- Department of Chemistry, Michigan State University, East Lansing, MI 48824 USA
| | - Dennis Whitfield
- Institute for Biological Sciences, National Research Council Canada, 100 Sussex Dr., Ottawa, Ontario K1A 0R6, Canada
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
21
|
Ruff Y, Lehn JM. Glycodynamers: Fluorescent Dynamic Analogues of Polysaccharides. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200703490] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Ruff Y, Lehn JM. Glycodynamers: Fluorescent Dynamic Analogues of Polysaccharides. Angew Chem Int Ed Engl 2008; 47:3556-9. [DOI: 10.1002/anie.200703490] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Boutureira O, Morales-Serna JA, Díaz Y, Matheu MI, Castillón S. Direct and Efficient Glycosylation Protocol for Synthesizing α-Glycolipids: Application to the Synthesis of KRN7000. European J Org Chem 2008. [DOI: 10.1002/ejoc.200701228] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
24
|
Morales-Serna JA, Díaz Y, Matheu MI, Castillón S. Stannyl ceramides as efficient acceptors for synthesising β-galactosyl ceramides. Org Biomol Chem 2008; 6:3831-6. [DOI: 10.1039/b809570a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Son SH, Tano C, Furukawa JI, Furuike T, Sakairi N. Stereoselective tris-glycosylation to introduce β-(1→3)-branches into gentiotetraose for the concise synthesis of phytoalexin-elicitor heptaglucoside. Org Biomol Chem 2008; 6:1441-9. [DOI: 10.1039/b800809d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Teumelsan N, Huang X. Synthesis of branched Man5 oligosaccharides and an unusual stereochemical observation. J Org Chem 2007; 72:8976-9. [PMID: 17939719 PMCID: PMC2525796 DOI: 10.1021/jo7013824] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Branched mannopentaoses were synthesized through two routes. While assembly from the nonreducing end to the reducing end was more convergent with fewer intermediate steps, two diastereomers were obtained. On the other hand, synthesis from the reducing end to the nonreducing end yielded the mannopentaose with the desired stereochemistry as a single isomer. Our results suggest that it is still challenging to reliably predict stereochemical outcome of a glycosylation reaction. It is necessary to thoroughly characterize anomeric configurations of newly formed glycosidic linkages in complex oligosaccharide synthesis.
Collapse
Affiliation(s)
- Nardos Teumelsan
- Department of Chemistry, The University of Toledo, Toledo, OH 43606, USA
| | | |
Collapse
|
27
|
Nanami M, Ando H, Kawai Y, Koketsu M, Ishihara H. Stereoselective synthesis of various α-selenoglycosides using in situ production of α-selenolate anion. Tetrahedron Lett 2007. [DOI: 10.1016/j.tetlet.2006.12.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Yamago S, Iida K, Yoshida JI. Experimental and theoretical studies on formal σ-bond metathesis of silyl tellurides with alkyl halides. J Organomet Chem 2007. [DOI: 10.1016/j.jorganchem.2006.05.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Ako T, Daikoku S, Ohtsuka I, Kato R, Kanie O. A Method of Orthogonal Oligosaccharide Synthesis Leading to a Combinatorial Library Based on Stationary Solid-Phase Reaction. Chem Asian J 2006; 1:798-813. [PMID: 17441123 DOI: 10.1002/asia.200600210] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A new, efficient synthesis of oligosaccharides, which involves solid-phase reactions without mixing in combination with an orthogonal-glycosylation strategy, is described. Despite a great deal of biological interest, the combinatorial chemistry of oligosaccharides is an extremely difficult subject. The problems include 1) lengthy synthetic protocols required for the synthesis and 2) the variety of glycosylation conditions necessary for individual reactions. These issues were addressed and solved by using the orthogonal-coupling protocol and the application of a temperature gradient to provide appropriate conditions for individual reactions. Furthermore, we succeeded in carrying out solid-phase reactions with neither mechanical mixing nor flow. In this report, the synthesis of a series of trisaccharides, namely, alpha/beta-L-Fuc-(1-->6)-alpha/beta-D-Gal-(1-->2/3/4/6)-alpha/beta-D-Glc-octyl, is reported to demonstrate the eligibility of the synthetic method in combinatorial chemistry.
Collapse
Affiliation(s)
- Takuro Ako
- Mitsubishi Kagaku Institute of Life Sciences, 11 Minamiooya, Machida-shi, Tokyo 194-8511, Japan
| | | | | | | | | |
Collapse
|
30
|
Yamada T, Takemura K, Yoshida JI, Yamago S. Dialkylphosphates as Stereodirecting Protecting Groups in Oligosaccharide Synthesis. Angew Chem Int Ed Engl 2006; 45:7575-8. [PMID: 17054300 DOI: 10.1002/anie.200602699] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Takeshi Yamada
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | | | | | | |
Collapse
|
31
|
Yamada T, Takemura K, Yoshida JI, Yamago S. Dialkylphosphates as Stereodirecting Protecting Groups in Oligosaccharide Synthesis. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200602699] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
32
|
van Well RM, Kärkkäinen TS, Kartha KPR, Field RA. Contrasting reactivity of thioglucoside and selenoglucoside donors towards promoters: implications for glycosylation stereocontrol. Carbohydr Res 2006; 341:1391-7. [PMID: 16697999 DOI: 10.1016/j.carres.2006.04.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Revised: 04/12/2006] [Accepted: 04/14/2006] [Indexed: 11/15/2022]
Abstract
The stereochemical outcome of glycosylation reactions with model thioglycosides and selenoglycosides proved to be dependent on the source of promoter iodonium ion, with iodine giving different results to N-iodosuccinimide (NIS) alone or N-iodosuccinimide/trimethylsilyltrifluoromethanesulfonate (NIS/TMSOTf). In contrast to armed thioglycosides, which anomerise, and disarmed thioglycosides, which do not react, both armed and disarmed selenoglycosides give rise to the corresponding glycosyl iodides when reacted with iodine. Further, whilst the single electron transfer agent DDQ alone is an ineffective promoter, in combination with iodine it produces better acetonitrile-assisted beta-stereoselectivity with both thioglycosides and selenoglycosides than does tris(4-bromophenyl)aminium hexachloroantimonate (BAHA).
Collapse
Affiliation(s)
- Renate M van Well
- Centre for Carbohydrate Chemistry, School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich NR4 7TJ, UK
| | | | | | | |
Collapse
|