1
|
Wang G, Zhao J, Zhang X, Li S, Sun C, Gu G. Immunological studies of Burkholderia multivorans O-antigen oligosaccharide-rsScpA193 conjugates as potential candidates for vaccine development. Int J Biol Macromol 2025; 287:138570. [PMID: 39653199 DOI: 10.1016/j.ijbiomac.2024.138570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/18/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024]
Abstract
The Burkholderia cepacia complex (Bcc) is a group of phenotypically similar but genotypically diverse Gram-negative bacteria that pose a significant threat to public health worldwide. Due to the absence of effective therapies, the development of an effective vaccine against Bcc infection is urgently needed. Lipopolysaccharide (LPS) O-antigens of B. multivorans (BM) are attractive immunogenic components and recognized as potential target antigens for vaccine development. In this study, we designed and prepared three BM oligosaccharide-based glycoconjugates rsScpA193-1-3 with rsScpA193 as a new carrier protein. We performed preliminarily immunological assessments to determine the immunogenicity of these glycoconjugates, alongside in vitro evaluations of their capacity to bind BM cells and trigger long-term immunological memory. Our findings revealed that the synthesized conjugate rsScpA193-1exhibited stronger immunogenicity and better recognition to trisaccharide 1 and nonasaccharide 3 than the other two glycoconjugates. Moreover, rsScpA193-1 could effectively bind to BM cells in vitro and successfully induce long-lasting immunological memory. Therefore, trisaccharide 1 was identified as an effective antigenic target, and the conjugate rsScpA193-1 may represent a promising candidate for BM vaccine development. Overall, our study presented the first exploitation of immunogenicity of BM oligosaccharide-protein conjugates and significantly paved the way for Bcc vaccine development.
Collapse
Affiliation(s)
- Guirong Wang
- National Glycoengineering Research Center and NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, 72 Binhai Road, Qingdao 266237, China; Department of Laboratory Medicine, Linyi Peoples' Hospital, Intersection of Wuhan Road and Wohushan Road, Linyi 276000, China
| | - Jielin Zhao
- National Glycoengineering Research Center and NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Xin Zhang
- Shandong Guobang Pharmaceutical Co. Ltd, No. 02131 Xiangjiangxiyi Street, Weifang 261108, China
| | - Shuying Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medicinal University, 260 Baichuan Road, Hangzhou 311400, China.
| | - Chongzhen Sun
- National Glycoengineering Research Center and NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Guofeng Gu
- National Glycoengineering Research Center and NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, 72 Binhai Road, Qingdao 266237, China.
| |
Collapse
|
2
|
Kokoulin MS, Romanenko LA, Kuzmich AS, Chernikov O. Structure of the Cell-Wall-Associated Polysaccharides from the Deep-Sea Marine Bacterium Devosia submarina KMM 9415 T. Mar Drugs 2021; 19:md19120665. [PMID: 34940664 PMCID: PMC8707391 DOI: 10.3390/md19120665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Two cell-wall-associated polysaccharides were isolated and purified from the deep-sea marine bacterium Devosia submarina KMM 9415T, purified by ultracentrifugation and enzymatic treatment, separated by chromatographic techniques, and studied by sugar analyses and NMR spectroscopy. The first polysaccharide with a molecular weight of about 20.7 kDa was found to contain d-arabinose, and the following structure of its disaccharide repeating unit was established: →2)-α-d-Araf-(1→5)-α-d-Araf-(1→. The second polysaccharide was shown to consist of d-galactose and a rare component of bacterial glycans-d-xylulose: →3)-α-d-Galp-(1→3)-β-d-Xluf-(1→.
Collapse
Affiliation(s)
- Maxim S. Kokoulin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159/2, Prospect 100 Let Vladivostoku, 690022 Vladivostok, Russia; (L.A.R.); (A.S.K.); (O.C.)
- School of Natural Sciences, Far Eastern Federal University, 8, Sukhanova Str., 690950 Vladivostok, Russia
- Correspondence:
| | - Lyudmila A. Romanenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159/2, Prospect 100 Let Vladivostoku, 690022 Vladivostok, Russia; (L.A.R.); (A.S.K.); (O.C.)
| | - Aleksandra S. Kuzmich
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159/2, Prospect 100 Let Vladivostoku, 690022 Vladivostok, Russia; (L.A.R.); (A.S.K.); (O.C.)
| | - Oleg Chernikov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159/2, Prospect 100 Let Vladivostoku, 690022 Vladivostok, Russia; (L.A.R.); (A.S.K.); (O.C.)
| |
Collapse
|
3
|
Cai J, Hu J, Qin C, Li L, Shen D, Tian G, Zou X, Seeberger PH, Yin J. Chemical Synthesis Elucidates the Key Antigenic Epitope of the Autism‐Related Bacterium
Clostridium bolteae
Capsular Octadecasaccharide. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Juntao Cai
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Jing Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
- Wuxi School of Medicine Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
| | - Chunjun Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
| | - Lingxin Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
| | - Dacheng Shen
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Guangzong Tian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Xiaopeng Zou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Peter H. Seeberger
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
| |
Collapse
|
4
|
Cai J, Hu J, Qin C, Li L, Shen D, Tian G, Zou X, Seeberger PH, Yin J. Chemical Synthesis Elucidates the Key Antigenic Epitope of the Autism-Related Bacterium Clostridium bolteae Capsular Octadecasaccharide. Angew Chem Int Ed Engl 2020; 59:20529-20537. [PMID: 32734715 DOI: 10.1002/anie.202007209] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/13/2020] [Indexed: 12/20/2022]
Abstract
The gut pathogen Clostridium bolteae has been associated with the onset of autism spectrum disorder (ASD). To create vaccines against C. bolteae, it is important to identify exact protective epitopes of the immunologically active capsular polysaccharide (CPS). Here, a series of C. bolteae CPS glycans, up to an octadecasaccharide, was prepared. Key to achieving the total syntheses is a [2+2] coupling strategy based on a β-d-Rhap-(1→3)-α-d-Manp repeating unit that in turn was accessed by a stereoselective β-d-rhamnosylation. The 4,6-O-benzylidene-induced conformational locking is a powerful strategy for forming a β-d-mannose-type glycoside. An indirect strategy based on C2 epimerization of β-d-quinovoside was efficiently achieved by Swern oxidation and borohydride reduction. Sequential glycosylation, and regioselective and global deprotection produced the disaccharide and tetrasaccharide, up to the octadecasaccharide. Glycan microarray analysis of sera from rabbits immunized with inactivated C. bolteae bacteria revealed a humoral immune response to the di- and tetrasaccharide, but none of the longer sequences. The tetrasaccharide may be a key motif for designing glycoconjugate vaccines against C. bolteae.
Collapse
Affiliation(s)
- Juntao Cai
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu Province, 214122, P. R. China.,Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Jing Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu Province, 214122, P. R. China.,Wuxi School of Medicine, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu Province, 214122, P. R. China
| | - Chunjun Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu Province, 214122, P. R. China
| | - Lingxin Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu Province, 214122, P. R. China
| | - Dacheng Shen
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Guangzong Tian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu Province, 214122, P. R. China.,Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Xiaopeng Zou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu Province, 214122, P. R. China.,Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu Province, 214122, P. R. China
| |
Collapse
|
5
|
Cloutier M, Muru K, Ravicoularamin G, Gauthier C. Polysaccharides from Burkholderia species as targets for vaccine development, immunomodulation and chemical synthesis. Nat Prod Rep 2019; 35:1251-1293. [PMID: 30023998 DOI: 10.1039/c8np00046h] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: up to 2018 Burkholderia species are a vast group of human pathogenic, phytopathogenic, and plant- or environment-associated bacteria. B. pseudomallei, B. mallei, and B. cepacia complex are the causative agents of melioidosis, glanders, and cystic fibrosis-related infections, respectively, which are fatal diseases in humans and animals. Due to their high resistance to antibiotics, high mortality rates, and increased infectivity via the respiratory tract, B. pseudomallei and B. mallei have been listed as potential bioterrorism agents by the Centers for Disease Control and Prevention. Burkholderia species are able to produce a large network of surface-exposed polysaccharides, i.e., lipopolysaccharides, capsular polysaccharides, and exopolysaccharides, which are virulence factors, immunomodulators, major biofilm components, and protective antigens, and have crucial implications in the pathogenicity of Burkholderia-associated diseases. This review provides a comprehensive and up-to-date account regarding the structural elucidation and biological activities of surface polysaccharides produced by Burkholderia species. The chemical synthesis of oligosaccharides mimicking Burkholderia polysaccharides is described in detail. Emphasis is placed on the recent research efforts toward the development of glycoconjugate vaccines against melioidosis and glanders based on synthetic or native Burkholderia oligo/polysaccharides.
Collapse
Affiliation(s)
- Maude Cloutier
- INRS-Institut Armand-Frappier, Université du Québec, 531, boul. des Prairies, Laval, Québec H7V 1B7, Canada.
| | | | | | | |
Collapse
|
6
|
Kokoulin MS, Tomshich SV, Kalinovsky AI, Romanenko LA, Komandrova NA. Structure of polysaccharide moiety of Pseudomonas xanthomarina KMM 1447 T lipopolysaccharide. Carbohydr Res 2016; 434:6-11. [PMID: 27509200 DOI: 10.1016/j.carres.2016.07.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/26/2016] [Accepted: 07/29/2016] [Indexed: 11/30/2022]
Abstract
The structural analysis of a polysaccharide moiety of Pseudomonas xanthomarina KMM 1447T lipopolysaccharide (LPS) was carried out. Mild acid degradation of LPS resulted in identification of two polysaccharides. The major one was built of β-D-GlcpNAcA residues amidated with L-Ala and Gly residues randomly. The minor polysaccharide was composed of branched tetrasaccharide repeating units constituted by two D-Galр, D-GalpNAc and ether of D-Glc with (2R,4R)-2,4-dihydroxypentanoic acid lactone (2R,4R-Dhpl): →3)-α-D-Galр-(1 → 3)-β-D-Galр-(1 → 3)-[β-D-Glcp4(2R,4R-Dhpl)-(1 → 4)]-β-D-GalpNAc-(1 → .
Collapse
Affiliation(s)
- Maxim S Kokoulin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 100 Let Vladivostoku Prosp., 159, 690022, Vladivostok, Russian Federation.
| | - Svetlana V Tomshich
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 100 Let Vladivostoku Prosp., 159, 690022, Vladivostok, Russian Federation
| | - Anatoly I Kalinovsky
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 100 Let Vladivostoku Prosp., 159, 690022, Vladivostok, Russian Federation
| | - Lyudmila A Romanenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 100 Let Vladivostoku Prosp., 159, 690022, Vladivostok, Russian Federation
| | - Nadezhda A Komandrova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 100 Let Vladivostoku Prosp., 159, 690022, Vladivostok, Russian Federation
| |
Collapse
|
7
|
De Felice A, Silipo A, Scherlach K, Ross C, Hertweck C, Molinaro A. Structural and Conformational Study of the O-Antigenic Portion of the Lipopolysaccharide Isolated fromBurkholderia gladiolipv.cocovenenans. European J Org Chem 2016. [DOI: 10.1002/ejoc.201501308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Zhang X, Gu G, Guo Z. Synthesis of a Trisaccharide Repeating Unit of the O-Antigen fromBurkholderia multivoransand Its Oligomers. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500964] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Dolfi S, Sveronis A, Silipo A, Rizzo R, Cescutti P. A novel rhamno-mannan exopolysaccharide isolated from biofilms of Burkholderia multivorans C1576. Carbohydr Res 2015; 411:42-8. [PMID: 25974852 DOI: 10.1016/j.carres.2015.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 01/08/2023]
Abstract
Burkholderia multivorans C1576 is a Gram negative opportunistic pathogen causing serious lung infection in cystic fibrosis patients. Considering that bacteria naturally form biofilms, and exopolysaccharides are recognized as important factors for biofilm architecture set-up, B. multivorans was grown both in biofilm and in non-biofilm mode on two different media in order to compare the exopolysaccharides biosynthesized in these different experimental conditions. The exopolysaccharides produced were purified and their structure was determined resorting mainly to NMR spectroscopy, ESI mass spectrometry and gas chromatography coupled to mass spectrometry. The experimental data showed that both in biofilm and non-biofilm mode B. multivorans C1576 produced a novel exopolysaccharide having the following structure: [Formula: see text]. About 50% of the 2-linked rhamnose residues are substituted on C-3 with a methyl ether group. The high percentage of deoxysugar Rha units, coupled with OMe substitutions, suggest a possible role for polymer domains with marked hydrophobic characteristics able to create exopolysaccharide junction zones favouring the stability of the biofilm matrix.
Collapse
Affiliation(s)
- Stefania Dolfi
- Department of Life Sciences, Bldg C11, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Aris Sveronis
- Department of Life Sciences, Bldg C11, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Roberto Rizzo
- Department of Life Sciences, Bldg C11, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Paola Cescutti
- Department of Life Sciences, Bldg C11, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy.
| |
Collapse
|
10
|
Structural and conformational study of the O-polysaccharide produced by the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris strain BisA53. Carbohydr Polym 2014; 114:384-391. [DOI: 10.1016/j.carbpol.2014.08.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/18/2014] [Accepted: 08/19/2014] [Indexed: 11/20/2022]
|
11
|
Structural identification of the O-antigen fraction from the lipopolysaccharide of the Burkholderia ambifaria strain 19182. Carbohydr Res 2013; 379:95-9. [DOI: 10.1016/j.carres.2013.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 05/23/2013] [Accepted: 06/15/2013] [Indexed: 01/09/2023]
|
12
|
Marchetti R, Canales A, Lanzetta R, Nilsson I, Vogel C, Reed DE, AuCoin DP, Jiménez-Barbero J, Molinaro A, Silipo A. Unraveling the Interaction between the LPS O-Antigen ofBurkholderia anthinaand the 5D8 Monoclonal Antibody by Using a Multidisciplinary Chemical Approach, with Synthesis, NMR, and Molecular Modeling Methods. Chembiochem 2013; 14:1485-93. [DOI: 10.1002/cbic.201300225] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Indexed: 11/11/2022]
|
13
|
Silipo A, Di Lorenzo F, Fazio LL, Paciello I, Sturiale L, Palmigiano A, Parrilli M, Grant WD, Garozzo D, Lanzetta R, Bernardini ML, Molinaro A. Structure and Immunological Activity of the Lipopolysaccharide Isolated from the SpeciesAlkalimonas delamerensis. European J Org Chem 2013. [DOI: 10.1002/ejoc.201201702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Boyko AS, Dmitrenok AS, Fedonenko YP, Zdorovenko EL, Konnova SA, Knirel YA, Ignatov VV. Structural analysis of the O-polysaccharide of the lipopolysaccharide from Azospirillum brasilense Jm6B2 containing 3-O-methyl-d-rhamnose (d-acofriose). Carbohydr Res 2012; 355:92-5. [DOI: 10.1016/j.carres.2012.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 04/11/2012] [Indexed: 10/28/2022]
|
15
|
Silipo A, Sturiale L, De Castro C, Lanzetta R, Parrilli M, Garozzo D, Molinaro A. Structure of the lipopolysaccharide isolated from the novel species Uruburuella suis. Carbohydr Res 2012; 357:75-82. [PMID: 22704198 DOI: 10.1016/j.carres.2012.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/10/2012] [Accepted: 05/13/2012] [Indexed: 11/15/2022]
Abstract
Uruburuella suis is a novel species isolated from lungs and heart of pigs with pneumonia and pericarditis. Phenotypic and phylogenetic evidences showed that it represented a hitherto unknown subline within the family Neisseriaceae. In the present work we defined the whole structure of the LPS isolated from Uruburuella suis. The structural determination, which was achieved by chemical, spectroscopic and spectrometric approaches, indicates a novel rough type lipopolysaccharide rich in negatively charged groups in the lipid A-inner core region. The elucidation of the structural features of the LPS from Uruburuella suis is a first step toward the comprehension of the characteristics of the cell envelope in such new and interesting microorganisms.
Collapse
Affiliation(s)
- Alba Silipo
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy.
| | | | | | | | | | | | | |
Collapse
|
16
|
Silipo A, Leone MR, Erbs G, Lanzetta R, Parrilli M, Chang WS, Newman MA, Molinaro A. A unique bicyclic monosaccharide from the Bradyrhizobium lipopolysaccharide and its role in the molecular interaction with plants. Angew Chem Int Ed Engl 2011; 50:12610-2. [PMID: 22058060 DOI: 10.1002/anie.201106548] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Indexed: 11/09/2022]
Abstract
Sugar coat: The nitrogen-fixing soil bacterium Bradyrhizobium sp. BTAi1 is coated with a unique lipopolysaccharide that does not induce innate immune responses in its host plant Aeschynomene indica or in different plant families. The chemical nature of the monosaccharide forming the polymer (see picture) is unprecedented in nature, which helps to avoid "harmful" recognition by its symbiotic host.
Collapse
Affiliation(s)
- Alba Silipo
- Department of Organic Chemistry and Biochemistry, University of Naples Federico II, Via Cinthia 4, 80126 Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Silipo A, Leone MR, Erbs G, Lanzetta R, Parrilli M, Chang WS, Newman MA, Molinaro A. A Unique Bicyclic Monosaccharide from the Bradyrhizobium Lipopolysaccharide and Its Role in the Molecular Interaction with Plants. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201106548] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
18
|
Silipo A, Leone MR, Lanzetta R, Parrilli M, Lackner G, Busch B, Hertweck C, Molinaro A. Structural characterization of two lipopolysaccharide O-antigens produced by the endofungal bacterium Burkholderia sp. HKI-402 (B4). Carbohydr Res 2011; 347:95-8. [PMID: 22115719 DOI: 10.1016/j.carres.2011.10.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 10/21/2011] [Accepted: 10/25/2011] [Indexed: 12/22/2022]
Abstract
Two different polysaccharides were isolated and identified from the lipopolysaccharide fraction of endofungal bacterium Burkholderia sp. HKI-402 (B4). The complete structure was elucidated by chemical analysis and 2D NMR spectroscopy as the following:
Collapse
Affiliation(s)
- Alba Silipo
- Dipartimento di Chimica Organica e Biochimica, Università di Napoli Federico II, via Cintia 4, 80126 Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
19
|
D'Errico G, Silipo A, Mangiapia G, Vitiello G, Radulescu A, Molinaro A, Lanzetta R, Paduano L. Characterization of liposomes formed by lipopolysaccharides from Burkholderia cenocepacia, Burkholderia multivorans and Agrobacterium tumefaciens: from the molecular structure to the aggregate architecture. Phys Chem Chem Phys 2010; 12:13574-85. [DOI: 10.1039/c0cp00066c] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|