1
|
Li T, Li T, Yang Y, Qiu Y, Liu Y, Zhang M, Zhuang H, Schmidt RR, Peng P. Reaction Rate and Stereoselectivity Enhancement in Glycosidations with O-Glycosyl Trihaloacetimidate Donors due to Catalysis by a Lewis Acid-Nitrile Cooperative Effect. J Org Chem 2024. [PMID: 38805026 DOI: 10.1021/acs.joc.4c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Activation of O-glycosyl trihaloacetimidate glycosyl donors with AuCl3 as a catalyst and pivalonitrile (tBuCN) as a ligand led to excellent glycosidation results in terms of yield and anomeric selectivity. In this way, various β-d-gluco- and β-d-galactopyranosides were obtained conveniently and efficiently. Experimental studies and density functional theory (DFT) calculations, in order to elucidate the reaction course, support formation of the tBuCN-AuCl2-OR(H)+ AuCl4- complex as a decisive intermediate in the glycosidation event. Proton transfer from this acceptor complex to the imidate nitrogen leads to donor activation. In this way, guided by the C-2 configuration of the glycosyl donor, the alignment of the acceptor complex enforces the stereoselective β-glycoside formation in an intramolecular fashion, thus promoting also a fast reaction course. The high stereocontrol of this novel 'Lewis acid-nitrile cooperative effect' is independent of the glycosyl donor anomeric configuration and without the support of neighboring group or remote group participation. The power of the methodology is shown by a successful glycoalkaloid solamargine synthesis.
Collapse
Affiliation(s)
- Tianlu Li
- National Glycoengineering Research Center, Shandong Technology Innovation Center of Carbohydrate, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Shandong 266237, China
| | - Tong Li
- National Glycoengineering Research Center, Shandong Technology Innovation Center of Carbohydrate, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Shandong 266237, China
| | - Yue Yang
- National Glycoengineering Research Center, Shandong Technology Innovation Center of Carbohydrate, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Shandong 266237, China
| | - Yongshun Qiu
- National Glycoengineering Research Center, Shandong Technology Innovation Center of Carbohydrate, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Shandong 266237, China
| | - Yingguo Liu
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450000, China
| | - Miaomiao Zhang
- National Glycoengineering Research Center, Shandong Technology Innovation Center of Carbohydrate, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Shandong 266237, China
| | - Haoru Zhuang
- National Glycoengineering Research Center, Shandong Technology Innovation Center of Carbohydrate, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Shandong 266237, China
| | - Richard R Schmidt
- Department of Chemistry, University of Konstanz, Konstanz D-78457, Germany
| | - Peng Peng
- National Glycoengineering Research Center, Shandong Technology Innovation Center of Carbohydrate, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Shandong 266237, China
| |
Collapse
|
2
|
Ishiwata A, Tanaka K, Ito Y, Cai H, Ding F. Recent Progress in 1,2- cis glycosylation for Glucan Synthesis. Molecules 2023; 28:5644. [PMID: 37570614 PMCID: PMC10420028 DOI: 10.3390/molecules28155644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 08/13/2023] Open
Abstract
Controlling the stereoselectivity of 1,2-cis glycosylation is one of the most challenging tasks in the chemical synthesis of glycans. There are various 1,2-cis glycosides in nature, such as α-glucoside and β-mannoside in glycoproteins, glycolipids, proteoglycans, microbial polysaccharides, and bioactive natural products. In the structure of polysaccharides such as α-glucan, 1,2-cis α-glucosides were found to be the major linkage between the glucopyranosides. Various regioisomeric linkages, 1→3, 1→4, and 1→6 for the backbone structure, and 1→2/3/4/6 for branching in the polysaccharide as well as in the oligosaccharides were identified. To achieve highly stereoselective 1,2-cis glycosylation, including α-glucosylation, a number of strategies using inter- and intra-molecular methodologies have been explored. Recently, Zn salt-mediated cis glycosylation has been developed and applied to the synthesis of various 1,2-cis linkages, such as α-glucoside and β-mannoside, via the 1,2-cis glycosylation pathway and β-galactoside 1,4/6-cis induction. Furthermore, the synthesis of various structures of α-glucans has been achieved using the recent progressive stereoselective 1,2-cis glycosylation reactions. In this review, recent advances in stereoselective 1,2-cis glycosylation, particularly focused on α-glucosylation, and their applications in the construction of linear and branched α-glucans are summarized.
Collapse
Affiliation(s)
| | - Katsunori Tanaka
- RIKEN, Cluster for Pioneering Research, Saitama 351-0198, Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Yukishige Ito
- RIKEN, Cluster for Pioneering Research, Saitama 351-0198, Japan
- Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Hui Cai
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
3
|
Njeri DK, Ragains JR. Total Synthesis of a Pentasaccharide O-Glycan from Acinetobacter baumannii. European J Org Chem 2022; 2022:e202201261. [PMID: 36876192 PMCID: PMC9983622 DOI: 10.1002/ejoc.202201261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Indexed: 12/23/2022]
Abstract
Acinetobacter baumannii is a Gram-negative bacteria associated with drug resistance and infection in healthcare settings. An understanding of both the biological roles and antigenicity of surface molecules of this organism may provide an important step in the prevention and treatment of infection through vaccination or the development of monoclonal antibodies. With this in mind, we have performed the multistep synthesis of a conjugation-ready pentasaccharide O-glycan from A. baumannii with a longest linear synthetic sequence of 19 steps. This target is particularly relevant due to its role in both fitness and virulence across an apparently broad range of clinically relevant strains. Synthetic challenges include formulating an effective protecting group scheme as well as the installation of a particularly difficult glycosidic linkage between the anomeric position of a 2,3-diacetamido-2,3-dideoxy-D-glucuronic acid and the 4-position of D-galactose.
Collapse
Affiliation(s)
- Dancan K Njeri
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA 70803
| | - Justin R Ragains
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA 70803
| |
Collapse
|
4
|
Ishiwata A, Tanaka K, Ao J, Ding F, Ito Y. Recent advances in stereoselective 1,2- cis- O-glycosylations. Front Chem 2022; 10:972429. [PMID: 36059876 PMCID: PMC9437320 DOI: 10.3389/fchem.2022.972429] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/08/2022] [Indexed: 02/03/2023] Open
Abstract
For the stereoselective assembly of bioactive glycans with various functions, 1,2-cis-O-glycosylation is one of the most essential issues in synthetic carbohydrate chemistry. The cis-configured O-glycosidic linkages to the substituents at two positions of the non-reducing side residue of the glycosides such as α-glucopyranoside, α-galactopyranoside, β-mannopyranoside, β-arabinofuranoside, and other rather rare glycosides are found in natural glycans, including glycoconjugate (glycoproteins, glycolipids, proteoglycans, and microbial polysaccharides) and glycoside natural products. The way to 1,2-trans isomers is well sophisticated by using the effect of neighboring group participation from the most effective and kinetically favored C-2 substituent such as an acyl group, although high stereoselective synthesis of 1,2-cis glycosides without formation of 1,2-trans isomers is far less straightforward. Although the key factors that control the stereoselectivity of glycosylation are largely understood since chemical glycosylation was considered to be one of the useful methods to obtain glycosidic linkages as the alternative way of isolation from natural sources, strictly controlled formation of these 1,2-cis glycosides is generally difficult. This minireview introduces some of the recent advances in the development of 1,2-cis selective glycosylations, including the quite recent developments in glycosyl donor modification, reaction conditions, and methods for activation of intermolecular glycosylation, including the bimodal glycosylation strategy for 1,2-cis and 1,2-trans glycosides, as well as intramolecular glycosylations, including recent applications of NAP-ether-mediated intramolecular aglycon delivery.
Collapse
Affiliation(s)
| | - Katsunori Tanaka
- RIKEN Cluster for Pioneering Research, Saitama, Japan
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Jiaming Ao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Yukishige Ito
- RIKEN Cluster for Pioneering Research, Saitama, Japan
- Graduate School of Science, Osaka University, Osaka, Japan
| |
Collapse
|
5
|
Späth G, Fürstner A. Total Synthesis of Mycinamicin IV as Integral Part of a Collective Approach to Macrolide Antibiotics. Chemistry 2022; 28:e202104400. [PMID: 34910333 PMCID: PMC9305142 DOI: 10.1002/chem.202104400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Indexed: 11/09/2022]
Abstract
The total synthesis of the 16-membered macrolide mycinamicin IV is outlined, which complements our previously disclosed, largely catalysis-based route to the aglycone. This work must also be seen in the context of our recent conquest of aldgamycin N, a related antibiotic featuring a similar core but a distinctly different functionalization pattern. Taken together, these projects prove that the underlying blueprint is integrative and hence qualifies for a collective approach to this prominent class of natural products. In both cases, the final glycosylation phase mandated close attention and was accomplished only after robust de novo syntheses of the (di)deoxy sugars of the desosamine, chalcose, mycinose and aldgarose types had been established. Systematic screening of the glycosidation promoter was also critically important for success.
Collapse
Affiliation(s)
- Georg Späth
- Max-Planck-Institut für Kohlenforschung45470Mülheim/RuhrGermany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung45470Mülheim/RuhrGermany
| |
Collapse
|
6
|
Wu X, Wu B, Gao CF, Ye XS, Xiong DC. Additive-controlled synthesis of 1- and 2-dexoysugars from thioglycosides. J Carbohydr Chem 2021. [DOI: 10.1080/07328303.2021.2015366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Xia Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Biao Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Chen-Fei Gao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - De-Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
7
|
Yang F, Hou W, Zhu D, Tang Y, Yu B. A Stereoselective Glycosylation Approach to the Construction of 1,2-trans-β-d-Glycosidic Linkages and Convergent Synthesis of Saponins. Chemistry 2021; 28:e202104002. [PMID: 34859514 DOI: 10.1002/chem.202104002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Indexed: 11/09/2022]
Abstract
Conventional syntheses of 1,2-trans-β-d- or α-l-glycosidic linkages rely mainly on neighboring group participation in the glycosylation reactions. The requirement for a neighboring participation group (NPG) excludes direct glycosylation with (1→2)-linked glycan donors, thus only allowing stepwise assembly of glycans and glycoconjugates containing this type of common motif. Here, a robust glycosylation protocol for the synthesis of 1,2-trans-β-d- or α-l-glycosidic linkages without resorting to NPG is disclosed; it employs an optimal combination of glycosyl N-phenyltrifluroacetimidates as donors, FeCl3 as promoter, and CH2 Cl2 /nitrile as solvent. A broad substrate scope has been demonstrated by glycosylations with 12 (1→2)-linked di- and trisaccharide donors and 13 alcoholic acceptors including eight complex triterpene derivatives. Most of the glycosylation reactions are high yielding and exclusively 1,2-trans selective. Ten representative, naturally occurring triterpene saponins were thus synthesized in a convergent manner after deprotection of the coupled glycosides. Intensive mechanistic studies indicated that this glycosylation proceeds by SN 2-type substitution of the glycosyl α-nitrilium intermediates. Importantly, FeCl3 dissociates and coordinates with nitrile into [Fe(RCN)n Cl2 ]+ and [FeCl4 ]- , and the ferric cationic species coordinates with the alcoholic acceptor to provide a protic species that activates the imidate, meanwhile the poor nucleophilicity of [FeCl4 ]- ensures an uninterruptive role for the glycosidation.
Collapse
Affiliation(s)
- Fuzhu Yang
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, P. R. China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
| | - Wu Hou
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, P. R. China
| | - Dapeng Zhu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Yu Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
| |
Collapse
|
8
|
Chang CW, Lin MH, Chan CK, Su KY, Wu CH, Lo WC, Lam S, Cheng YT, Liao PH, Wong CH, Wang CC. Automated Quantification of Hydroxyl Reactivities: Prediction of Glycosylation Reactions. Angew Chem Int Ed Engl 2021; 60:12413-12423. [PMID: 33634934 DOI: 10.1002/anie.202013909] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/07/2021] [Indexed: 12/17/2022]
Abstract
The stereoselectivity and yield in glycosylation reactions are paramount but unpredictable. We have developed a database of acceptor nucleophilic constants (Aka) to quantify the nucleophilicity of hydroxyl groups in glycosylation influenced by the steric, electronic and structural effects, providing a connection between experiments and computer algorithms. The subtle reactivity differences among the hydroxyl groups on various carbohydrate molecules can be defined by Aka, which is easily accessible by a simple and convenient automation system to assure high reproducibility and accuracy. A diverse range of glycosylation donors and acceptors with well-defined reactivity and promoters were organized and processed by the designed software program "GlycoComputer" for prediction of glycosylation reactions without involving sophisticated computational processing. The importance of Aka was further verified by random forest algorithm, and the applicability was tested by the synthesis of a Lewis A skeleton to show that the stereoselectivity and yield can be accurately estimated.
Collapse
Affiliation(s)
- Chun-Wei Chang
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Mei-Huei Lin
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Chieh-Kai Chan
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Kuan-Yu Su
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Chia-Hui Wu
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Wei-Chih Lo
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Sarah Lam
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Yu-Ting Cheng
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Pin-Hsuan Liao
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Chi-Huey Wong
- The Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan.,Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, 92037, USA
| | - Cheng-Chung Wang
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan.,Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei, 115, Taiwan
| |
Collapse
|
9
|
Chang C, Lin M, Chan C, Su K, Wu C, Lo W, Lam S, Cheng Y, Liao P, Wong C, Wang C. Automated Quantification of Hydroxyl Reactivities: Prediction of Glycosylation Reactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Chun‐Wei Chang
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
| | - Mei‐Huei Lin
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
| | - Chieh‐Kai Chan
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
| | - Kuan‐Yu Su
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
| | - Chia‐Hui Wu
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
| | - Wei‐Chih Lo
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
| | - Sarah Lam
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
| | - Yu‐Ting Cheng
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
| | - Pin‐Hsuan Liao
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
| | - Chi‐Huey Wong
- The Genomics Research Center Academia Sinica Taipei 115 Taiwan
- Department of Chemistry The Scripps Research Institute 10550 N Torrey Pines Road La Jolla 92037 USA
| | - Cheng‐Chung Wang
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
- Chemical Biology and Molecular Biophysics Program Taiwan International Graduate Program (TIGP) Academia Sinica Taipei 115 Taiwan
| |
Collapse
|
10
|
Chang CW, Lin MH, Wang CC. Statistical Analysis of Glycosylation Reactions. Chemistry 2020; 27:2556-2568. [PMID: 32939892 DOI: 10.1002/chem.202003105] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/15/2020] [Indexed: 12/27/2022]
Abstract
Chemical synthesis is one of the practical approaches to access carbohydrate-based natural products and their derivatives with high quality and in a large quantity. However, stereoselectivity during the glycosylation reaction is the main challenge because the reaction can generate both α- and β-glycosides. The main focus of the present article is the concept of recent mechanistic studies that have applied statistical analysis and quantitation for defining stereoselective changes during the reaction process. Based on experimental evidence, a detailed discussion associated with the mechanism and degree of influence affecting the stereoselective outcome of glycosylation is included.
Collapse
Affiliation(s)
- Chun-Wei Chang
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Mei-Huei Lin
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Cheng-Chung Wang
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan.,Chemical Biology and Molecular Biophysics Program (Taiwan), International Graduate Program (TIGP), Academia Sinica, Taipei, 115, Taiwan
| |
Collapse
|
11
|
Orlova AV, Laptinskaya TV, Malysheva NN, Kononov LO. Light Scattering in Non-aqueous Solutions of Low-Molecular-Mass Compounds: Application for Supramer Analysis of Reaction Solutions. J SOLUTION CHEM 2020. [DOI: 10.1007/s10953-020-00977-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
12
|
Huang BS, Lowary TL. β-Selective xylulofuranosylation via a conformationally-restricted glycosyl donor. Org Biomol Chem 2020; 18:2264-2273. [PMID: 32150203 DOI: 10.1039/d0ob00260g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reported is the first stereoselective method for β-xylulofuranosylation, which employs 3,4-O-xylylene-protected thioglycoside donors. For most acceptors, the best results were observed with a donor (8) that possesses both the xylylene group and a benzoate ester at O-1. To demonstrate its utility, the methodology was applied to the first synthesis of the pentasaccharide repeating unit from the lipopolysaccharide O-antigen of Yersinia enterocolitica serovars O:5/O:5,27, a structure containing two β-xylulofuranose residues.
Collapse
Affiliation(s)
- Bo-Shun Huang
- Department of Chemistry, University of Alberta, Edmonton, Alberta, CanadaT6G 2G2.
| | - Todd L Lowary
- Department of Chemistry, University of Alberta, Edmonton, Alberta, CanadaT6G 2G2.
| |
Collapse
|
13
|
Zhao Q, Zhang H, Zhang Y, Zhou S, Gao J. Stereoselective synthesis of a branched α-decaglucan. Org Biomol Chem 2020; 18:6549-6557. [PMID: 32789329 DOI: 10.1039/d0ob01402h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The first and convergent synthesis of a branched Arca subcrenata Lischke α-decaglucan containing all of the α-(1 → 3), α-(1 → 4), and α-(1 → 6) glycosyl linkages was efficiently achieved. The tri- and tetrasaccharide fragments and fully protected decasaccharide were assembled in a one-pot manner with excellent α-stereoselectivity, which was secured by the synergistic α-directing effects of the TolSCl/AgOTf catalysis system and the remote participation effect or steric β-shielding of functionalized groups at the donor 6-O-position. Low substrate concentration was revealed to favor the α-stereochemical outcome of glycosylations between bulkier building blocks. The synthetic approach established here would be very useful for the preparation of more complex α-glucans containing different types of glycosidic linkages and branched architectures.
Collapse
Affiliation(s)
- Qingpeng Zhao
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China.
| | - Han Zhang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China.
| | - Yanxin Zhang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China.
| | - Shihao Zhou
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China.
| | - Jian Gao
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
14
|
Zhu D, Geng M, Yang F, Yu B. Strategies on the construction of 1,2-branched trans-β-glycosidic linkages and their applications in the synthesis of saponins. J Carbohydr Chem 2019. [DOI: 10.1080/07328303.2019.1642345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dapeng Zhu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, PR China
| | - Mingyu Geng
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, PR China
| | - Fuzhu Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, PR China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, PR China
| |
Collapse
|
15
|
Baumann A, Marchner S, Daum M, Hoffmann-Röder A. Synthesis of Fluorinated Leishmania
Cap Trisaccharides for Diagnostic Tool and Vaccine Development. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800384] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Andreas Baumann
- Center For Integrated Protein Science Munich (CIPSM) at the Department of Chemistry; Ludwig-Maximilians-Universität; Butenandtstr. 5-13 81377 Munich Germany
| | - Stefan Marchner
- Center For Integrated Protein Science Munich (CIPSM) at the Department of Chemistry; Ludwig-Maximilians-Universität; Butenandtstr. 5-13 81377 Munich Germany
| | - Markus Daum
- Center For Integrated Protein Science Munich (CIPSM) at the Department of Chemistry; Ludwig-Maximilians-Universität; Butenandtstr. 5-13 81377 Munich Germany
| | - Anja Hoffmann-Röder
- Center For Integrated Protein Science Munich (CIPSM) at the Department of Chemistry; Ludwig-Maximilians-Universität; Butenandtstr. 5-13 81377 Munich Germany
| |
Collapse
|
16
|
Lu YJ, Lai YH, Lin YY, Wang YC, Liang PH. 2- O- N-Benzylcarbamoyl as a Protecting Group To Promote β-Selective Glycosylation and Its Applications in the Stereoselective Synthesis of Oligosaccharides. J Org Chem 2018; 83:3688-3701. [PMID: 29512381 DOI: 10.1021/acs.joc.8b00047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study examines the utility of the N-benzylcarbamoyl (BnCar) protecting group in glycosylation reactions of the parent O-2 protected carbohydrate donor. It was found that the BnCar group imparted exclusively β-selectivity with primary and secondary alcohols. A mechanistic study revealed the activated intermediate to be the glycosyl triflate in a skew conformation, which results in β-selective glycosylation via an SN2-like pathway. The BnCar group can be readily cleaved using tetrabutylammonium nitrite, without affecting ester and ether protecting groups. Taken together, these results show BnCar to be useful for the synthesis of complex oligosaccharides, an undertaking that requires delicate chemical differentiation of various protecting groups.
Collapse
Affiliation(s)
- Yin-Jen Lu
- School of Pharmacy, College of Medicine , National Taiwan University , Taipei 100 , Taiwan
| | - Yen-Hsun Lai
- School of Pharmacy, College of Medicine , National Taiwan University , Taipei 100 , Taiwan
| | - You-Yu Lin
- School of Pharmacy, College of Medicine , National Taiwan University , Taipei 100 , Taiwan
| | - Yi-Chi Wang
- School of Pharmacy, College of Medicine , National Taiwan University , Taipei 100 , Taiwan
| | - Pi-Hui Liang
- School of Pharmacy, College of Medicine , National Taiwan University , Taipei 100 , Taiwan
| |
Collapse
|
17
|
Fu J, Laval S, Yu B. Total Synthesis of Nucleoside Antibiotics Plicacetin and Streptcytosine A. J Org Chem 2018; 83:7076-7084. [DOI: 10.1021/acs.joc.8b00006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jiqiang Fu
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences and University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Stephane Laval
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences and University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Biao Yu
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences and University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
18
|
Li W, Yu B. Gold-catalyzed glycosylation in the synthesis of complex carbohydrate-containing natural products. Chem Soc Rev 2018; 47:7954-7984. [DOI: 10.1039/c8cs00209f] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold(i)- and gold(iii)-catalyzed glycosylation reactions and their application in the synthesis of natural glycoconjugates are reviewed.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| |
Collapse
|
19
|
Yashunsky DV, Karelin AA, Tsvetkov YE, Nifantiev NE. Synthesis of 3-aminopropyl β-(1 → 6)-d-glucotetraoside and its biotinylated derivative. Carbohydr Res 2017; 455:18-22. [PMID: 29156224 DOI: 10.1016/j.carres.2017.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/01/2017] [Accepted: 11/01/2017] [Indexed: 10/18/2022]
Abstract
3-Aminopropyl β-(1 → 6)-d-glucotetraoside has been synthesized from 3-benzyloxycarbonylaminopropanol and 6-O-acetyl-2,3,4-tri-O-benzoyl-d-glucopyranosyl trichloroacetimidate by successive attachment of one monosaccharide unit in total yield of 22%. Free aminopropyl glycoside was converted into a biotin derivative that can be used for controlled immobilization of the oligosaccharide on streptavidin-coated ELISA plates and for tracing carbohydrate binding molecules.
Collapse
Affiliation(s)
- Dmitry V Yashunsky
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Alexander A Karelin
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Yury E Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia.
| |
Collapse
|
20
|
Emmadi M, Khan N, Lykke L, Reppe K, G Parameswarappa S, Lisboa MP, Wienhold SM, Witzenrath M, Pereira CL, Seeberger PH. A Streptococcus pneumoniae Type 2 Oligosaccharide Glycoconjugate Elicits Opsonic Antibodies and Is Protective in an Animal Model of Invasive Pneumococcal Disease. J Am Chem Soc 2017; 139:14783-14791. [PMID: 28945368 DOI: 10.1021/jacs.7b07836] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Invasive pneumococcal diseases (IPDs) remain the leading cause of vaccine-preventable childhood death, even though highly effective pneumococcal conjugate vaccines (PCVs) are used in national immunization programs in many developing countries. Licensed PCVs currently cover only 13 of the over 90 serotypes of Streptococcus pneumoniae (Sp), so nonvaccine serotypes are a major obstacle to the effective control of IPD. Sp serotype 2 (ST2) is such a nonvaccine serotype that is the main cause of IPD in many countries, including Nepal, Bangladesh, and Guatemala. Glycoconjugate vaccines based on synthetic oligosaccharides instead of isolated polysaccharides offer an attractive alternative to the traditional process for PCV development. To prevent the IPDs caused by ST2, we identified an effective ST2 neoglycoconjugate vaccine candidate that was identified using a medicinal chemistry approach. Glycan microarrays containing a series of synthetic glycans resembling portions of the ST2 capsular polysaccharide (CPS) repeating unit were used to screen human and rabbit sera and identify epitope hits. Synthetic hexasaccharide 2, resembling one repeating unit (RU) of ST2 CPS, emerged as a hit from the glycan array screens. Vaccination with neoglycoconjugates consisting of hexasaccharide 2 coupled to carrier protein CRM197 stimulates a T-cell-dependent B-cell response that induced CPS-specific opsonic antibodies in mice, resulting in killing of encapsulated bacteria by phagocytic activity. Subcutaneous immunization with neoglycoconjugate protected mice from transnasal challenge with the highly virulent ST2 strain NCTC 7466 by reducing the bacterial load in lung tissue and blood.
Collapse
Affiliation(s)
- Madhu Emmadi
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces , D-14424 Potsdam, Germany
| | - Naeem Khan
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces , D-14424 Potsdam, Germany
| | - Lennart Lykke
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces , D-14424 Potsdam, Germany
| | - Katrin Reppe
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin , Charitéplatz 1, 10117 Berlin, Germany
| | - Sharavathi G Parameswarappa
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces , D-14424 Potsdam, Germany
| | - Marilda P Lisboa
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces , D-14424 Potsdam, Germany
| | - Sandra-Maria Wienhold
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin , Charitéplatz 1, 10117 Berlin, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin , Charitéplatz 1, 10117 Berlin, Germany
| | - Claney L Pereira
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces , D-14424 Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces , D-14424 Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin , Arnimallee 22, D-14195 Berlin, Germany
| |
Collapse
|
21
|
Glycosylation of dibutyl phosphate anion with arabinofuranosyl bromide: unusual influence of concentration of the reagents on the ratio of anomeric glycosyl phosphates formed. Russ Chem Bull 2017. [DOI: 10.1007/s11172-016-1654-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Sankarayanarayanan NV, Strebel TR, Boothello RS, Sheerin K, Raghuraman A, Sallas F, Mosier PD, Watermeyer ND, Oscarson S, Desai UR. A Hexasaccharide Containing Rare 2-O-Sulfate-Glucuronic Acid Residues Selectively Activates Heparin Cofactor II. Angew Chem Int Ed Engl 2017; 56:2312-2317. [PMID: 28124818 PMCID: PMC5347859 DOI: 10.1002/anie.201609541] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/10/2017] [Indexed: 11/12/2022]
Abstract
Glycosaminoglycan (GAG) sequences that selectively target heparin cofactor II (HCII), a key serpin present in human plasma, remain unknown. Using a computational strategy on a library of 46 656 heparan sulfate hexasaccharides we identified a rare sequence consisting of consecutive glucuronic acid 2-O-sulfate residues as selectively targeting HCII. This and four other unique hexasaccharides were chemically synthesized. The designed sequence was found to activate HCII ca. 250-fold, while leaving aside antithrombin, a closely related serpin, essentially unactivated. This group of rare designed hexasaccharides will help understand HCII function. More importantly, our results show for the first time that rigorous use of computational techniques can lead to discovery of unique GAG sequences that can selectively target GAG-binding protein(s), which may lead to chemical biology or drug discovery tools.
Collapse
Affiliation(s)
- Nehru Viji Sankarayanarayanan
- Department of Medicinal Chemistry and Institute of Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, USA
| | - Tamara R Strebel
- Centre for Synthesis and Chemical Biology, University College of Dublin, Belfield, Dublin, 4, Ireland
| | - Rio S Boothello
- Department of Medicinal Chemistry and Institute of Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, USA
| | - Kevin Sheerin
- Centre for Synthesis and Chemical Biology, University College of Dublin, Belfield, Dublin, 4, Ireland
| | - Arjun Raghuraman
- Department of Medicinal Chemistry and Institute of Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, USA
| | - Florence Sallas
- Centre for Synthesis and Chemical Biology, University College of Dublin, Belfield, Dublin, 4, Ireland
| | - Philip D Mosier
- Department of Medicinal Chemistry and Institute of Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, USA
| | - Nicholas D Watermeyer
- Centre for Synthesis and Chemical Biology, University College of Dublin, Belfield, Dublin, 4, Ireland
| | - Stefan Oscarson
- Centre for Synthesis and Chemical Biology, University College of Dublin, Belfield, Dublin, 4, Ireland
| | - Umesh R Desai
- Department of Medicinal Chemistry and Institute of Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
23
|
A Hexasaccharide Containing Rare 2-O
-Sulfate-Glucuronic Acid Residues Selectively Activates Heparin Cofactor II. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201609541] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Kononov LO, Fedina KG, Orlova AV, Kondakov NN, Abronina PI, Podvalnyy NM, Chizhov AO. Bimodal concentration-dependent reactivity pattern of a glycosyl donor: Is the solution structure involved? Carbohydr Res 2016; 437:28-35. [PMID: 27883907 DOI: 10.1016/j.carres.2016.11.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/10/2016] [Accepted: 11/10/2016] [Indexed: 11/30/2022]
Abstract
Changes in concentration (0.001-0.1 M) of an arabinofuranosyl donor (1) have been shown to modulate the temperature T at which activation of 1 occurs (from -23 °C to +7 °C), the reaction time (from 1.5 h to 3 days) and the yield of the disaccharide formed (from 14% to 82%). At concentrations exceeding 0.01 M, these parameters, as well as the specific optical rotation of the solution of 1, virtually do not depend on concentration suggesting formation of reacting species (supramers) of glycosyl donor with similar structures, hence reactivities, but considerably different from those formed in more dilute solutions. The found critical concentration (0.01 M) separates two concentration ranges of reaction solutions corresponding to two types of solution structure that are featured by the presence of fundamentally different supramers of glycosyl donor, which have distinct chemical properties. These results allow a fresh look at the problems of reactivity of chemical compounds and selectivity of the reactions in which they participate.
Collapse
Affiliation(s)
- Leonid O Kononov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp., 47, 119991, Moscow, Russian Federation.
| | - Ksenia G Fedina
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp., 47, 119991, Moscow, Russian Federation
| | - Anna V Orlova
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp., 47, 119991, Moscow, Russian Federation
| | - Nikolay N Kondakov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp., 47, 119991, Moscow, Russian Federation
| | - Polina I Abronina
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp., 47, 119991, Moscow, Russian Federation
| | - Nikita M Podvalnyy
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp., 47, 119991, Moscow, Russian Federation
| | - Alexander O Chizhov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp., 47, 119991, Moscow, Russian Federation
| |
Collapse
|
25
|
Abstract
This review covers a special topic in carbohydrate chemistry — solvent effects on the stereoselectivity of glycosylation reactions. Obtaining highly stereoselective glycosidic linkages is one of the most challenging tasks in organic synthesis, as it is affected by various controlling factors. One of the least understood factors is the effect of solvents. We have described the known solvent effects while providing both general rules and specific examples. We hope this review will not only help fellow researchers understand the known aspects of solvent effects and use that in their experiments, but moreover, we expect that more studies on this topic will be started and continued to expand our understanding of the mechanistic aspects of solvent effects in glycosylation reactions.
Collapse
Affiliation(s)
- Arjun Kafle
- Department of Chemistry and Chemical Biology, UNM Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, USA
- Department of Chemistry and Chemical Biology, UNM Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, USA
| | - Jun Liu
- Department of Chemistry and Chemical Biology, UNM Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, USA
- Department of Chemistry and Chemical Biology, UNM Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, USA
| | - Lina Cui
- Department of Chemistry and Chemical Biology, UNM Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, USA
- Department of Chemistry and Chemical Biology, UNM Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
26
|
Lu X, Kováč P. Chemical Synthesis of the Galacturonic Acid Containing Pentasaccharide Antigen of the O-Specific Polysaccharide of Vibrio cholerae O139 and Its Five Fragments. J Org Chem 2016; 81:6374-94. [DOI: 10.1021/acs.joc.6b01019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Xiaowei Lu
- Section on Carbohydrates,
Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, Maryland 20892-0815, United States
| | - Pavol Kováč
- Section on Carbohydrates,
Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, Maryland 20892-0815, United States
| |
Collapse
|
27
|
Ryzhov IM, Korchagina EY, Popova IS, Tyrtysh TV, Paramonov AS, Bovin NV. Block synthesis of A (type 2) and B (type 2) tetrasaccharides related to the human ABO blood group system. Carbohydr Res 2016; 430:59-71. [DOI: 10.1016/j.carres.2016.04.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 04/30/2016] [Indexed: 10/21/2022]
|
28
|
Khatuntseva EA, Sherman AA, Tsvetkov YE, Nifantiev NE. Phenyl 2-azido-2-deoxy-1-selenogalactosides: a single type of glycosyl donor for the highly stereoselective synthesis of α- and β-2-azido-2-deoxy-d-galactopyranosides. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Chu AHA, Minciunescu A, Bennett CS. Aryl(trifluoroethyl)iodonium Triflimide and Nitrile Solvent Systems: A Combination for the Stereoselective Synthesis of Armed 1,2-trans-β-Glycosides at Noncryogenic Temperatures. Org Lett 2015; 17:6262-5. [DOI: 10.1021/acs.orglett.5b03282] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- An-Hsiang Adam Chu
- Department
of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Andrei Minciunescu
- Department
of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Clay S. Bennett
- Department
of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| |
Collapse
|
30
|
Frihed TG, Bols M, Pedersen CM. Mechanisms of Glycosylation Reactions Studied by Low-Temperature Nuclear Magnetic Resonance. Chem Rev 2015; 115:4963-5013. [DOI: 10.1021/cr500434x] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Mikael Bols
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | | |
Collapse
|
31
|
Mulani SK, Hung WC, Ingle AB, Shiau KS, Mong KKT. Modulating glycosylation with exogenous nucleophiles: an overview. Org Biomol Chem 2014; 12:1184-97. [PMID: 24382624 DOI: 10.1039/c3ob42129e] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The major challenge in carbohydrate synthesis is stereochemical control of glycosidic bond formation. Different glycosylation methods have been developed that are based on the modulation effect of external nucleophiles. This review highlights the development, synthetic application, challenges and outlook of the modulated glycosylation methods.
Collapse
Affiliation(s)
- Shaheen K Mulani
- Applied Chemistry Department, National Chiao Tung University, 1001, Ta Hsueh Road, Hsinchu, Taiwan.
| | | | | | | | | |
Collapse
|
32
|
Ingle AB, Chao CS, Hung WC, Mong KKT. Chemical Synthesis of the O-Antigen Repeating Unit ofEscherichia coliO86 by anN-Formylmorpholine-Modulated One-Pot Glycosylation Strategy. ASIAN J ORG CHEM 2014. [DOI: 10.1002/ajoc.201402057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Mulani SK, Guh JH, Mong KKT. A general synthetic strategy and the anti-proliferation properties on prostate cancer cell lines for natural phenylethanoid glycosides. Org Biomol Chem 2014; 12:2926-37. [DOI: 10.1039/c3ob42503g] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Kusumi S, Tomono S, Okuzawa S, Kaneko E, Ueda T, Sasaki K, Takahashi D, Toshima K. Total Synthesis of Vineomycin B2. J Am Chem Soc 2013; 135:15909-12. [DOI: 10.1021/ja407827n] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shunichi Kusumi
- Department of
Applied Chemistry, Faculty of
Science and Technology, Keio University, 3-14-1 Hiyoshi,
Kohoku-ku, Yokohama 223-8522, Japan
| | - Satoshi Tomono
- Department of
Applied Chemistry, Faculty of
Science and Technology, Keio University, 3-14-1 Hiyoshi,
Kohoku-ku, Yokohama 223-8522, Japan
| | - Shunsuke Okuzawa
- Department of
Applied Chemistry, Faculty of
Science and Technology, Keio University, 3-14-1 Hiyoshi,
Kohoku-ku, Yokohama 223-8522, Japan
| | - Erika Kaneko
- Department of
Applied Chemistry, Faculty of
Science and Technology, Keio University, 3-14-1 Hiyoshi,
Kohoku-ku, Yokohama 223-8522, Japan
| | - Takashi Ueda
- Department of
Applied Chemistry, Faculty of
Science and Technology, Keio University, 3-14-1 Hiyoshi,
Kohoku-ku, Yokohama 223-8522, Japan
| | - Kaname Sasaki
- Department of
Applied Chemistry, Faculty of
Science and Technology, Keio University, 3-14-1 Hiyoshi,
Kohoku-ku, Yokohama 223-8522, Japan
| | - Daisuke Takahashi
- Department of
Applied Chemistry, Faculty of
Science and Technology, Keio University, 3-14-1 Hiyoshi,
Kohoku-ku, Yokohama 223-8522, Japan
| | - Kazunobu Toshima
- Department of
Applied Chemistry, Faculty of
Science and Technology, Keio University, 3-14-1 Hiyoshi,
Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
35
|
Ingle AB, Chao CS, Hung WC, Mong KKT. Tuning Reactivity of Glycosyl Imidinium Intermediate for 2-Azido-2-deoxyglycosyl Donors in α-Glycosidic Bond Formation. Org Lett 2013; 15:5290-3. [DOI: 10.1021/ol402519c] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Arun B. Ingle
- Applied Chemistry Department, National Chiao Tung University, 1001 Ta Hsueh Road, Taiwan 300, ROC
| | - Chin-Sheng Chao
- Applied Chemistry Department, National Chiao Tung University, 1001 Ta Hsueh Road, Taiwan 300, ROC
| | - Wei-Cheng Hung
- Applied Chemistry Department, National Chiao Tung University, 1001 Ta Hsueh Road, Taiwan 300, ROC
| | - Kwok-Kong Tony Mong
- Applied Chemistry Department, National Chiao Tung University, 1001 Ta Hsueh Road, Taiwan 300, ROC
| |
Collapse
|
36
|
Ghosh B, Lai YH, Shih YY, Pradhan TK, Lin CH, Mong KKT. Total Synthesis of a Glycoglycerolipid fromMeiothermus taiwanensisthrough a One-Pot Glycosylation Reaction and Exploration of its Immunological Properties. Chem Asian J 2013; 8:3191-9. [DOI: 10.1002/asia.201300933] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Indexed: 11/09/2022]
|
37
|
Zhang J, Zou L, Lowary TL. Synthesis of the Tolerance-Inducing Oligosaccharide Lacto-N-Fucopentaose III Bearing an Activated Linker. ChemistryOpen 2013; 2:156-63. [PMID: 24551556 PMCID: PMC3775522 DOI: 10.1002/open.201300024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Indexed: 01/12/2023] Open
Abstract
A concise synthetic route to an immunomodulatory pentasaccharide, lacto-N-fucopentaose III (1) and its corresponding human serum albumin conjugate, is described. Key transformations of the strategy include two highly regio- and stereoselective glycosylations for the construction of disaccharide 10 and pentasaccharide 12, a Birch reduction for deprotection of benzyl ethers, and a UV-promoted radical addition of a thiol to an alkene for modification of the aglycone.
Collapse
Affiliation(s)
- Junfeng Zhang
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Gunning-Lemieux Chemistry Centre Edmonton, AB T6G 2G2 (Canada) E-mail:
| | - Lu Zou
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Gunning-Lemieux Chemistry Centre Edmonton, AB T6G 2G2 (Canada) E-mail:
| | - Todd L Lowary
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Gunning-Lemieux Chemistry Centre Edmonton, AB T6G 2G2 (Canada) E-mail:
| |
Collapse
|
38
|
Rigol S, Xia L, Giannis A. Synthesis of 13C-labeled and functionalized Hyaluronan derivatives for biophysical studies and surface modifications. Bioorg Med Chem 2013; 21:733-41. [DOI: 10.1016/j.bmc.2012.11.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 11/14/2012] [Accepted: 11/19/2012] [Indexed: 11/28/2022]
|
39
|
Sun Y, Zhang J, Li C, Guan H, Yu G. Synthesis of glycoglycerolipid of 1,2-dipalmitoyl-3-(N-palmitoyl-6′-amino-6′-deoxy-α-d-glucosyl)-sn-glycerol and its analogues, inhibitors of human Myt1-kinase. Carbohydr Res 2012; 355:6-12. [DOI: 10.1016/j.carres.2012.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 04/05/2012] [Accepted: 04/06/2012] [Indexed: 10/28/2022]
|
40
|
Whitfield DM. Plausible transition states for glycosylation reactions. Carbohydr Res 2012; 356:180-90. [DOI: 10.1016/j.carres.2012.03.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 03/27/2012] [Accepted: 03/30/2012] [Indexed: 11/29/2022]
|
41
|
Geng Y, Qin Q, Ye XS. Lewis acids as α-directing additives in glycosylations by using 2,3-O-carbonate-protected glucose and galactose thioglycoside donors based on preactivation protocol. J Org Chem 2012; 77:5255-70. [PMID: 22607015 DOI: 10.1021/jo3002084] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Catalytic or stoichiometric amounts of Lewis acids were found to be very effective α-directing additives in the stereoselective glycosylations of diverse 2,3-O-carbonate-protected glucose and galactose thioglycoside donors by preactivation protocol. The poor stereoselectivities of 4,6-di-O-acetyl-2,3-O-carbonate protected thioglycoside donors in glycosyl coupling reactions were greatly improved, and excellent α-stereoselectivities were achieved by the addition of 0.2 equiv of BF(3)·OEt(2). On the other hand, the β-selectivities of 4,6-di-O-benzyl-2,3-O-carbonate-protected thioglucoside donor toward glycosylations were reversed completely to the α-selectivities by the use of 1 equiv of SnCl(4), making the stereoselectivity controllable. Furthermore, the poor stereoselectivities of 4,6-di-O-benzyl-2,3-O-carbonate-protected thiogalactoside donor in glycosylations were also improved by using SnCl(4) as additive.
Collapse
Affiliation(s)
- Yiqun Geng
- State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | | | | |
Collapse
|
42
|
Mong KKT, Yen YF, Hung WC, Lai YH, Chen JH. Application of 2-Azido-2-deoxythioglycosides for β-Glycoside Formation and Oligosaccharide Synthesis. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200173] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
43
|
Kononov LO, Malysheva NN, Orlova AV, Zinin AI, Laptinskaya TV, Kononova EG, Kolotyrkina NG. Concentration Dependence of Glycosylation Outcome: A Clue to Reproducibility and Understanding the Reasons Behind. European J Org Chem 2012. [DOI: 10.1002/ejoc.201101613] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
44
|
Yang F, Zhu Y, Yu B. A dramatic concentration effect on the stereoselectivity of N-glycosylation for the synthesis of 2′-deoxy-β-ribonucleosides. Chem Commun (Camb) 2012; 48:7097-9. [DOI: 10.1039/c2cc33155a] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Chao CS, Lin CY, Mulani S, Hung WC, Mong KKT. Neighboring-Group Participation by C-2 Ether Functions in Glycosylations Directed by Nitrile Solvents. Chemistry 2011; 17:12193-202. [DOI: 10.1002/chem.201100732] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Indexed: 01/10/2023]
|
46
|
Daragics K, Szabó P, Fügedi P. Some observations on the reductive ring opening of 4,6-O-benzylidene acetals of hexopyranosides with the borane trimethylamine–aluminium chloride reagent. Carbohydr Res 2011; 346:1633-7. [DOI: 10.1016/j.carres.2011.04.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 04/22/2011] [Accepted: 04/27/2011] [Indexed: 11/28/2022]
|
47
|
Chao CS, Yen YF, Hung WC, Mong KKT. Solvent Participation in a One-Pot Glycosylation Strategy (SPOG). Adv Synth Catal 2011. [DOI: 10.1002/adsc.201000888] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
48
|
Huang TY, Zulueta MML, Hung SC. One-Pot Strategies for the Synthesis of the Tetrasaccharide Linkage Region of Proteoglycans. Org Lett 2011; 13:1506-9. [DOI: 10.1021/ol200192d] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Teng-Yi Huang
- Genomics Research Center, Academia Sinica, 128 Sec.2 Academia Road, Taipei 115, Taiwan, Department of Chemistry, National Tsing Hua University, 101 Sec. 2 Kuang-Fu Road, Hsinchu 300, Taiwan, and Department of Applied Chemistry, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 300, Taiwan
| | - Medel Manuel L. Zulueta
- Genomics Research Center, Academia Sinica, 128 Sec.2 Academia Road, Taipei 115, Taiwan, Department of Chemistry, National Tsing Hua University, 101 Sec. 2 Kuang-Fu Road, Hsinchu 300, Taiwan, and Department of Applied Chemistry, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 300, Taiwan
| | - Shang-Cheng Hung
- Genomics Research Center, Academia Sinica, 128 Sec.2 Academia Road, Taipei 115, Taiwan, Department of Chemistry, National Tsing Hua University, 101 Sec. 2 Kuang-Fu Road, Hsinchu 300, Taiwan, and Department of Applied Chemistry, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 300, Taiwan
| |
Collapse
|
49
|
Gilbert W, Youlin Z, Xuefei H. Pre-activation based stereoselective glycosylations: Stereochemical control by additives and solvent. Sci China Chem 2011; 54:66-73. [PMID: 21547013 DOI: 10.1007/s11426-010-4186-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Stereochemical control is an important issue in carbohydrate synthesis. Glycosyl donors with participating acyl protective groups on 2-O have been shown to give 1,2-trans glycosides reliably under the pre-activation based reaction condition. In this work, the effects of additives and reaction solvents on stereoselectivity were examined using donors without participating protective groups on 2-O. While several triflate salt additives did not have major effects, the amount of AgOTf was found to significantly impact the reaction outcome. Excess AgOTf led to lower stereochemical control presumably due to its coordination with the glycosyl triflate intermediate and a more S(N)1 like reaction pathway. In contrast, the stereoselectivity could be directed by reaction solvents, with diethyl ether favoring the formation of α glycosides and dichloromethane leading to β isomers. The trend of stereochemical dependence on reaction solvent was applicable to a variety of building blocks including the selective formation of β-mannosides.
Collapse
Affiliation(s)
- Wasonga Gilbert
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
50
|
|