1
|
Li J, Xu BS, Yi SZ, Zhang XL, Zhao LL, Meng Y, Wang WJ, Li BN. Visualizing supramolecular assembly behavior, stimulus response, and solid state emission of higher-order Pt 2+ aggregates. Dalton Trans 2024; 54:357-367. [PMID: 39545785 DOI: 10.1039/d4dt02771j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Here, we present the first instance of a highly efficient red tetramer aggregate with tunable emission based on a cationic platinum(II) complex in conjunction with a silver cluster anion counterpart. This system exhibits multicolor emission response behaviors, which can be conveniently and directly detected through spectroscopic analysis, showcasing intriguing luminescence changes. The self-assembly of Pt⋯, π-π, and hydrogen bonding interactions not only enables an intriguing color adjustment from green to yellow emission, and eventually to red emission, but also demonstrates the co-existence of the monomer, excimer, and aggregation. These phenomena are further accompanied by well-defined nanostructures. The self-assembly process of these structures exhibits an isodesmic growth mechanism, which is dependent on temperature. In this regard, it exhibits potential applicability in multi-mode logic gates that rely on external stimuli such as concentration, solvent, and temperature. The sensitivity of the aggregates towards chemical stimuli combined with their exceptionally bright emission characteristics renders them suitable for diverse applications including solid-state lighting sensing mechanisms and anticounterfeiting measures. The multi-stimuli responsive phosphorescence and self-assembly behaviors of the cationic platinum(II) complex were substantiated by X-ray crystal structure determination, 1H NMR analysis spectroscopic investigations, computational calculations and scanning electron microscopy (SEM) studies.
Collapse
Affiliation(s)
- Jing Li
- School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, People's Republic of China.
- Shaanxi Key Laboratory of Low Metamorpcoal Clean Utilizationhic, Yulin University, Yulin 719000, People's Republic of China
| | - Bao-Sen Xu
- School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, People's Republic of China.
- Shaanxi Key Laboratory of Low Metamorpcoal Clean Utilizationhic, Yulin University, Yulin 719000, People's Republic of China
| | - Shao-Zhe Yi
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Xing-Long Zhang
- School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, People's Republic of China.
- Shaanxi Key Laboratory of Low Metamorpcoal Clean Utilizationhic, Yulin University, Yulin 719000, People's Republic of China
| | - Le-Le Zhao
- School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, People's Republic of China.
- Shaanxi Key Laboratory of Low Metamorpcoal Clean Utilizationhic, Yulin University, Yulin 719000, People's Republic of China
| | - Yu Meng
- School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, People's Republic of China.
- Shaanxi Key Laboratory of Low Metamorpcoal Clean Utilizationhic, Yulin University, Yulin 719000, People's Republic of China
| | - Wen-Jin Wang
- Shenzhen Second Affiliated Hospital, Chinese University of Hong Kong, Shenzhen 518000, People's Republic of China
| | - Bao-Ning Li
- School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, People's Republic of China.
- Shaanxi Key Laboratory of Low Metamorpcoal Clean Utilizationhic, Yulin University, Yulin 719000, People's Republic of China
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| |
Collapse
|
2
|
Rigaut S, Galangau O. The Many Facets of Ru II(dppe) 2 Acetylide Compounds. Chemistry 2024; 30:e202402788. [PMID: 39331384 DOI: 10.1002/chem.202402788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 09/28/2024]
Abstract
In this contribution, we describe the various research domains in which RuII alkynyl derivatives are involved. Their peculiar molecular properties stem from a strong and intimate overlap between the metal centered d orbitals and the π system of the acetylide ligands, resulting in plethora of fascinating properties such as strong and tunable visible light absorption with a strong MLCT character essential for sensing, photovoltaics, light-harvesting applications or non-linear optical properties. Likewise, the d/π mixing results in tunable redox properties at low potential due to the raising of the HOMO level, and making those compounds particularly suited to achieve redox switching of various properties associated to the acetylide conjugated ligand, such as photochromism, luminescence or magnetism, for charge transport at the molecular level and in field effect transistor devices, or charge storage for memory devices. Altogether, we show in this review the potential of RuII acetylide compounds, insisting on the molecular design and suggesting further research developments for this class of organometallic dyes, including supramolecular chemistry.
Collapse
Affiliation(s)
- Stéphane Rigaut
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR, 6226 35000, Rennes, France
| | - Olivier Galangau
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR, 6226 35000, Rennes, France
| |
Collapse
|
3
|
Kim M, Choi H, Kim M, Kim S, Yun S, Lee E, Cho J, Jung SH, Jung JH. Pathway control in metallosupramolecular polymerization of a monoalkynylplatinum(ii) terpyridine complex through competitive complex formation. Chem Sci 2024; 15:19729-19738. [PMID: 39568936 PMCID: PMC11575569 DOI: 10.1039/d4sc06083k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
Understanding the pathway complexity of supramolecular polymerization in biomimetic systems has been a challenging issue due to its importance in the development of rationally controlled materials and insight into self-assembly in nature. We herein report a kinetic trapping strategy as a new methodology on how to control the pathway of metallosupramolecular polymerization by employing secondary metal ions and/or ligands which form competitive complex species. For this, we proposed monoalkynylplatinum(ii) metalloligand (Pt-L1) derived from a bis(amideterpyridine) receptor with one unoccupied terpyridyl terminal as a coordination site for the secondary metal ion (Ag+ or Fe2+). The inherent pathway complexity intrinsic to the Pt-L1-anchored supramolecular polymerization has been modulated through the incorporation of Ag+ or Fe2+. During the supramolecular polymerization of Pt-L1 in the presence of Ag+ and Fe2+, the added secondary ligand bpy (4,4'-dimethyl-2,2'-bipyridine) or DA18C6 (1,14-diaza-18-crown-6) form complexes as kinetic species, thereby inhibiting spontaneous polymerizations. The supramolecular polymer (SP-I), with a spherical structure composed of Pt-L1 in the absence of metal ions as a kinetic product, did not transform into the thermodynamic product, namely supramolecular polymer (SP-III) with a left-handed fiber structure, due to a high energy barrier. However, the supramolecular polymer (SP-II) with a left-handed fiber structure, which was formed by Pt-L1 in the presence of AgNO3, converted to SP-III upon the addition of NaCl. Additionally, SP-II transformed into supramolecular polymer (SP-IV) upon the addition of Fe(BF4)2, through an on-pathway process. Both the morphological and emissive characteristics of the resulting supramolecular polymers can be fine-tuned via the Pt⋯Pt or Ag⋯Ag interactions as well as through the changes of the coordination geometry depending on the existing Ag+ or Fe2+ ions. The present results have important implications in expanding the scope of pathway complexity to produce a variety of products via kinetically controlled processes involving secondary metal ions and ligands.
Collapse
Affiliation(s)
- Minhye Kim
- Department of Chemistry, Gyeongsang National University Jinju 52828 Korea
| | - Heekyoung Choi
- Department of Chemistry, Gyeongsang National University Jinju 52828 Korea
| | - Minjoo Kim
- Department of Chemistry, Gyeongsang National University Jinju 52828 Korea
| | - Seonghan Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology Ulsan 44919 Korea
| | - Seohyeon Yun
- Department of Chemistry and Advanced Materials, Gangneung-Wonju National University Gangneung 25457 Korea
| | - Eunji Lee
- Department of Chemistry and Advanced Materials, Gangneung-Wonju National University Gangneung 25457 Korea
| | - Jaeheung Cho
- Department of Chemistry, Ulsan National Institute of Science and Technology Ulsan 44919 Korea
| | - Sung Ho Jung
- Department of Chemistry, Gyeongsang National University Jinju 52828 Korea
- Research Institute of Advanced Materials Chemistry, Gyeongsang National University Jinju 52828 Korea
| | - Jong Hwa Jung
- Department of Chemistry, Gyeongsang National University Jinju 52828 Korea
- Research Institute of Advanced Materials Chemistry, Gyeongsang National University Jinju 52828 Korea
| |
Collapse
|
4
|
Manoj Lena A, Yamauchi M, Murakami H, Kubo N, Masuo S, Aratani N, Yamada H. Photoinduced Electron Transfer System from Cesium Lead Bromide Quantum Dots to Naphthalenediimide Supramolecular Polymers. Chem Asian J 2024:e202401299. [PMID: 39570275 DOI: 10.1002/asia.202401299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 11/22/2024]
Abstract
Supramolecular polymers (SPs) formed via the stacking of π-conjugated molecules are attractive nanomaterials because of their potential optoelectronic properties derived from the non-covalent interaction between the π-skeletons. Especially, SPs possessing naphthalenediimide (NDI) core units can act as superior electron acceptors due to their deep lowest unoccupied molecular orbital (LUMO). Interaction of such SP with electron donors can realize a charge transfer system, but this has not been established. Herein, we report a photoinduced electron transfer system from cesium lead bromide quantum dot (QD) as an electron donor to SP composed of cholesterol-functionalized NDI derivatives. The supramolecular polymerization in a non-polar solvent was analyzed in detail via microscopic and spectroscopic analyses. Upon mixing the SP with QDs, the photoluminescence intensity and lifetime of QDs decreased significantly, indicating efficient photoinduced electron transfer from QD to SP.
Collapse
Affiliation(s)
- Amrutha Manoj Lena
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, 630-0192, Japan
| | - Mitsuaki Yamauchi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Hideyuki Murakami
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Naoki Kubo
- Department of Applied Chemistry for Environment, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Sadahiro Masuo
- Department of Applied Chemistry for Environment, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Naoki Aratani
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, 630-0192, Japan
| | - Hiroko Yamada
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
5
|
Elizebath D, Sharma S, Varughese S, Ramachandran CN, Praveen VK. Monomers Versus Prenucleation Clusters En Route to Polymorphism of Supramolecular Polymers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405305. [PMID: 39491528 DOI: 10.1002/smll.202405305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/04/2024] [Indexed: 11/05/2024]
Abstract
Polymorphism in supramolecular polymers is strongly correlated with the polymerization pathways underlying their formation. To effectively control emerging polymorphs, a comprehensive understanding of nucleation pathways and mechanisms is essential. Herein, a coronene-dipeptide conjugate (Cr-o-FFOEt) is introduced and its self-assembly into two different stable 1D supramolecular polymorphs (Agg 1 and 2f) is observed in the same solvent composition (water/THF, 7:3 v/v) and same concentration at room temperature, following two competitive self-assembly pathways. The difference in the mode of solvent addition triggers the two self-assembly pathways. Furthermore, the isolated intermediate Agg 2i is found to transform into Agg 1 or Agg 2f under controlled experimental conditions. The supramolecular aggregates of Cr-o-FFOEt are thoroughly examined with the help of optical, chiroptical, and morphological techniques to understand the subtle difference in choosing the self-assembling pathways. The studies reveal that the nanotube formation of Agg 1 follows a classical nucleation-elongation supramolecular polymerization mechanism (involving monomers). In contrast, the helical fibers of Agg 2f are formed by the involvement of preorganized oligomers (nonclassical process). The observation highlights the underappreciated role of prenucleation clusters in pathway complexity and polymorphism of supramolecular 1D polymers.
Collapse
Affiliation(s)
- Drishya Elizebath
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sanjay Sharma
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Sunil Varughese
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - C N Ramachandran
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Vakayil K Praveen
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
6
|
Deepak, Saini D, Naskar S, Mandal D, Roy RK. Room Temperature Single-Component Organic Multiferroics with Large Magnetoelectric Coupling: Proficient Approach for Stray-Magnetic Field Harvesting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405248. [PMID: 39240077 DOI: 10.1002/smll.202405248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/17/2024] [Indexed: 09/07/2024]
Abstract
Magnetoelectric materials are highly desirable for technological applications due to their ability to produce electricity under a magnetic field. Among the various types of magnetoelectric materials studied, their organic counterparts provide an opportunity to develop solution-processable, flexible, lightweight, and wearable electronic devices. However, there is a rare choice of solution-processable, flexible, lightweight magnetoelectric materials which has tremendous technological interest. A supramolecular scaffold with precisely positioned structure-forming and functional units (electrical dipoles and magnetic spins) is designed so that self-assembly results in functional unit organization. Structure-forming segments allow these scaffolds to self-assemble into hierarchically ordered structures in nonpolar solvents, creating nanofibrous organogel networks. In particular, the xerogel derived from this organogel exhibits the highest magnetoelectric coupling coefficient (αME ≈ 216 mV Oe-1 cm-1) reported to date for organic materials. This is even greater than commonly envisioned composite materials made of piezoelectric polymers and inorganic magnets. This single-component organic multiferroic material displays ferroelectricity (Tc ≈ 46 °C) and paramagnetic behavior at room temperature. With this, it is demonstrated that the possibilities of effectively harvesting stray magnetic fields that are copiously available in the surroundings and wasted otherwise.
Collapse
Affiliation(s)
- Deepak
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab, India
| | - Dalip Saini
- Quantum Materials and Devices Unit, Institute of Nanoscience and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, 140306, India
| | - Sudip Naskar
- Quantum Materials and Devices Unit, Institute of Nanoscience and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, 140306, India
| | - Dipankar Mandal
- Quantum Materials and Devices Unit, Institute of Nanoscience and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, 140306, India
| | - Raj Kumar Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab, India
| |
Collapse
|
7
|
Fujii N, Hisano N, Hirao T, Kihara SI, Tanabe K, Yoshida M, Tate SI, Haino T. Controlled Helical Organization in Supramolecular Polymers of Pseudo-Macrocyclic Tetrakisporphyrins. Angew Chem Int Ed Engl 2024:e202416770. [PMID: 39445656 DOI: 10.1002/anie.202416770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
Tetrakisporphyrin monomers with amino acid side chains at each end form intramolecular antiparallel hydrogen-bonds to adopt chirally twisted pseudo-macrocyclic structures that result in right-handed and left-handed (P)- and (M)-conformations. The pseudo-macrocyclic tetrakisporphyrin monomers self-assembled to form supramolecular helical pseudo-polycatenane polymers via head-to-head complementary dimerization of the bisporphyrin cleft units in an isodesmic manner. The formation of one-handed supramolecular helical pseudo-polycatenane polymers was confirmed by circular dichroism (CD) spectroscopy. The methyl and iso-propyl groups at the stereogenic center greatly enhanced the induced circular dichroism in the Soret bands of the supramolecular helical pseudo-polycatenane polymers. The induced CDs were reduced upon the introduction of large iso-butyl and tert-butyl groups. Atomic force microscopy revealed well-grown and long supramolecular helical pseudo-polycatenane polymer chains with chain lengths in the range of 361 to 13.6 nm. The right-handed helical chains were established by the self-assembly of the right-handed (P)-conformation of the pseudo-macrocyclic monomer.
Collapse
Affiliation(s)
- Naoka Fujii
- Department of Chemistry Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Naoyuki Hisano
- Department of Chemistry Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Takehiro Hirao
- Department of Chemistry Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Shin-Ichi Kihara
- Department of Chemical Engineering Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Kouta Tanabe
- Department of Chemistry Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Masaya Yoshida
- Department of Chemistry Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Shin-Ichi Tate
- International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- Department of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Takeharu Haino
- Department of Chemistry Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| |
Collapse
|
8
|
Hamada Y, Ogi S, Yamaguchi S. Introducing a π-Skeleton Perpendicular to the Central Methylene Carbon in Alkanediamides: Design of Supramolecular Polymers with an Offset π-Stacking Arrangement. Angew Chem Int Ed Engl 2024; 63:e202409657. [PMID: 38837831 DOI: 10.1002/anie.202409657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
The self-assembly behavior of a heptanediamide derivative that contains a four-ring fused π-skeleton on its central methylene carbon atom has been examined. This molecule, which also contains two octyl chains, gelated the nonpolar solvent methylcyclohexane through the formation of fibrous nanostructures with hydrogen-bonding networks through a cooperative nucleation-elongation process. The supramolecular polymerization is accompanied by bathochromic shifts of both the absorption and fluorescence bands while maintaining a fluorescence quantum yield comparable to that of the monomeric state. Theoretical calculations provided an energetically stable structure, in which the π-skeletons are stacked with an offset of more than 8.0 Å, replicating the experimentally observed absorption change due to exciton coupling. Moreover, a slow transition with an inversion of the chiral arrangement of the π-conjugated moieties was induced by replacing the octyl chains with chiral alkyl chains. Our molecular-design strategy was further applied to a five-ring fused π-skeleton, which also forms an offset π-stacking arrangement and exhibits more effective chiral exciton coupling in the aggregated state.
Collapse
Affiliation(s)
- Yasuhiro Hamada
- Department of Chemistry, Graduate School of Science, Nagoya University Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Soichiro Ogi
- Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Shigehiro Yamaguchi
- Department of Chemistry, Graduate School of Science, Nagoya University Furo, Chikusa, Nagoya, 464-8602, Japan
- Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University Furo, Chikusa, Nagoya, 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Furo, Chikusa, Nagoya, 464-8602, Japan
| |
Collapse
|
9
|
Castro VIB, Gao Y, Brito A, Chen J, Reis RL, Pashkuleva I, Pires RA. Cooling rate uncovers epimer-dependent supramolecular organization of carbohydrate amphiphiles. J Mater Chem B 2024; 12:6996-7000. [PMID: 38949321 DOI: 10.1039/d4tb00728j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
We show distinct CH-π interactions and assembly pathways for the amphiphile N-(fluorenylmethoxycarbonyl)-galactosamine and its epimer N-(fluorenylmethoxycarbonyl)-glucosamine. These differences result in the formation of supramolecular nanofibrous systems with opposite chirality. Our results showcase the importance of the carbohydrates structural diversity for their specific biointeractions and the opportunity that their ample interactome offers for synthesis of versatile and tunable supramolecular (bio) materials.
Collapse
Affiliation(s)
- Vânia I B Castro
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Yuting Gao
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai 200444, P. R. China
| | - Alexandra Brito
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jie Chen
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai 200444, P. R. China
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Iva Pashkuleva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ricardo A Pires
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
10
|
Cristofaro S, Querciagrossa L, Soprani L, Fraccia TP, Bellini T, Berardi R, Arcioni A, Zannoni C, Muccioli L, Orlandi S. Simulating the Lyotropic Phase Behavior of a Partially Self-Complementary DNA Tetramer. Biomacromolecules 2024; 25:3920-3929. [PMID: 38826125 DOI: 10.1021/acs.biomac.3c01435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
DNA oligomers in solution have been found to develop liquid crystal phases via a hierarchical process that involves Watson-Crick base pairing, supramolecular assembly into columns of duplexes, and long-range ordering. The multiscale nature of this phenomenon makes it difficult to quantitatively describe and assess the importance of the various contributions, particularly for very short strands. We performed molecular dynamics simulations based on the coarse-grained oxDNA model, aiming to depict all of the assembly processes involved and the phase behavior of solutions of the DNA GCCG tetramers. We find good quantitative matching to experimental data at both levels of molecular association (thermal melting) and collective ordering (phase diagram). We characterize the isotropic state and the low-density nematic and high-density columnar liquid crystal phases in terms of molecular order, size of aggregates, and structure, together with their effects on diffusivity processes. We observe a cooperative aggregation mechanism in which the formation of dimers is less thermodynamically favored than the formation of longer aggregates.
Collapse
Affiliation(s)
- Silvia Cristofaro
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, Bologna 40136, Italy
| | - Lara Querciagrossa
- CINECA, Via Magnanelli 6/3, Casalecchio di Reno 40033, Italy
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, Bologna 40136, Italy
| | - Lorenzo Soprani
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, Bologna 40136, Italy
| | - Tommaso P Fraccia
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università di Milano, Via Balzaretti 9, Milano 20133, Italy
| | - Tommaso Bellini
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università di Milano, Via Vanvitelli 32, Milano 20129, Italy
| | - Roberto Berardi
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, Bologna 40136, Italy
| | - Alberto Arcioni
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, Bologna 40136, Italy
| | - Claudio Zannoni
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, Bologna 40136, Italy
| | - Luca Muccioli
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, Bologna 40136, Italy
| | - Silvia Orlandi
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, Bologna 40136, Italy
| |
Collapse
|
11
|
Wang Y, Li N, Chu L, Hao Z, Chen J, Huang J, Yan J, Bian H, Duan P, Liu J, Fang Y. Dual Enhancement of Phosphorescence and Circularly Polarized Luminescence through Entropically Driven Self-Assembly of a Platinum(II) Complex. Angew Chem Int Ed Engl 2024; 63:e202403898. [PMID: 38497553 DOI: 10.1002/anie.202403898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 03/19/2024]
Abstract
Addressing the dual enhancement of circular polarization (glum) and luminescence quantum yield (QY) in circularly polarized luminescence (CPL) systems poses a significant challenge. In this study, we present an innovative strategy utilizing the entropically driven self-assembly of amphiphilic phosphorescent platinum(II) complexes (L-Pt) with tetraethylene glycol chains, resulting in unique temperature dependencies. The entropically driven self-assembly of L-Pt leads to a synergistic improvement in phosphorescence emission efficiency (QY was amplified from 15 % at 25 °C to 53 % at 60 °C) and chirality, both in the ground state and the excited state (glum value has been magnified from 0.04×10-2 to 0.06) with increasing temperature. Notably, we observed reversible modulation of phosphorescence and chirality observed over at least 10 cycles through successive heating and cooling, highlighting the intelligent control of luminescence and chiroptical properties by regulating intermolecular interactions among neighboring L-Pt molecules. Importantly, the QY and glum of the L-Pt assembly in solid state were measured as 69 % and 0.16 respectively, representing relatively high values compared to most self-assembled CPL systems. This study marks the pioneering demonstration of dual thermo-enhancement of phosphorescence and CPL and provides valuable insights into the thermal effects on high-temperature and switchable CPL materials.
Collapse
Affiliation(s)
- Yanqing Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Na Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Liangwen Chu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Zelin Hao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Junyu Chen
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST) No.11, ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Jiang Huang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST) No.11, ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Junlin Yan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Hongtao Bian
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Pengfei Duan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST) No.11, ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Jing Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| |
Collapse
|
12
|
Pradhan MK, Misra N, Sahala F, Pradhan NP, Srivastava A. Divergent self-assembly propensity of enantiomeric phenylalanine amphiphiles that undergo pH-induced nanofiber-to-nanoglobule conversion. SOFT MATTER 2024; 20:3602-3611. [PMID: 38576362 DOI: 10.1039/d4sm00117f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
This study presents the pathway diversity in the self-assembly of enantiomeric single phenylalanine derived amphiphiles (single F-PDAs), viz.L-NapF-EDA and D-NapF-EDA, that form supramolecular hydrogels at varied concentrations (≥1 mg mL-1 and ≥3 mg mL-1, respectively). By fitting the variable temperature circular dichroism (VT-CD) data to the isodesmic model, various thermodynamic parameters associated with their self-assembly, such as association constant (K), changes in enthalpy (ΔH), entropy (ΔS), and Gibbs free energy (ΔG), were extracted. The self-assembly of these single F-PDAs was found to be enthalpy-driven but entropically-disfavored. Although self-assembly of the D-isomer was slow, it also exhibited greater free energy of association than the L-isomer. Consequently, thermally and mechanically more robust self-assemblies were formed by the D-isomer than the L-isomer. We term these results as the "butterfly effect in self-assembly" wherein the difference in the stereochemical orientation of the residues at a single chiral center present in these molecules resulted in strong differences in the self-assembly propensity as well as in their thermal and mechanical stability. These single F-PDAs form helical nanofibers of opposite chirality upon self-assembly at basic pH (≥8) that produce intense CD signals. However, upon decreasing the pH, a gradual nanofiber-to-nanoglobular transformation was noticed due to protonation-induced structural changes in the PDAs.
Collapse
Affiliation(s)
- Manas Kumar Pradhan
- Department of Chemistry, Indian Institute of Science Education and Research, Bhauri, Bhopal By-pass Road, Bhopal-462066, India.
| | - Nayanika Misra
- Department of Chemistry, Indian Institute of Science Education and Research, Bhauri, Bhopal By-pass Road, Bhopal-462066, India.
| | - Fathima Sahala
- Department of Chemistry, Indian Institute of Science Education and Research, Bhauri, Bhopal By-pass Road, Bhopal-462066, India.
| | - Nyaya Prakash Pradhan
- Department of Chemistry, Indian Institute of Science Education and Research, Bhauri, Bhopal By-pass Road, Bhopal-462066, India.
| | - Aasheesh Srivastava
- Department of Chemistry, Indian Institute of Science Education and Research, Bhauri, Bhopal By-pass Road, Bhopal-462066, India.
| |
Collapse
|
13
|
Zhao Y, Yan X, Jiang YB. Supramolecular helix of an oligomeric azapeptide building block containing four β-turn structures. Chem Commun (Camb) 2024; 60:4648-4651. [PMID: 38497782 DOI: 10.1039/d3cc04859d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Oligomers of benzoylalanine-based amidothioureas containing four β-turn structures spaced by meta-substituted benzenes were shown to undergo assembly in dilute CH3CN solution into supramolecular helices of enhanced supramolecular helicity, whereas those spaced by para-substituted benzene spacer(s) or those spaced by meta-substituted benzenes but with one or two β-turns exhibit a substantially decreased tendency of assembling.
Collapse
Affiliation(s)
- Yingdan Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, China.
| | - Xiaosheng Yan
- Department of Chemistry, College of Chemistry and Chemical Engineering, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, China.
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yun-Bao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
14
|
Gallego L, Woods JF, Butti R, Szwedziak P, Vargas Jentzsch A, Rickhaus M. Shape-Assisted Self-Assembly of Hexa-Substituted Carpyridines into 1D Supramolecular Polymers. Angew Chem Int Ed Engl 2024; 63:e202318879. [PMID: 38237056 DOI: 10.1002/anie.202318879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/18/2024] [Indexed: 02/06/2024]
Abstract
The extent of the influence that molecular curvature plays on the self-assembly of supramolecular polymers remains an open question in the field. We began addressing this fundamental question with the introduction of "carpyridines", which are saddle-shaped monomers that can associate with one another through π-π interactions and in which the rotational and translational movements are restricted. The topography displayed by the monomers led, previously, to the assembly of highly ordered 2D materials even in the absence of strong directional interactions such as hydrogen bonding. Here, we introduce a simple strategy to gain control over the dimensionality of the formed structures yielding classical unidimensional polymers. These have been characterized using well-established protocols allowing us to determine and confirm the self-assembly mechanism of both fibers and sheets. The calculated interaction energies are significantly higher than expected for flexible self-assembling units lacking classical "strong" non-covalent interactions. The versatility of this supramolecular unit to assemble into either supramolecular fibers or 2D sheets with strong association energies highlights remarkably well the potential and importance of molecular shape for the design of supramolecular materials and the applications thereof.
Collapse
Affiliation(s)
- Lucía Gallego
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Joseph F Woods
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Rachele Butti
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Piotr Szwedziak
- Centre for Microscopy and Image Analysis, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Andreas Vargas Jentzsch
- SAMS Research Group, University of Strasbourg, Institut Charles Sadron, CNRS, Rue du Loess 23, 67200, Strasbourg, France
| | - Michel Rickhaus
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest-Ansermet, 1205, Geneva, Switzerland
| |
Collapse
|
15
|
Farzadfard A, Kunka A, Mason TO, Larsen JA, Norrild RK, Dominguez ET, Ray S, Buell AK. Thermodynamic characterization of amyloid polymorphism by microfluidic transient incomplete separation. Chem Sci 2024; 15:2528-2544. [PMID: 38362440 PMCID: PMC10866369 DOI: 10.1039/d3sc05371g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/05/2024] [Indexed: 02/17/2024] Open
Abstract
Amyloid fibrils of proteins such as α-synuclein are a hallmark of neurodegenerative diseases and much research has focused on their kinetics and mechanisms of formation. The question as to the thermodynamic stability of such structures has received much less attention. Here, we newly utilize the principle of transient incomplete separation of species in laminar flow in combination with chemical depolymerization for the quantification of amyloid fibril stability. The relative concentrations of fibrils and monomer at equilibrium are determined through an in situ separation of these species based on their different diffusivity inside a microfluidic capillary. The method is highly sample economical, using much less than a microliter of sample per data point and its only requirement is the presence of aromatic residues (W, Y) because of its label-free nature, which makes it widely applicable. Using this method, we investigate the differences in thermodynamic stability between different fibril polymorphs of α-synuclein and quantify these differences for the first time. Importantly, we show that fibril formation can be under kinetic or thermodynamic control and that a change in solution conditions can both stabilise and destabilise amyloid fibrils. Taken together, our results establish the thermodynamic stability as a well-defined and key parameter that can contribute towards a better understanding of the physiological roles of amyloid fibril polymorphism.
Collapse
Affiliation(s)
- Azad Farzadfard
- Protein Biophysics Group, Department of Biotechnology and Biomedicine, Technical University of Denmark Søltofts Plads, Building 227, Kgs. Lyngby 2800 Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Antonin Kunka
- Protein Biophysics Group, Department of Biotechnology and Biomedicine, Technical University of Denmark Søltofts Plads, Building 227, Kgs. Lyngby 2800 Denmark
| | - Thomas Oliver Mason
- Protein Biophysics Group, Department of Biotechnology and Biomedicine, Technical University of Denmark Søltofts Plads, Building 227, Kgs. Lyngby 2800 Denmark
| | - Jacob Aunstrup Larsen
- Protein Biophysics Group, Department of Biotechnology and Biomedicine, Technical University of Denmark Søltofts Plads, Building 227, Kgs. Lyngby 2800 Denmark
| | - Rasmus Krogh Norrild
- Protein Biophysics Group, Department of Biotechnology and Biomedicine, Technical University of Denmark Søltofts Plads, Building 227, Kgs. Lyngby 2800 Denmark
| | - Elisa Torrescasana Dominguez
- Protein Biophysics Group, Department of Biotechnology and Biomedicine, Technical University of Denmark Søltofts Plads, Building 227, Kgs. Lyngby 2800 Denmark
| | - Soumik Ray
- Protein Biophysics Group, Department of Biotechnology and Biomedicine, Technical University of Denmark Søltofts Plads, Building 227, Kgs. Lyngby 2800 Denmark
| | - Alexander K Buell
- Protein Biophysics Group, Department of Biotechnology and Biomedicine, Technical University of Denmark Søltofts Plads, Building 227, Kgs. Lyngby 2800 Denmark
| |
Collapse
|
16
|
Cheng Q, Hao A, Xing P. Engineering π-Conjugation of Phenylalanine Derivatives for Controllable Chiral Folding and Self-Assemblies. ACS NANO 2024. [PMID: 38315078 DOI: 10.1021/acsnano.3c12063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
π-π stacking interaction is an attractive interaction that involves aromatic groups containing π-conjugated domains. It is a promising strategy for stabilizing folded structures with interesting chiroptical properties and manipulating the supramolecular chiral self-assembly process. In this study, we report the engineering of π-conjugated amino acids that utilize π-π stacking interactions to manipulate chiral folding as well as self-assembly evolution. Stepwise conjugation of phenyl, naphthyl, and pyrenyl to N-terminal phenylalanine derivatives witnessed the folding through intramolecular π-interactions in solution phase, which facilitated the formation of chiral geometry and the emergence of chiral optics. Introduction of aromatic domains efficiently lowers the critical aggregation concentration in the aqueous media. Molecular folding enables a special concentration-dependent self-assembly, whereby the supramolecular chirality accomplished inversion with the evolution of helical nanoarchitectures. This work develops a strategy to engineer π-conjugated amino acids with controllable folding behaviors, which also offers implications for the rational design of functional chiral materials.
Collapse
Affiliation(s)
- Qiuhong Cheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
17
|
Du S, Jiang Y, Jiang H, Zhang L, Liu M. Pathway-Dependent Self-Assembly for Control over Helical Nanostructures and Topochemical Photopolymerization. Angew Chem Int Ed Engl 2024; 63:e202316863. [PMID: 38116831 DOI: 10.1002/anie.202316863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Pathway-dependent self-assembly, in which a single building block forms two or more types of self-assembled nanostructures, is an important topic due to its mimic to the complexity in biology and manipulation of diverse supramolecular materials. Here, we report a pathway-dependent self-assembly using chiral glutamide derivatives (L or D-PAG), which form chiral nanotwist and nanotube through a cooperative slow cooling and an isodesmic fast cooling process, respectively. Furthermore, pathway-dependent self-assembly can be harnessed to control over the supramolecular co-assembly of PAG with a luminophore β-DCS or a photopolymerizable PCDA. Fast cooling leads to the co-assembled PAG/β-DCS nanotube exhibiting green circularly polarized luminescence (CPL), while slow cooling to nanofiber with blue CPL. Additionally, fast cooling process promotes the photopolymerization of PCDA into a red chiral polymer, whereas slow cooling inhibits the polymerization. This work not only demonstrates the pathway-dependent control over structural characteristics but also highlights the diverse functions emerged from the different assemblies.
Collapse
Affiliation(s)
- Sifan Du
- National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, China
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yuqian Jiang
- Key laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Hejin Jiang
- National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, China
| | - Li Zhang
- National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, China
| | - Minghua Liu
- National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
18
|
Kleine-Kleffmann L, Schulz A, Stepanenko V, Würthner F. Growth of Merocyanine Dye J-Aggregate Nanosheets by Living Supramolecular Polymerization. Angew Chem Int Ed Engl 2023; 62:e202314667. [PMID: 37962230 DOI: 10.1002/anie.202314667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/15/2023]
Abstract
J-aggregates are highly desired dye aggregates but so far there has been no general concept how to accomplish the required slip-stacked packing arrangement for dipolar merocyanine (MC) dyes whose aggregation commonly affords one-dimensional aggregates composed of antiparallel, co-facially stacked MCs with H-type coupling. Herein we describe a strategy for MC J-aggregates based on our results for an amphiphilic MC dye bearing alkyl and oligo(ethylene glycol) side chains. In an aqueous solvent mixture, we observe the formation of two supramolecular polymorphs for this MC dye, a metastable off-pathway nanoparticle showing H-type coupling and a thermodynamically favored nanosheet showing J-type coupling. Detailed studies concerning the self-assembly mechanism by UV-Vis spectroscopy and the packing structure by atomic force microscopy and wide-angle X-ray scattering show how the packing arrangement of such amphiphilic MC dyes can afford slip-stacked two-dimensional nanosheets whose macrodipole is compensated by the formation of a bilayer structure. As an additional feature we demonstrate how the size of the nanosheets can be controlled by seeded living supramolecular polymerization.
Collapse
Affiliation(s)
- Lara Kleine-Kleffmann
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Alexander Schulz
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Vladimir Stepanenko
- Center for Nanosystems Chemistry (CNC) & Bavarian Polymer Institute (BPI), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Center for Nanosystems Chemistry (CNC) & Bavarian Polymer Institute (BPI), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| |
Collapse
|
19
|
Smith DK. Supramolecular gels - a panorama of low-molecular-weight gelators from ancient origins to next-generation technologies. SOFT MATTER 2023; 20:10-70. [PMID: 38073497 DOI: 10.1039/d3sm01301d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Supramolecular gels, self-assembled from low-molecular-weight gelators (LMWGs), have a long history and a bright future. This review provides an overview of these materials, from their use in lubrication and personal care in the ancient world, through to next-generation technologies. In academic terms, colloid scientists in the 19th and early 20th centuries first understood such gels as being physically assembled as a result of weak interactions, combining a solid-like network having a degree of crystalline order with a highly mobile liquid-like phase. During the 20th century, industrial scientists began using these materials in new applications in the polymer, oil and food industries. The advent of supramolecular chemistry in the late 20th century, with its focus on non-covalent interactions and controlled self-assembly, saw the horizons for these materials shifted significantly beyond their historic rheological applications, expanding their potential. The ability to tune the LMWG chemical structure, manipulate hierarchical assembly, develop multi-component systems, and introduce new types of responsive and interactive behaviour, has been transformative. Furthermore, the dynamics of these materials are increasingly understood, creating metastable gels and transiently-fueled systems. New approaches to shaping and patterning gels are providing a unique opportunity for more sophisticated uses. These supramolecular advances are increasingly underpinning and informing next-generation applications - from drug delivery and regenerative medicine to environmental remediation and sustainable energy. In summary, this article presents a panorama over the field of supramolecular gels, emphasising how both academic and industrial scientists are building on the past, and engaging new fundamental insights and innovative concepts to open up exciting horizons for their future use.
Collapse
Affiliation(s)
- David K Smith
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
20
|
Kang HW, Lee JH, Seo ML, Jung SH. Platinum(II) terpyridine-based supramolecular polymer gels with induced chirality. SOFT MATTER 2023. [PMID: 38037753 DOI: 10.1039/d3sm01342a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Metal-ligand binding plays a crucial role in regulating the photophysical properties of supramolecular gels. In this study, we designed 1-Pt complexes comprising a central benzene-1,3,5-tricarboxamide unit functionalized with three terpyridines, which can form supramolecular gels with Pt(II). The resulting supramolecular gel of 1-Pt exhibited strong orange emission, which was attributed to the metal-to-metal ligand charge transfer during gel formation. Furthermore, the temperature-dependent absorption spectrum changes of the supramolecular polymer 1-Pt exhibited a nonsigmoidal transition, following a cooperative pathway involving a nucleation-elongation mechanism. Additionally, the strategy for the co-assembling system involving 1-Pt with chiral molecules (D-form and L-form) induced the helical arrangement of 1-Ptvia chiral additives in supramolecular metallogels.
Collapse
Affiliation(s)
- Hyoung Wook Kang
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea.
| | - Ji Ha Lee
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan
| | - Moo Lyong Seo
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea.
| | - Sung Ho Jung
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
21
|
Pinjari A, Saraf D, Sengupta D. Molecular mechanisms underlying nanowire formation in pristine phthalocyanine. Phys Chem Chem Phys 2023; 25:30259-30268. [PMID: 37927067 DOI: 10.1039/d3cp03512c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Understanding the molecular processes of nanowire self-assembly is crucial for designing and controlling nanoscale structures that could lead to breakthroughs in functional materials. In this work, we focus on pristine phthalocyanines as a representative example of mesogenic supramolecular assemblies and have analyzed the formation of nanowires using classical molecular dynamics simulations. In the simulations, the molecules spontaneously form multi-columnar structures resembling supramolecular polymers that subsequently grow into more ordered aggregates. These self-assemblies are concentration dependent, leading to the formation of multi-columnar, dynamic aggregates at higher concentrations and nanowires at lower concentrations. The multi-columnar assemblies on a whole are more disordered than the nanowires, but have locally ordered domains of parallel facing molecules that can fluctuate while maintaining their overall shape. The nanowire formation at lower concentrations involves the initial interaction and clustering of randomly oriented phthalocyanine molecules, followed by the merging of small clusters into elongated segments and the eventual formation of a stable nanowire. We observe three main conformers in these self-assemblies, the parallel, T-shaped and edge-to-edge stacking of the phthalocyanine dimers. We calculate the underlying free energy landscape and show that the parallel conformers form the most stable configuration which is followed by the T-shaped and edge-to-edge dimer configurations. The findings provide insights into the mechanisms and pathways of nanowire formation and a step towards the understanding of self-assembly processes in supramolecular mesogens.
Collapse
Affiliation(s)
- Aadil Pinjari
- CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411 008, India.
| | - Deepashri Saraf
- CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411 008, India.
| | - Durba Sengupta
- CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411 008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| |
Collapse
|
22
|
Rubert L, Islam MF, Greytak AB, Prakash R, Smith MD, Gomila RM, Frontera A, Shimizu LS, Soberats B. Two-Dimensional Supramolecular Polymerization of a Bis-Urea Macrocycle into a Brick-Like Hydrogen-Bonded Network. Angew Chem Int Ed Engl 2023; 62:e202312223. [PMID: 37750233 DOI: 10.1002/anie.202312223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
We report on a dendronized bis-urea macrocycle 1 self-assembling via a cooperative mechanism into two-dimensional (2D) nanosheets formed solely by alternated urea-urea hydrogen bonding interactions. The pure macrocycle self-assembles in bulk into one-dimensional liquid-crystalline columnar phases. In contrast, its self-assembly mode drastically changes in CHCl3 or tetrachloroethane, leading to 2D hydrogen-bonded networks. Theoretical calculations, complemented by previously reported crystalline structures, indicate that the 2D assembly is formed by a brick-like hydrogen bonding pattern between bis-urea macrocycles. This assembly is promoted by the swelling of the trisdodecyloxyphenyl groups upon solvation, which frustrates, due to steric effects, the formation of the thermodynamically more stable columnar macrocycle stacks. This work proposes a new design strategy to access 2D supramolecular polymers by means of a single non-covalent interaction motif, which is of great interest for materials development.
Collapse
Affiliation(s)
- Llorenç Rubert
- Department of Chemistry, Universitat de les Illes Balears, Cra. Valldemossa, Km. 7.5, 07122, Palma de Mallorca, Spain
| | - Md Faizul Islam
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC-29208, USA
| | - Andrew B Greytak
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC-29208, USA
| | - Rahul Prakash
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC-29208, USA
| | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC-29208, USA
| | - Rosa Maria Gomila
- Department of Chemistry, Universitat de les Illes Balears, Cra. Valldemossa, Km. 7.5, 07122, Palma de Mallorca, Spain
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Cra. Valldemossa, Km. 7.5, 07122, Palma de Mallorca, Spain
| | - Linda S Shimizu
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC-29208, USA
| | - Bartolome Soberats
- Department of Chemistry, Universitat de les Illes Balears, Cra. Valldemossa, Km. 7.5, 07122, Palma de Mallorca, Spain
| |
Collapse
|
23
|
McGarry LF, El-Zubir O, Waddell PG, Cucinotta F, Houlton A, Horrocks BR. Vesicles, fibres, films and crystals: A low-molecular-weight-gelator [Au(6-thioguanosine) 2]Cl which exhibits a co-operative anion-induced transition from vesicles to a fibrous metallo-hydrogel. SOFT MATTER 2023; 19:8386-8402. [PMID: 37873806 PMCID: PMC10630954 DOI: 10.1039/d3sm01006f] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
We describe a simple coordination compound of Au(I) and 6-thioguanosine, [Au(6-tGH)2]Cl, that has a rich self-assembly chemistry. In aqueous solution, the discrete complex assembles into a supramolecular fibre and forms a luminescent hydrogel at concentrations above about 1 mM. Below this concentration, the macromolecular structure is a vesicle. Through appropriate control of the solvent polarity, the gel can be turned into a lamellar film or crystallised. The molecular structure of [Au(6-tGH)2]Cl was determined using single crystal X-ray diffraction, which showed bis-6-thioguanosine linearly coordinated through the thione moiety to a central Au(I) ion. In the vesicles, the photoluminescence spectrum shows a broad, weak band at 550 nm owing to aurophilic interactions. Co-operative self-assembly from vesicle to fibre is made possible through halogen hydrogen bonding interactions and the aurophilic interactions are lost, resulting in a strong photoluminescence band at 490 nm with vibronic structure typical of an intraligand transition. The vesicle-fibre transition is also revealed by a large increase of ellipticity in the circular dichroism spectrum with a prominent peak near 390 nm owing to the helical structure of the fibres. Atomic force microscopy shows that at the same time as fibres form, the sample gels. Imaging near the vesicle-fibre transition shows that the fibres form between vesicles and a mechanism for the transition based on vesicle collisions is proposed.
Collapse
Affiliation(s)
- Liam F McGarry
- Chemistry, School of Natural Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | - Osama El-Zubir
- Chemistry, School of Natural Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | - Paul G Waddell
- Chemistry, School of Natural Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | - Fabio Cucinotta
- Chemistry, School of Natural Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | - Andrew Houlton
- Chemistry, School of Natural Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | - Benjamin R Horrocks
- Chemistry, School of Natural Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| |
Collapse
|
24
|
Kompella SVK, Balasubramanian S. Supramolecular Polymerization of a Pyrene-Substituted Diamide and Its Ensemble of Kinetically Trapped Configurations. Angew Chem Int Ed Engl 2023; 62:e202310727. [PMID: 37725396 DOI: 10.1002/anie.202310727] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023]
Abstract
The prevalence of kinetically accessible states in supramolecular polymerization pathways has been exploited to control the growth of the polymer and thereby to obtain niche morphologies. Yet, these pathways themselves are not easily amenable for experimental delineation but could potentially be understood through molecular dynamics (MD) simulations. Herein, we report an extensive investigation of the self-assembly of pyrene-substituted diamide (PDA) monomers in solution, conducted using atomistic MD simulations and advanced sampling methods. We characterize such kinetic and thermodynamic states as well as the transition pathways and free energy barriers between them. PDA forms a dimeric segment with the N- to C-termini vectors of the diamide moieties arranged either in parallel or anti-parallel fashion. This characteristic, combined with the molecule's torsional flexibility and pyrene-solvent interactions, presents an ensemble of molecular configurations contributing to the kinetic state in the polymerization pathway. While this ensemble primarily comprises short oligomers containing a mix of anti-parallel and parallel dimeric segments, the thermodynamic state of the assembly is a right-handed polymer featuring parallel ones only. Our work thus offers an approach by which the landscape of any specific supramolecular polymerization can be deconstructed.
Collapse
Affiliation(s)
- Srinath V K Kompella
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| |
Collapse
|
25
|
Otsuka C, Takahashi S, Isobe A, Saito T, Aizawa T, Tsuchida R, Yamashita S, Harano K, Hanayama H, Shimizu N, Takagi H, Haruki R, Liu L, Hollamby MJ, Ohkubo T, Yagai S. Supramolecular Polymer Polymorphism: Spontaneous Helix-Helicoid Transition through Dislocation of Hydrogen-Bonded π-Rosettes. J Am Chem Soc 2023; 145:22563-22576. [PMID: 37796243 DOI: 10.1021/jacs.3c07556] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Polymorphism, a phenomenon whereby disparate self-assembled products can be formed from identical molecules, has incited interest in the field of supramolecular polymers. Conventionally, the monomers that constitute supramolecular polymers are engineered to facilitate one-dimensional aggregation and, consequently, their polymorphism surfaces primarily when the states of assembly differ significantly. This engenders polymorphs of divergent dimensionalities such as one- and two-dimensional aggregates. Notwithstanding, realizing supramolecular polymer polymorphism, wherein polymorphs maintain one-dimensional aggregation, persists as a daunting challenge. In this work, we expound upon the manifestation of two supramolecular polymer polymorphs formed from a large discotic supramolecular monomer (rosette), which consists of six hydrogen-bonded molecules with an extended π-conjugated core. These polymorphs are generated in mixtures of chloroform and methylcyclohexane, attributable to distinctly different disc stacking arrangements. The face-to-face (minimal displacement) and offset (large displacement) stacking arrangements can be predicated on their distinctive photophysical properties. The face-to-face stacking results in a twisted helix structure. Conversely, the offset stacking induces inherent curvature in the supramolecular fiber, thereby culminating in a hollow helical coil (helicoid). While both polymorphs exhibit bistability in nonpolar solvent compositions, the face-to-face stacking attains stability purely in a kinetic sense within a polar solvent composition and undergoes conversion into offset stacking through a dislocation of stacked rosettes. This occurs without the dissociation and nucleation of monomers, leading to unprecedented helicoidal folding of supramolecular polymers. Our findings augment our understanding of supramolecular polymer polymorphism, but they also highlight a distinctive method for achieving helicoidal folding in supramolecular polymers.
Collapse
Affiliation(s)
- Chie Otsuka
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, Chiba 263-8522, Japan
| | - Sho Takahashi
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, Chiba 263-8522, Japan
| | - Atsushi Isobe
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, Chiba 263-8522, Japan
| | - Takuho Saito
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, Chiba 263-8522, Japan
| | - Takumi Aizawa
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, Chiba 263-8522, Japan
| | - Ryoma Tsuchida
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, Chiba 263-8522, Japan
| | - Shuhei Yamashita
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, Chiba 263-8522, Japan
| | - Koji Harano
- Center for Basic Research on Materials, National Institute for Materials Science, Tsukuba 305-0044, Japan
| | - Hiroki Hanayama
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan
| | - Nobutaka Shimizu
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba 305-0801, Japan
| | - Hideaki Takagi
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba 305-0801, Japan
| | - Rie Haruki
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba 305-0801, Japan
| | - Luzhi Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Martin J Hollamby
- Department of Chemistry, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST55BG, U.K
| | - Takahiro Ohkubo
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan
| | - Shiki Yagai
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan
- Institute for Advanced Academic Research (IAAR), Chiba University, Chiba 263-8522, Japan
| |
Collapse
|
26
|
Hu L, Li Q, Luo Y, Jin B, Chi S, Li X. Controllable One-Step Assembly of Uniform Liquid Crystalline Block Copolymer Cylindrical Micelles by a Tailored Nucleation-Growth Process and Their Application as Tougheners. Angew Chem Int Ed Engl 2023; 62:e202310022. [PMID: 37648679 DOI: 10.1002/anie.202310022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
The fabrication of uniform cylindrical nanoobjects from soft materials has attracted tremendous research attention from both fundamental research and practical application points of view but has also posed outstanding challenges in terms of their preparation. Herein, we report a one-step method to assemble cylindrical micelles (CMs) with highly controllable lengths from a single liquid crystalline block copolymer by an in situ nucleation-growth strategy. By adjusting the assembly conditions, the lengths of the CMs are controlled from hundreds of nanometers to micrometers. Several influencing factors are systematically investigated to comprehensively understand the process. Particularly, the solvent quality is found determinative in either enhancing or suppressing the nucleation process to produce shorter and longer CMs, respectively. Taking advantage of this strategy, the lengths of CMs can be nicely controlled over a wide concentration range of four orders of magnitude. Lastly, CMs are produced on decent scales and applied as additives to dramatically toughen glassy plastic matrix, revealing an unprecedented length-dependent toughening effect.
Collapse
Affiliation(s)
- Lingjuan Hu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Qin Li
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yunjun Luo
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Key Laboratory of High Energy Density Materials, MOE. Beijing Institute of Technology, Beijing, 100081, China
| | - Bixin Jin
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Shumeng Chi
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Experimental Centre of Advanced Materials, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoyu Li
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
27
|
Chakraborty A, Das PK, Jana B, Ghosh S. Supramolecular alternating copolymers with highly efficient fluorescence resonance energy transfer. Chem Sci 2023; 14:10875-10883. [PMID: 37829017 PMCID: PMC10566455 DOI: 10.1039/d3sc03056c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Abstract
This article reports alternating supramolecular copolymerization of two naphthalene-diimide (NDI)-derived building blocks (NDI-1 and NDI-2) under thermodynamic control. Both monomers contain a central NDI chromophore, attached to a hydrocarbon-chain and a carboxylic-acid group. The NDI core in NDI-2 is symmetrically substituted with two butane-thiol groups, which makes it distinct from NDI-1. In decane, a 1 : 1 mixture of NDI-1 and NDI-2 shows spontaneous gelation and a typical fibrillar network, unlike the behavior of either of the components individually. The solvent-dependent UV/vis spectrum of the mixed sample in decane shows bathochromically shifted sharp absorption bands and a sharp emission band (holds a mirror-image relationship) with a significantly small Stokes shift compared to those in CHCl3, indicating J-aggregation. In contrast, the aggregated spectra of the individual monomers show broad structureless features, suggesting ill-defined aggregates. Cooling curves derived from the temperature-dependent UV/vis spectroscopy studies revealed early nucleation and a signature of well-defined cooperative polymerization for the mixed sample, unlike either of the individual components. Molecular dynamics simulations predicted the greatest dimer formation tendency for the NDI-1 + NDI-2 (1 : 1), followed by pure NDI-1 and NDI-2. Theoretical studies further revealed a partial positive charge in the NDI ring of NDI-1 when compared to NDI-2, promoting the alternating stacking propensity, which is also favored by the steric factor as NDI-2 is core-substituted with alkyl thiols. Such theoretical predictions fully corroborate with the experimental results showing 1 : 1 stoichiometry (from Job's plot) of the two monomers, indicating alternate stacking sequences in the H-bonded (syn-syn catemer type) supramolecular copolymer. Such alternating supramolecular copolymers showed highly efficient (>93%) fluorescence resonance energy transfer (FRET).
Collapse
Affiliation(s)
- Anwesha Chakraborty
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science 2A and 2B Raja S. C. Mullick Road Kolkata 700032 India
| | - Pradipta Kumar Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A and 2B Raja S. C. Mullick Road 700032 Kolkata India
| | - Biman Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A and 2B Raja S. C. Mullick Road 700032 Kolkata India
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science 2A and 2B Raja S. C. Mullick Road Kolkata 700032 India
| |
Collapse
|
28
|
Wang F, Liao R, Wang F. Pathway Control of π-Conjugated Supramolecular Polymers by Incorporating Donor-Acceptor Functionality. Angew Chem Int Ed Engl 2023; 62:e202305827. [PMID: 37431813 DOI: 10.1002/anie.202305827] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
Controlling the nanoscale orientation of π-conjugated systems remains challenging due to the complexity of multiple energy landscapes involved in the supramolecular assembly process. In this study, we have developed an effective strategy for programming the pathways of π-conjugated supramolecular polymers, by incorporating both electron-rich methoxy- or methanthiol-benzene as donor unit and electron-poor cyano-vinylenes as acceptor units on the monomeric structure. It leads to the formation of parallel-stacked supramolecular polymers as the metastable species through homomeric donor/acceptor packing, which convert to slip-stacked supramolecular polymers as the thermodynamically stable species facilitated by heteromeric donor-acceptor packing. By further investigating the external seed-induced kinetic-to-thermodynamic transformation behaviors, our findings suggest that the donor-acceptor functionality on the seed structure is crucial for accelerating pathway conversion. This is achieved by eliminating the initial lag phase in the supramolecular polymerization process. Overall, this study provides valuable insights into designing molecular structures that control aggregation pathways of π-conjugated nanostructures.
Collapse
Affiliation(s)
- Fan Wang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Rui Liao
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Feng Wang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
29
|
Li J, Cui Y, Lu YL, Zhang Y, Zhang K, Gu C, Wang K, Liang Y, Liu CS. Programmable supramolecular chirality in non-equilibrium systems affording a multistate chiroptical switch. Nat Commun 2023; 14:5030. [PMID: 37596287 PMCID: PMC10439165 DOI: 10.1038/s41467-023-40698-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/03/2023] [Indexed: 08/20/2023] Open
Abstract
The dynamic regulation of supramolecular chirality in non-equilibrium systems can provide valuable insights into molecular self-assembly in living systems. Herein, we demonstrate the use of chemical fuels for regulating self-assembly pathway, which thereby controls the supramolecular chirality of assembly in non-equilibrium systems. Depending on the nature of different fuel acids, the system shows pathway-dependent non-equilibrium self-assembly, resulting in either dynamic self-assembly with transient supramolecular chirality or kinetically trapped self-assembly with inverse supramolecular chirality. More importantly, successive conducting of chemical-fueled process and thermal annealing process allows for the sequential programmability of the supramolecular chirality between four different chiral hydrogels, affording a new example of a multistate supramolecular chiroptical switch that can be recycled multiple times. The current finding sheds new light on the design of future supramolecular chiral materials, offering access to alternative self-assembly pathways and kinetically controlled non-equilibrium states.
Collapse
Affiliation(s)
- Jingjing Li
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Yihan Cui
- College of New Energy, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Yi-Lin Lu
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Yunfei Zhang
- College of New Energy, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Kaihuang Zhang
- College of New Energy, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Chaonan Gu
- College of New Energy, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Kaifang Wang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
- College of New Energy, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Yujia Liang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
- College of New Energy, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Chun-Sen Liu
- College of New Energy, Zhengzhou University of Light Industry, Zhengzhou, 450002, China.
| |
Collapse
|
30
|
Abstract
Multivalent proteins and nucleic acids, collectively referred to as multivalent associative biomacromolecules, provide the driving forces for the formation and compositional regulation of biomolecular condensates. Here, we review the key concepts of phase transitions of aqueous solutions of associative biomacromolecules, specifically proteins that include folded domains and intrinsically disordered regions. The phase transitions of these systems come under the rubric of coupled associative and segregative transitions. The concepts underlying these processes are presented, and their relevance to biomolecular condensates is discussed.
Collapse
Affiliation(s)
- Rohit V. Pappu
- Department of Biomedical Engineering, Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Samuel R. Cohen
- Department of Biomedical Engineering, Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Furqan Dar
- Department of Biomedical Engineering, Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Mina Farag
- Department of Biomedical Engineering, Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Mrityunjoy Kar
- Max Planck Institute of Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
31
|
Mahlmeister B, Schembri T, Stepanenko V, Shoyama K, Stolte M, Würthner F. Enantiopure J-Aggregate of Quaterrylene Bisimides for Strong Chiroptical NIR-Response. J Am Chem Soc 2023. [PMID: 37285519 DOI: 10.1021/jacs.3c03367] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Chiral polycyclic aromatic hydrocarbons can be tailored for next-generation photonic materials by carefully designing their molecular as well as supramolecular architectures. Hence, excitonic coupling can boost the chiroptical response in extended aggregates but is still challenging to achieve by pure self-assembly. Whereas most reports on these potential materials cover the UV and visible spectral range, systems in the near infrared (NIR) are underdeveloped. We report a new quaterrylene bisimide derivative with a conformationally stable twisted π-backbone enabled by the sterical congestion of a fourfold bay-arylation. Rendering the π-subplanes accessible by small imide substituents allows for a slip-stacked chiral arrangement by kinetic self-assembly in low polarity solvents. The well dispersed solid-state aggregate reveals a sharp optical signature of strong J-type excitonic coupling in both absorption (897 nm) and emission (912 nm) far in the NIR region and reaches absorption dissymmetry factors up to 1.1 × 10-2. The structural elucidation was achieved by atomic force microscopy and single-crystal X-ray analysis which we combined to derive a structural model of a fourfold stranded enantiopure superhelix. We could deduce that the role of phenyl substituents is not only granting stable axial chirality but also guiding the chromophore into a chiral supramolecular arrangement needed for strong excitonic chirality.
Collapse
Affiliation(s)
- Bernhard Mahlmeister
- Center for Nanosystems Chemistry (CNC) & Bavarian Polymer Institute (BPI), Universität Würzburg, 97074 Würzburg, Germany
| | - Tim Schembri
- Center for Nanosystems Chemistry (CNC) & Bavarian Polymer Institute (BPI), Universität Würzburg, 97074 Würzburg, Germany
| | - Vladimir Stepanenko
- Institut für Organische Chemie, Universität Würzburg, 97074 Würzburg, Germany
| | - Kazutaka Shoyama
- Institut für Organische Chemie, Universität Würzburg, 97074 Würzburg, Germany
| | - Matthias Stolte
- Center for Nanosystems Chemistry (CNC) & Bavarian Polymer Institute (BPI), Universität Würzburg, 97074 Würzburg, Germany
- Institut für Organische Chemie, Universität Würzburg, 97074 Würzburg, Germany
| | - Frank Würthner
- Center for Nanosystems Chemistry (CNC) & Bavarian Polymer Institute (BPI), Universität Würzburg, 97074 Würzburg, Germany
- Institut für Organische Chemie, Universität Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
32
|
Matarranz B, Díaz‐Cabrera S, Ghosh G, Carreira‐Barral I, Soberats B, García‐Valverde M, Quesada R, Fernández G. Anticooperative Supramolecular Oligomerization Mediated by V‐Shaped Monomer Design and Unconventional Hydrogen Bonds. Angew Chem Int Ed Engl 2023. [DOI: 10.1002/ange.202218555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Beatriz Matarranz
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut Corrensstraße 36 48149 Münster Germany
| | - Sandra Díaz‐Cabrera
- Departamento de Química Facultad de Ciencias Universidad de Burgos 09001 Burgos Spain
| | - Goutam Ghosh
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut Corrensstraße 36 48149 Münster Germany
| | | | - Bartolome Soberats
- Department of Chemistry, Universitat de les Illes Balears Cra. Valldemossa, Km. 7.5 07122 Palma de Mallorca Spain
| | - María García‐Valverde
- Departamento de Química Facultad de Ciencias Universidad de Burgos 09001 Burgos Spain
| | - Roberto Quesada
- Departamento de Química Facultad de Ciencias Universidad de Burgos 09001 Burgos Spain
| | - Gustavo Fernández
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut Corrensstraße 36 48149 Münster Germany
| |
Collapse
|
33
|
Abstract
Porphyrin derivatives are ubiquitous in bio-organisms and are associated with proteins that play important biological roles, such as oxygen transport, photosynthesis, and catalysis. Porphyrins are very fascinating research objects for chemists, physicists, and biologists owing to their versatile chemical and physical properties. Porphyrin derivatives are actively used in various fields, such as molecular recognition, energy conversion, sensors, biomedicine, and catalysts. Porphyrin derivatives can be used as building blocks for supramolecular polymers because their primitive structures have C4 symmetry, which allows for the symmetrical introduction of self-assembling motifs. This review describes the fabrication of porphyrin-based supramolecular polymers and novel discoveries in supramolecular polymer growth. First, we summarise the (i) design concepts, (ii) growth mechanism and (iii) analytical methods of porphyrin-based supramolecular polymers. Then, the examples of porphyrin-based supramolecular polymers formed by (iv) hydrogen bonding, (v) metal coordination-based interaction, (vi) host-guest complex formation, and (vii) others are summarised. Finally, (viii) applications and perspectives are discussed. Although supramolecular polymers, in a broad sense, can include either two-dimensional (2D) networks or three-dimensional (3D) porous polymer structures; this review mainly focuses on one-dimensional (1D) fibrous supramolecular polymer structures.
Collapse
Affiliation(s)
- Hosoowi Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea.
| | - Hyunjun Park
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea.
| | - Du Yeol Ryu
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea.
| | - Woo-Dong Jang
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea.
| |
Collapse
|
34
|
Sun Y, Jiang Y, Jiang J, Li T, Liu M. Keto-form directed hierarchical chiral self-assembly of Schiff base derivatives with amplified circularly polarized luminescence. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
35
|
Markiewicz G, Szmulewicz A, Majchrzycki Ł, Smulders MMJ, Stefankiewicz AR. Chiral Supramolecular Polymers Assembled from Conformationally Flexible Amino-Acid-Substituted Biphenyldiimides. Macromol Rapid Commun 2023; 44:e2200767. [PMID: 36394181 DOI: 10.1002/marc.202200767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/09/2022] [Indexed: 11/18/2022]
Abstract
Hydrogen-bonded polymers are a class of highly dynamic supramolecular aggregates, whose self-assembly may be tuned by very mild external or internal stimuli. However, the rational design of chiral supramolecules remains challenging especially when flexible components are involved. The combination of the inherent weakness and dynamic nature of the intermolecular bonds that hold together such assemblies with unrestricted molecular motions introduces additional factors which may affect the self-assembly process. In this report, the self-assembly of four amino acid-derived chiral biphenyldiimides into open-chain 1D supramolecular polymers is presented. While the primary driving force, COOH···HOOC hydrogen bonding, is responsible for the polymer growth in all cases, the amino acid side chains play an important role in either stabilizing or destabilizing the assemblies obtained, as deduced from studies of the thermodynamics of the self-assembly process. Furthermore, substantial differences in the structural factors governing the polymerization process between dynamic liquid and static solid are found. This work demonstrates the potential of the rather unexplored class of diimide-based organic dyes in the formation of well-organized chiral supramolecular assemblies with tunable properties.
Collapse
Affiliation(s)
- Grzegorz Markiewicz
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, Poznań, 61-614, Poland.,Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
| | - Adrianna Szmulewicz
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, Poznań, 61-614, Poland.,Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
| | - Łukasz Majchrzycki
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, Poznań, 61-614, Poland
| | - Maarten M J Smulders
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| | - Artur R Stefankiewicz
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, Poznań, 61-614, Poland.,Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
| |
Collapse
|
36
|
Xu F, Feringa BL. Photoresponsive Supramolecular Polymers: From Light-Controlled Small Molecules to Smart Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204413. [PMID: 36239270 DOI: 10.1002/adma.202204413] [Citation(s) in RCA: 69] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Photoresponsive supramolecular polymers are well-organized assemblies based on highly oriented and reversible noncovalent interactions containing photosensitive molecules as (co-)monomers. They have attracted increasing interest in smart materials and dynamic systems with precisely controllable functions, such as light-driven soft actuators, photoresponsive fluorescent anticounterfeiting and light-triggered electronic devices. The present review discusses light-activated molecules used in photoresponsive supramolecular polymers with their main photo-induced changes, e.g., geometry, dipole moment, and chirality. Based on these distinct changes, supramolecular polymers formed by light-activated molecules exhibit photoresponsive disassembly and reassembly. As a consequence, photo-induced supramolecular polymerization, "depolymerization," and regulation of the lengths and topologies are observed. Moreover, the light-controlled functions of supramolecular polymers, such as actuation, emission, and chirality transfer along length scales, are highlighted. Furthermore, a perspective on challenges and future opportunities is presented. Besides the challenge of moving from harmful UV light to visible/near IR light avoiding fatigue, and enabling biomedical applications, future opportunities include light-controlled supramolecular actuators with helical motion, light-modulated information transmission, optically recyclable materials, and multi-stimuli-responsive supramolecular systems.
Collapse
Affiliation(s)
- Fan Xu
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| |
Collapse
|
37
|
Matarranz B, Díaz-Cabrera S, Ghosh G, Carreira-Barral I, Soberats B, García-Valverde M, Quesada R, Fernández G. Anticooperative Supramolecular Oligomerization Mediated by V-Shaped Monomer Design and Unconventional Hydrogen Bonds. Angew Chem Int Ed Engl 2023; 62:e202218555. [PMID: 36828774 DOI: 10.1002/anie.202218555] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 02/26/2023]
Abstract
After more than three decades of extensive investigations on supramolecular polymers, strategies for self-limiting growth still remain challenging. Herein, we exploit a new V-shaped monomer design to achieve anticooperatively formed oligomers with superior robustness and high luminescence. In toluene, the monomer-oligomer equilibrium is shifted to the monomer side, enabling the elucidation of the molecular packing modes and the resulting (weak) anticooperativity. Steric effects associated with an antiparallel staircase organization of the dyes are proposed to outcompete aromatic and unconventional B-F⋅⋅⋅H-N/C interactions, restricting the growth at the stage of oligomers. In methylcyclohexane (MCH), the packing modes and the anticooperativity are preserved; however, pronounced solvophobic and chain-enwrapping effects lead to thermally ultrastable oligomers. Our results shed light on understanding anticooperative effects and restricted growth in self-assembly.
Collapse
Affiliation(s)
- Beatriz Matarranz
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| | - Sandra Díaz-Cabrera
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain
| | - Goutam Ghosh
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| | - Israel Carreira-Barral
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain
| | - Bartolome Soberats
- Department of Chemistry, Universitat de les Illes Balears Cra., Valldemossa, Km. 7.5, 07122, Palma de Mallorca, Spain
| | - María García-Valverde
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain
| | - Roberto Quesada
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain
| | - Gustavo Fernández
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| |
Collapse
|
38
|
Hirao T, Kishino S, Haino T. Supramolecular chiral sensing by supramolecular helical polymers. Chem Commun (Camb) 2023; 59:2421-2424. [PMID: 36727639 DOI: 10.1039/d2cc06502a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A tetrakis(porphyrin) with branched side chains self-assembled to form supramolecular helical polymers both in solution and in the solid state. The helicity of the supramolecular polymers was determined by the chirality of solvent molecules, which permitted the polymer chains to be used in chiral sensing.
Collapse
Affiliation(s)
- Takehiro Hirao
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima 739-8526, Japan.
| | - Sei Kishino
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima 739-8526, Japan.
| | - Takeharu Haino
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima 739-8526, Japan. .,International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| |
Collapse
|
39
|
Hisamatsu Y, Cheng F, Yamamoto K, Takase H, Umezawa N, Higuchi T. Control of the stepwise self-assembly process of a pH-responsive amphiphilic 4-aminoquinoline-tetraphenylethene conjugate. NANOSCALE 2023; 15:3177-3187. [PMID: 36655765 DOI: 10.1039/d2nr05756e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Controlling the kinetic processes of self-assembly and switching their kinetic properties according to the changes in external environments are crucial concepts in the field of supramolecular polymers in water for biological and biomedical applications. Here we report a new self-assembling amphiphilic 4-aminoquinoline (4-AQ)-tetraphenylethene (TPE) conjugate that exhibits kinetically controllable stepwise self-assembly and has the ability of switching its kinetic nature in response to pH. The self-assembly process of the 4-AQ amphiphile comprises the formation of sphere-like nanoparticles, a transition to short nanofibers, and their growth to long nanofibers with ∼1 μm length scale at room temperature (RT). The timescale of the self-assembly process differs according to the pH-responsivity of the 4-AQ moiety in a weakly acidic to neutral pH range. Therefore, after aging for 24 h at RT, the 4-AQ amphiphile forms metastable short nanofibers at pH 5.5, while it forms thermodynamically favored long nanofibers at pH 7.4. Moreover, the modulation of nanofiber growth proceeding spontaneously at RT was achieved by switching the kinetic pathway through changing the pH between 7.4 and 5.5.
Collapse
Affiliation(s)
- Yosuke Hisamatsu
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.
| | - Fangzhou Cheng
- Faculty of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Katsuhiro Yamamoto
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Hiroshi Takase
- Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Naoki Umezawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.
| | - Tsunehiko Higuchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.
| |
Collapse
|
40
|
Chen S, Feng S, Markvoort AJ, Zhang C, Zhou E, Liang W, Zhang HJ, Jiang YB, Lin J. Unequal Perylene Diimide Twins in a Quadruple Assembly. Angew Chem Int Ed Engl 2023; 62:e202300786. [PMID: 36792541 DOI: 10.1002/anie.202300786] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/17/2023]
Abstract
Natural light-harvesting (LH) systems can divide identical dyes into unequal aggregate states, thereby achieving intelligent "allocation of labor". From a synthetic point of view, the construction of such kinds of unequal and integrated systems without the help of proteinaceous scaffolding is challenging. Here, we show that four octatetrayne-bridged ortho-perylene diimide (PDI) dyads (POPs) self-assemble into a quadruple assembly (POP)4 both in solution and in the solid state. The two identical PDI units in each POP are compartmentalized into weakly coupled PDIs (P520) and closely stacked PDIs (P550) in (POP)4 . The two extreme pools of PDI chromophores were unambiguously confirmed by single-crystal X-ray crystallography and NMR spectroscopy. To interpret the formation of the discrete quadruple assembly, we also developed a two-step cooperative model. Quantum-chemical calculations indicate the existence of multiple couplings within and across P520 and P550, which can satisfactorily describe the photophysical properties of the unequal quadruple assembly. This finding is expected to help advance the rational design of dye stacks to emulate functions of natural LH systems.
Collapse
Affiliation(s)
- Shuqi Chen
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P. R. China
| | - Shishi Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Albert J Markvoort
- Computational Biology Group and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven (The, Netherlands
| | - Cankun Zhang
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, P. R. China
| | - Enyang Zhou
- School of Mathematical Sciences, Xiamen University, Xiamen, 361005, P. R. China
| | - WanZhen Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Hui-Jun Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P. R. China
| | - Yun-Bao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P. R. China
| | - Jianbin Lin
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
41
|
Cao J, Poon CT, Chan MHY, Hong EYH, Cheng YH, Hau FKW, Wu L, Yam VWW. Lamellar assembly and nanostructures of amphiphilic boron( iii) diketonates through suitable non-covalent interactions. Org Chem Front 2023. [DOI: 10.1039/d3qo00031a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Cooperative assemblies of amphiphilic boron(iii) diketonate compounds, which are found to be driven by the formation of non-covalent π–π and hydrophobic interactions in THF–water solution, result in the construction of nanosheet of lamellar packing.
Collapse
Affiliation(s)
- Jingjie Cao
- State Key Laboratory of Supramolecular Structure and Materials and College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Chun-Ting Poon
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Michael Ho-Yeung Chan
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Eugene Yau-Hin Hong
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Yat-Hin Cheng
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Franky Ka-Wah Hau
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials and College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Vivian Wing-Wah Yam
- State Key Laboratory of Supramolecular Structure and Materials and College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| |
Collapse
|
42
|
Van Lommel R, Van Hooste J, Vandaele J, Steurs G, Van der Donck T, De Proft F, Rocha S, Sakellariou D, Alonso M, De Borggraeve WM. Does Supramolecular Gelation Require an External Trigger? Gels 2022; 8:gels8120813. [PMID: 36547337 PMCID: PMC9778329 DOI: 10.3390/gels8120813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
The supramolecular gelation of small molecules is typically preceded by an external stimulus to trigger the self-assembly. The need for this trigger stems from the metastable nature of most supramolecular gels and can limit their applicability. Herein, we present a small urea-based molecule that spontaneously forms a stable hydrogel by simple mixing without the addition of an external trigger. Single particle tracking experiments and observations made from scanning electron microscopy indicated that triggerless gelation occurred in a similar fashion as the archetypical heat-triggered gelation. These results could stimulate the search for other supramolecular hydrogels that can be obtained by simple mixing. Furthermore, the mechanism of the heat-triggered supramolecular gelation was elucidated by a combination of molecular dynamics simulations and quantitative NMR experiments. Surprisingly, hydrogelation seemingly occurs via a stepwise self-assembly in which spherical nanoparticles mature into an entangled fibrillary network.
Collapse
Affiliation(s)
- Ruben Van Lommel
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Box 2404, 3001 Leuven, Belgium
- Eenheid Algemene Chemie (ALGC), Department of Chemistry, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Julie Van Hooste
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Box 2404, 3001 Leuven, Belgium
| | - Johannes Vandaele
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Box 2404, 3001 Leuven, Belgium
| | - Gert Steurs
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Box 2404, 3001 Leuven, Belgium
| | - Tom Van der Donck
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, 3001 Leuven, Belgium
| | - Frank De Proft
- Eenheid Algemene Chemie (ALGC), Department of Chemistry, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Susana Rocha
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Box 2404, 3001 Leuven, Belgium
| | - Dimitrios Sakellariou
- Center for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems (M2S), KU Leuven, Celestijnenlaan 200F, Box 2454, 3001 Leuven, Belgium
| | - Mercedes Alonso
- Eenheid Algemene Chemie (ALGC), Department of Chemistry, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
- Correspondence: (M.A.); (W.M.D.B.)
| | - Wim M. De Borggraeve
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Box 2404, 3001 Leuven, Belgium
- Correspondence: (M.A.); (W.M.D.B.)
| |
Collapse
|
43
|
Li B, Wang Y, Chan MH, Pan M, Li Y, Yam VW. Supramolecular Assembly of Organoplatinum(II) Complexes for Subcellular Distribution and Cell Viability Monitoring with Differentiated Imaging. Angew Chem Int Ed Engl 2022; 61:e202210703. [DOI: 10.1002/anie.202210703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Baoning Li
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
- State Key Laboratory of Synthetic Chemistry Institute of Molecular Functional Materials and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong 999077 P. R. China
| | - Yaping Wang
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Michael Ho‐Yeung Chan
- State Key Laboratory of Synthetic Chemistry Institute of Molecular Functional Materials and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong 999077 P. R. China
| | - Mei Pan
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yonguang Li
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Vivian Wing‐Wah Yam
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
- State Key Laboratory of Synthetic Chemistry Institute of Molecular Functional Materials and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong 999077 P. R. China
| |
Collapse
|
44
|
Li Q, Lu X, Lv Z, Zhu B, Lu Q. Full-Color and Switchable Circularly Polarized Light from a Macroscopic Chiral Dendritic Film through a Solid-State Supramolecular Assembly. ACS NANO 2022; 16:18863-18872. [PMID: 36346796 DOI: 10.1021/acsnano.2c07768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chiral materials displaying chirality across multiple length scales have attracted increasing interest due to their potential applications in diverse fields. Herein, we report an efficient approach for the construction of macroscopic crystal dendrites with hierarchical chirality based on an in situ solid assembly in a block copolymer film. Chiral fluorescent crystals are formed by enantiopure d-/l-dibenzoyl tartaric acid and pyrenecarboxylic acid in a poly(1,4-butadiene)-b-poly(ethylene oxide) film. The chiro-optical activity of the crystalline dendrites can be greatly amplified in the absorption and scattering regions and goes along with the dimension of dendrites. Notably, the chiral dendrites exhibited strong circularly polarized luminescence emission with a high dissymmetric factor (0.03). The enhancement of the quantum yield of the chiral film was up to 28%, which was 14 times higher that of the corresponding fluorescent molecules. The circularly polarized emission bands of the films can be fine-tuned by contriving the emissive bands of fluorescent molecules. More importantly, the chiral signals are able to be wiped when the fluorescent group photodimerizes under UV irradiation. This work provides an efficient way to develop functional materials through solid self-assembly.
Collapse
Affiliation(s)
- Qingxiang Li
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical & Thermal Aging, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, People's Republic of China
| | - Xuemin Lu
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical & Thermal Aging, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, People's Republic of China
| | - Zhiguo Lv
- School of Physics and Astronomy, Key Laboratory of Artificial Structures and Quantum Control, Shanghai Jiao Tong University, Shanghai200240, People's Republic of China
| | - Bangshang Zhu
- Institute of Analytic Center, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Qinghua Lu
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical & Thermal Aging, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, People's Republic of China
| |
Collapse
|
45
|
Kanzaki C, Yoneda H, Nomura S, Maeda T, Numata M. Ionic supramolecular polymerization of water-soluble porphyrins: balancing ionic attraction and steric repulsion to govern stacking. RSC Adv 2022; 12:30670-30681. [PMID: 36337941 PMCID: PMC9597584 DOI: 10.1039/d2ra05542b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
We have synthesized novel water-soluble anionic porphyrin monomers that undergo pH-regulated ionic supramolecular polymerization in aqueous media. By tuning the total charge of the monomer, we selectively produced two different supramolecular polymers: J- and H-stacked. The main driving force toward the J-aggregated supramolecular polymers was the ionic interactions between the sulfonate and protonated pyrrole groups, ultimately affording neutral supramolecular polymers. In these J-aggregated supramolecular polymers, amide groups were aligned regularly along polymer wedges, which further assembled in an edge-to-edge manner to afford nanosheets. In contrast, the H-aggregated supramolecular polymers remained anionic, with their amide NH moieties acting as anion receptors along the polymer chains, thereby minimizing repulsion. For both polymers, varying the steric bulk of the peripheral ethylene glycol (EG) units controlled the rates of self-assembly as well as the degrees of polymerization. This steric effect was further tunable, depending on the solvation state of the EG chains. Accordingly, this new family of supramolecular polymers was created by taking advantage of unique driving forces that depended on both the pH and solvent.
Collapse
Affiliation(s)
- Chisako Kanzaki
- Department of Biomolecular Chemistry, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University Shimogamo, Sakyo-ku Kyoto 606-8522 Japan +81-75-703-5132
| | - Hiroshi Yoneda
- Department of Biomolecular Chemistry, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University Shimogamo, Sakyo-ku Kyoto 606-8522 Japan +81-75-703-5132
| | - Shota Nomura
- Department of Biomolecular Chemistry, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University Shimogamo, Sakyo-ku Kyoto 606-8522 Japan +81-75-703-5132
| | - Takato Maeda
- Department of Biomolecular Chemistry, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University Shimogamo, Sakyo-ku Kyoto 606-8522 Japan +81-75-703-5132
| | - Munenori Numata
- Department of Biomolecular Chemistry, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University Shimogamo, Sakyo-ku Kyoto 606-8522 Japan +81-75-703-5132
| |
Collapse
|
46
|
Connor JP, Quinn SD, Schaefer C. Sticker-and-spacer model for amyloid beta condensation and fibrillation. Front Mol Neurosci 2022; 15:962526. [PMID: 36311031 PMCID: PMC9611774 DOI: 10.3389/fnmol.2022.962526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
A major pathogenic hallmark of Alzheimer's disease is the presence of neurotoxic plaques composed of amyloid beta (Aβ) peptides in patients' brains. The pathway of plaque formation remains elusive, though some clues appear to lie in the dominant presence of Aβ1 − 42 in these plaques despite Aβ1−40 making up approximately 90% of the Aβ pool. We hypothesize that this asymmetry is driven by the hydrophobicity of the two extra amino acids that are incorporated in Aβ1−42. To investigate this hypothesis at the level of single molecules, we have developed a molecular “sticker-and-spacer lattice model” of unfolded Aβ. The model protein has a single sticker that may reversibly dimerise and elongate into semi-flexible linear chains. The growth is hampered by excluded-volume interactions that are encoded by the hydrophilic spacers but are rendered cooperative by the attractive interactions of hydrophobic spacers. For sufficiently strong hydrophobicity, the chains undergo liquid-liquid phase-separation (LLPS) into condensates that facilitate the nucleation of fibers. We find that a small fraction of Aβ1−40 in a mixture of Aβ1−40 and Aβ1−42 shifts the critical concentration for LLPS to lower values. This study provides theoretical support for the hypothesis that LLPS condensates act as a precursor for aggregation and provides an explanation for the Aβ1−42-enrichment of aggregates in terms of hydrophobic interactions.
Collapse
Affiliation(s)
- Jack P. Connor
- Department of Biology, University of York, York, United Kingdom
- School of Physics, Engineering and Technology, University of York, York, United Kingdom
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- *Correspondence: Jack P. Connor
| | - Steven D. Quinn
- School of Physics, Engineering and Technology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Charley Schaefer
- School of Physics, Engineering and Technology, University of York, York, United Kingdom
- Charley Schaefer
| |
Collapse
|
47
|
Kang SG, Kim KY, Cho Y, Jeong DY, Lee JH, Nishimura T, Lee SS, Kwak SK, You Y, Jung JH. Circularly Polarized Luminescence Active Supramolecular Nanotubes Based on Pt
II
Complexes That Undergo Dynamic Morphological Transformation and Helicity Inversion. Angew Chem Int Ed Engl 2022; 61:e202207310. [DOI: 10.1002/anie.202207310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Seok Gyu Kang
- Department of Chemistry and Research Institution of Natural Sciences Gyeongsang National University (GNU) Jinju 52828 Republic of Korea
| | - Ka Young Kim
- Department of Chemistry and Research Institution of Natural Sciences Gyeongsang National University (GNU) Jinju 52828 Republic of Korea
| | - Yumi Cho
- Department of Energy Enginerring School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Dong Yeun Jeong
- Division of Chemical Engineering and Materials Science Graduate Program in System Health Science and Engineering Ewha Womans University Seoul 03760 Republic of Korea
| | - Ji Ha Lee
- Chemical Engineering Program Graduate School of Advanced Science and Engineering Hiroshima University Hiroshima 739-8527 Japan
| | - Tomoki Nishimura
- Department of Chemistry and Materials Faculty of Textile Science and Technology Shinshu University Nagano 386-8567 Japan
| | - Shim Sung Lee
- Department of Chemistry and Research Institution of Natural Sciences Gyeongsang National University (GNU) Jinju 52828 Republic of Korea
| | - Sang Kyu Kwak
- Department of Energy Enginerring School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Youngmin You
- Division of Chemical Engineering and Materials Science Graduate Program in System Health Science and Engineering Ewha Womans University Seoul 03760 Republic of Korea
| | - Jong Hwa Jung
- Department of Chemistry and Research Institution of Natural Sciences Gyeongsang National University (GNU) Jinju 52828 Republic of Korea
| |
Collapse
|
48
|
Buell AK. Stability matters, too - the thermodynamics of amyloid fibril formation. Chem Sci 2022; 13:10177-10192. [PMID: 36277637 PMCID: PMC9473512 DOI: 10.1039/d1sc06782f] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/30/2022] [Indexed: 12/26/2022] Open
Abstract
Amyloid fibrils are supramolecular homopolymers of proteins that play important roles in biological functions and disease. These objects have received an exponential increase in attention during the last few decades, due to their role in the aetiology of a range of severe disorders, most notably some of a neurodegenerative nature. While an overwhelming number of experimental studies exist that investigate how, and how fast, amyloid fibrils form and how their formation can be inhibited, a much more limited body of experimental work attempts to answer the question as to why these types of structures form (i.e. the thermodynamic driving force) and how stable they actually are. In this review, I attempt to give an overview of the types of experiments that have been performed to-date to answer these questions, and to summarise our current understanding of amyloid thermodynamics.
Collapse
Affiliation(s)
- Alexander K Buell
- Technical University of Denmark, Department of Biotechnology and Biomedicine Søltofts Plads, Building 227 2800 Kgs. Lyngby Denmark
| |
Collapse
|
49
|
Shi W, Wei R, Zhang D, Meng L, Xie J, Cai K, Zhao D. Dual Cooperatively Grown J‐aggregates with Different Nucleus Size. Angew Chem Int Ed Engl 2022; 61:e202208635. [DOI: 10.1002/anie.202208635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Wenjing Shi
- Beijing National Laboratory for Molecular Sciences Chemistry Center for the Soft Matter Science and Engineering and the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education College of Chemistry Peking University Beijing 100871 China
| | - Rong Wei
- Beijing National Laboratory for Molecular Sciences Chemistry Center for the Soft Matter Science and Engineering and the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education College of Chemistry Peking University Beijing 100871 China
| | - Di Zhang
- Beijing National Laboratory for Molecular Sciences Chemistry Center for the Soft Matter Science and Engineering and the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education College of Chemistry Peking University Beijing 100871 China
| | - Linghao Meng
- Beijing National Laboratory for Molecular Sciences Chemistry Center for the Soft Matter Science and Engineering and the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education College of Chemistry Peking University Beijing 100871 China
| | - Jiajun Xie
- Beijing National Laboratory for Molecular Sciences Chemistry Center for the Soft Matter Science and Engineering and the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education College of Chemistry Peking University Beijing 100871 China
| | - Kang Cai
- Department of Chemistry Nankai University 94 Weijin Road Tianjin 300072 China
| | - Dahui Zhao
- Beijing National Laboratory for Molecular Sciences Chemistry Center for the Soft Matter Science and Engineering and the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education College of Chemistry Peking University Beijing 100871 China
| |
Collapse
|
50
|
Liu Y, Hao A, Xing P. Co‐Assembly of Chiral Amines and a Four‐Armed Cyano‐Substituted Luminophore through Hydrogen Bonds for Potential Development of Smart Chiroptical Materials. Chemistry 2022; 28:e202201956. [DOI: 10.1002/chem.202201956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Yiping Liu
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| |
Collapse
|