1
|
Li P, Li Z, Zhang D, Jia Q. Hydrophilic adamantane derivatives engineered β-cyclodextrin-based self-assembly materials for highly efficient enrichment of glycopeptides. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
2
|
Critical parameters for design and development of multivalent nanoconstructs: recent trends. Drug Deliv Transl Res 2022; 12:2335-2358. [PMID: 35013982 PMCID: PMC8747862 DOI: 10.1007/s13346-021-01103-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 12/16/2022]
Abstract
A century ago, the groundbreaking concept of the magic bullet was given by Paul Ehrlich. Since then, this concept has been extensively explored in various forms to date. The concept of multivalency is among such advancements of the magic bullet concept. Biologically, the concept of multivalency plays a critical role in significantly huge numbers of biochemical interactions. This concept is the sole reason behind the higher affinity of biological molecules like viruses to more selectively target the host cell surface receptors. Multivalent nanoconstructs are a promising approach for drug delivery by the active targeting principle. Designing and developing effective and target-specific multivalent drug delivery nanoconstructs, on the other hand, remain a challenge. The underlying reason for this is a lack of understanding of the crucial interactions between ligands and cell surface receptors, as well as the design of nanoconstructs. This review highlights the need for a better theoretical understanding of the multivalent effect of what happens to the receptor-ligand complex after it has been established. Furthermore, the critical parameters for designing and developing robust multivalent systems have been emphasized. We have also discussed current advances in the design and development of multivalent nanoconstructs for drug delivery. We believe that a thorough knowledge of theoretical concepts and experimental methodologies may transform a brilliant idea into clinical translation.
Collapse
|
3
|
Pottanam Chali S, Azhdari S, Galstyan A, Gröschel AH, Ravoo BJ. Biodegradable supramolecular micelles via host-guest interaction of cyclodextrin-terminated polypeptides and adamantane-terminated polycaprolactones. Chem Commun (Camb) 2021; 57:9446-9449. [PMID: 34528969 DOI: 10.1039/d1cc03372g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Biodegradable supramolecular micelles were prepared exploiting the host-guest interaction of cyclodextrin and adamantane. Cyclodextrin-initiated polypeptides acted as the hydrophilic corona, whereas adamantane-terminated polycaprolactones served as the hydrophobic core.
Collapse
Affiliation(s)
- Sharafudheen Pottanam Chali
- Organic Chemistry Institute and Centre for Soft Nanoscience Westfälische Wilhelms-Universität Münster, Corrensstrasse 36, 48149 Münster, Germany.
| | - Suna Azhdari
- Physical Chemistry Institute and Centre for Soft Nanoscience Westfälische Wilhelms-Universität Münster, Corrensstrasse 28, 48149 Münster, Germany
| | - Anzhela Galstyan
- Centre for Soft Nanoscience Westfälische Wilhelms-Universität Münster, Busso-Peus-Strasse 10, 48149 Münster, Germany
| | - André H Gröschel
- Physical Chemistry Institute and Centre for Soft Nanoscience Westfälische Wilhelms-Universität Münster, Corrensstrasse 28, 48149 Münster, Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Centre for Soft Nanoscience Westfälische Wilhelms-Universität Münster, Corrensstrasse 36, 48149 Münster, Germany.
| |
Collapse
|
4
|
‘Sweet as a Nut’: Production and use of nanocapsules made of glycopolymer or polysaccharide shell. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
5
|
Pottanam Chali S, Hüwel S, Rentmeister A, Ravoo BJ. Self-Assembled Cationic Polypeptide Supramolecular Nanogels for Intracellular DNA Delivery. Chemistry 2021; 27:12198-12206. [PMID: 34125454 PMCID: PMC8457085 DOI: 10.1002/chem.202101924] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 12/14/2022]
Abstract
Supramolecular nanogels are an emerging class of polymer nanocarriers for intracellular delivery, due to their straightforward preparation, biocompatibility, and capability to spontaneously encapsulate biologically active components such as DNA. A completely biodegradable three-component cationic supramolecular nanogel was designed exploiting the multivalent host-guest interaction of cyclodextrin and adamantane attached to a polypeptide backbone. While cyclodextrin was conjugated to linear poly-L-lysine, adamantane was grafted to linear as well as star shaped poly-L-lysine. Size control of nanogels was obtained with the increase in the length of the host and guest polymer. Moreover, smaller nanogels were obtained using the star shaped polymers because of the compact nature of star polymers compared to linear polymers. Nanogels were loaded with anionic model cargoes, pyranine and carboxyfluorescein, and their enzyme responsive release was studied using protease trypsin. Confocal microscopy revealed successful transfection of mammalian HeLa cells and intracellular release of pyranine and plasmid DNA, as quantified using a luciferase assay, showing that supramolecular polypeptide nanogels have significant potential in gene therapy applications.
Collapse
Affiliation(s)
- Sharafudheen Pottanam Chali
- Organic Chemistry Institute and Centre for Soft NanoscienceWestfälische Wilhelms-Universität MünsterCorrensstrasse 3648149MünsterGermany
| | - Sabine Hüwel
- Institute of BiochemistryWestfälische Wilhelms-Universität MünsterCorrensstrasse 3648149MünsterGermany
| | - Andrea Rentmeister
- Institute of BiochemistryWestfälische Wilhelms-Universität MünsterCorrensstrasse 3648149MünsterGermany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Centre for Soft NanoscienceWestfälische Wilhelms-Universität MünsterCorrensstrasse 3648149MünsterGermany
| |
Collapse
|
6
|
Rivero-Barbarroja G, Benito JM, Ortiz Mellet C, García Fernández JM. Cyclodextrin-Based Functional Glyconanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2517. [PMID: 33333914 PMCID: PMC7765426 DOI: 10.3390/nano10122517] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 12/29/2022]
Abstract
Cyclodextrins (CDs) have long occupied a prominent position in most pharmaceutical laboratories as "off-the-shelve" tools to manipulate the pharmacokinetics of a broad range of active principles, due to their unique combination of biocompatibility and inclusion abilities. The development of precision chemical methods for their selective functionalization, in combination with "click" multiconjugation procedures, have further leveraged the nanoscaffold nature of these oligosaccharides, creating a direct link between the glyco and the nano worlds. CDs have greatly contributed to understand and exploit the interactions between multivalent glycodisplays and carbohydrate-binding proteins (lectins) and to improve the drug-loading and functional properties of nanomaterials through host-guest strategies. The whole range of capabilities can be enabled through self-assembly, template-assisted assembly or covalent connection of CD/glycan building blocks. This review discusses the advancements made in this field during the last decade and the amazing variety of functional glyconanomaterials empowered by the versatility of the CD component.
Collapse
Affiliation(s)
- Gonzalo Rivero-Barbarroja
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, 41012 Seville, Spain; (G.R.-B.); (C.O.M.)
| | - Juan Manuel Benito
- Instituto de Investigaciones Químicas (IIQ), CSIC, Universidad de Sevilla, 41092 Sevilla, Spain;
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, 41012 Seville, Spain; (G.R.-B.); (C.O.M.)
| | | |
Collapse
|
7
|
Bettini S, Valli L, Giancane G. Applications of Photoinduced Phenomena in Supramolecularly Arranged Phthalocyanine Derivatives: A Perspective. Molecules 2020; 25:molecules25163742. [PMID: 32824375 PMCID: PMC7463501 DOI: 10.3390/molecules25163742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 01/10/2023] Open
Abstract
This review focuses on the description of several examples of supramolecular assemblies of phthalocyanine derivatives differently functionalized and interfaced with diverse kinds of chemical species for photo-induced phenomena applications. In fact, the role of different substituents was investigated in order to tune peculiar aggregates formation as well as, with the same aim, the possibility to interface these derivatives with other molecular species, as electron donor and acceptor, carbon allotropes, cyclodextrins, protein cages, drugs. Phthalocyanine photo-physical features are indeed really interesting and appealing but need to be preserved and optimized. Here, we highlight that the supramolecular approach is a versatile method to build up very complex and functional architectures. Further, the possibility to minimize the organization energy and to facilitate the spontaneous assembly of the molecules, in numerous examples, has been demonstrated to be more useful and performing than the covalent approach.
Collapse
Affiliation(s)
- Simona Bettini
- Department of Engineering of Innovation, University of Salento, Via per Monteroni, 73100 Lecce, Italy;
- National Interuniversity Consortium for Materials Science and Technology, INSTM, Via Giuseppe Giusti, 9, 50121 Florence, Italy;
| | - Ludovico Valli
- National Interuniversity Consortium for Materials Science and Technology, INSTM, Via Giuseppe Giusti, 9, 50121 Florence, Italy;
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via per Monteroni, 73100 Lecce, Italy
- Correspondence:
| | - Gabriele Giancane
- National Interuniversity Consortium for Materials Science and Technology, INSTM, Via Giuseppe Giusti, 9, 50121 Florence, Italy;
- Department of Cultural Heritage, University of Salento, Via D. Birago, 64, 73100 Lecce, Italy
| |
Collapse
|
8
|
Nowak BP, Ravoo BJ. Magneto- and photo-responsive hydrogels from the co-assembly of peptides, cyclodextrins, and superparamagnetic nanoparticles. Faraday Discuss 2020; 219:220-228. [PMID: 31297494 DOI: 10.1039/c9fd00012g] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dual response to external non-invasive stimuli, such as light and magnetic field, is a highly desirable property in soft nanomaterials with potential applications in soft robotics, tissue engineering, and life-like materials. Within this class of materials, hydrogels obtained from the self-assembly of low molecular weight gelators (LMWGs) are of special interest due to their ease of preparation and modification. Herein, we report a modular co-assembly strategy for a magneto- and photo-responsive supramolecular hydrogel based on the arylazopyrazole (AAP) modified pentapeptide gelator Nap-GFFYS, and β-cyclodextrin vesicles (CDVs) with superparamagnetic cobalt ferrite nanoparticles embedded in their membranes. Upon application of a magnetic field, a reversible increase in the storage modulus is observed during rheological measurements. Additionally, a gel rod could be manipulated with a weak permanent magnet, resulting in macroscopic bending of the rod. Furthermore, through irradiation with UV and visible light, respectively, the host-guest interaction between the AAP moiety and the hydrophobic cavity of the β-CD can be deactivated on demand, thus lowering the stiffness of the hydrogel reversibly.
Collapse
Affiliation(s)
- Benedikt P Nowak
- Center for Soft Nanoscience and Organic Chemistry Institute, Westfälische Wilhelms Universität Münster, Busso Peus Straße 10, 48149 Münster, Germany.
| | | |
Collapse
|
9
|
Saha S, Klein-Hitpaß M, Vallet C, Knauer SK, Schmuck C, Voskuhl J, Giese M. Smart Glycopolymeric Nanoparticles for Multivalent Lectin Binding and Stimuli-Controlled Guest Release. Biomacromolecules 2020; 21:2356-2364. [DOI: 10.1021/acs.biomac.0c00292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Subrata Saha
- Organic Chemistry and Cenide, University of Duisburg-Essen, Universitätsstrasse 7, D-45117 Essen, Germany
| | - Marcel Klein-Hitpaß
- Organic Chemistry and Cenide, University of Duisburg-Essen, Universitätsstrasse 7, D-45117 Essen, Germany
| | - Cecilia Vallet
- Department of Molecular Biology II, Centre of Medical Biotechnology (ZMB), University of Duisburg-Essen, D-45117 Essen, Germany
| | - Shirley K. Knauer
- Department of Molecular Biology II, Centre of Medical Biotechnology (ZMB), University of Duisburg-Essen, D-45117 Essen, Germany
| | - Carsten Schmuck
- Organic Chemistry and Cenide, University of Duisburg-Essen, Universitätsstrasse 7, D-45117 Essen, Germany
| | - Jens Voskuhl
- Organic Chemistry and Cenide, University of Duisburg-Essen, Universitätsstrasse 7, D-45117 Essen, Germany
| | - Michael Giese
- Organic Chemistry and Cenide, University of Duisburg-Essen, Universitätsstrasse 7, D-45117 Essen, Germany
| |
Collapse
|
10
|
Hanayama H, Yamada J, Harano K, Nakamura E. Cyclodextrins as Surfactants for Solubilization and Purification of Carbon Nanohorn Aggregates. Chem Asian J 2020; 15:1549-1552. [DOI: 10.1002/asia.202000273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/18/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Hiroki Hanayama
- Department of ChemistryThe University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Junya Yamada
- Department of ChemistryThe University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Koji Harano
- Department of ChemistryThe University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Eiichi Nakamura
- Department of ChemistryThe University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
11
|
Fernández MA, Silva OF, Vico RV, de Rossi RH. Complex systems that incorporate cyclodextrins to get materials for some specific applications. Carbohydr Res 2019; 480:12-34. [PMID: 31158527 DOI: 10.1016/j.carres.2019.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/06/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022]
Abstract
Cyclodextrins (CDs) are a family of biodegradable cyclic hydrocarbons composed of α-(1,4) linked glucopyranose subunits, the more common containing 6, 7 or 8 glucose units are named α, β and γ-cyclodextrins respectively. Since the discovery of CDs, they have attracted interest among scientists and the first studies were about the properties of the native compounds and in particular their use as catalysts of organic reactions. Characteristics features of different types of cyclodextrins stimulated investigation in different areas of research, due to its non-toxic and non-inmunogenic properties and also to the development of an improved industrial production. In this way, many materials with important properties have been developed. This mini-review will focus on chemical systems that use cyclodextrins, whatever linked covalently or mediated by the non covalent interactions, to build complex systems developed mainly during the last five years.
Collapse
Affiliation(s)
- Mariana A Fernández
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| | - O Fernando Silva
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Raquel V Vico
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Rita H de Rossi
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| |
Collapse
|
12
|
Kauscher U, Holme MN, Björnmalm M, Stevens MM. Physical stimuli-responsive vesicles in drug delivery: Beyond liposomes and polymersomes. Adv Drug Deliv Rev 2019; 138:259-275. [PMID: 30947810 PMCID: PMC7180078 DOI: 10.1016/j.addr.2018.10.012] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/30/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022]
Abstract
Over the past few decades, a range of vesicle-based drug delivery systems have entered clinical practice and several others are in various stages of clinical translation. While most of these vesicle constructs are lipid-based (liposomes), or polymer-based (polymersomes), recently new classes of vesicles have emerged that defy easy classification. Examples include assemblies with small molecule amphiphiles, biologically derived membranes, hybrid vesicles with two or more classes of amphiphiles, or more complex hierarchical structures such as vesicles incorporating gas bubbles or nanoparticulates in the lumen or membrane. In this review, we explore these recent advances and emerging trends at the edge and just beyond the research fields of conventional liposomes and polymersomes. A focus of this review is the distinct behaviors observed for these classes of vesicles when exposed to physical stimuli - such as ultrasound, heat, light and mechanical triggers - and we discuss the resulting potential for new types of drug delivery, with a special emphasis on current challenges and opportunities.
Collapse
Affiliation(s)
- Ulrike Kauscher
- Department of Materials, Imperial College London, London SW7 2AZ, UK; Department of Bioengineering, Imperial College London, London SW7 2AZ, UK; Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Margaret N Holme
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Mattias Björnmalm
- Department of Materials, Imperial College London, London SW7 2AZ, UK; Department of Bioengineering, Imperial College London, London SW7 2AZ, UK; Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Molly M Stevens
- Department of Materials, Imperial College London, London SW7 2AZ, UK; Department of Bioengineering, Imperial College London, London SW7 2AZ, UK; Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden.
| |
Collapse
|
13
|
Heteromultivalent peptide recognition by co-assembly of cyclodextrin and calixarene amphiphiles enables inhibition of amyloid fibrillation. Nat Chem 2018; 11:86-93. [DOI: 10.1038/s41557-018-0164-y] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 09/21/2018] [Indexed: 01/22/2023]
|
14
|
Schibilla F, Holthenrich A, Song B, Linard Matos AL, Grill D, Rota Martir D, Gerke V, Zysman-Colman E, Ravoo BJ. Phosphorescent cationic iridium(iii) complexes dynamically bound to cyclodextrin vesicles: applications in live cell imaging. Chem Sci 2018; 9:7822-7828. [PMID: 30429991 PMCID: PMC6194495 DOI: 10.1039/c8sc02875c] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022] Open
Abstract
We report cationic Ir(iii) complexes functionalized with adamantyl groups designed to bind to β-cyclodextrin vesicles (CDV) with high affinity (K a = 1 × 106 M-1). The emission of the complexes is tuned by changing the nature of the cyclometalating ligands. The host-guest adduct of CDV and Ir(iii) complexes shows increased and significantly blue-shifted emission due to the lower mobility of the Ir(iii)-complexes residing in the less polar environment of the vesicle surface. Ir(iii)-decorated CDV are efficiently taken up by cells and can be used in live cell imaging. The CDV act as carriers to transport the phosphorescent complexes into cells where they selectively stain mitochondria.
Collapse
Affiliation(s)
- Frauke Schibilla
- Organic Chemistry Institute and Center for Soft Nanoscience , Westfälische Wilhelms-Universität Münster , Correnstrasse 40 , 48149 Münster , Germany .
| | - Anna Holthenrich
- Institute of Medical Biochemistry , Center for Molecular Biology of Inflammation , Cells-in-Motion Cluster of Excellence (EXC1003-CiM) , Westfälische Wilhelms-Universität Münster , Von-Esmarch-Strasse 56 , 48149 Münster , Germany
| | - Boyi Song
- Organic Semiconductor Centre , EaStCHEM School of Chemistry , University of St Andrews , St. Andrews , Fife KY16 9ST , UK .
| | - Anna Lívia Linard Matos
- Institute of Medical Biochemistry , Center for Molecular Biology of Inflammation , Cells-in-Motion Cluster of Excellence (EXC1003-CiM) , Westfälische Wilhelms-Universität Münster , Von-Esmarch-Strasse 56 , 48149 Münster , Germany
| | - David Grill
- Institute of Medical Biochemistry , Center for Molecular Biology of Inflammation , Cells-in-Motion Cluster of Excellence (EXC1003-CiM) , Westfälische Wilhelms-Universität Münster , Von-Esmarch-Strasse 56 , 48149 Münster , Germany
| | - Diego Rota Martir
- Organic Semiconductor Centre , EaStCHEM School of Chemistry , University of St Andrews , St. Andrews , Fife KY16 9ST , UK .
| | - Volker Gerke
- Institute of Medical Biochemistry , Center for Molecular Biology of Inflammation , Cells-in-Motion Cluster of Excellence (EXC1003-CiM) , Westfälische Wilhelms-Universität Münster , Von-Esmarch-Strasse 56 , 48149 Münster , Germany
| | - Eli Zysman-Colman
- Organic Semiconductor Centre , EaStCHEM School of Chemistry , University of St Andrews , St. Andrews , Fife KY16 9ST , UK .
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience , Westfälische Wilhelms-Universität Münster , Correnstrasse 40 , 48149 Münster , Germany .
| |
Collapse
|
15
|
Ehrmann S, Chu CW, Kumari S, Silberreis K, Böttcher C, Dernedde J, Ravoo BJ, Haag R. A toolbox approach for multivalent presentation of ligand-receptor recognition on a supramolecular scaffold. J Mater Chem B 2018; 6:4216-4222. [PMID: 32254595 DOI: 10.1039/c8tb00922h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A supramolecular toolbox approach for multivalent ligand-receptor recognition was established based on β-cyclodextrin vesicles (CDVs). A series of bifunctional ligands for CDVs was synthesised. These ligands comprise on one side adamantane, enabling the functionalisation of CDVs with these ligands, and either mannose or sulphate group moieties on the other side for biological receptor recognition. The physicochemical properties of the host-guest complexes formed by β-cyclodextrin (β-CD) and adamantane were determined by isothermal titration calorimetry (ITC). Ligand-lectin interactions were investigated by surface plasmon resonance experiments (SPR) for the mannose ligands and the lectin Concanavalin A (ConA). Microscale thermophoresis (MST) measurements were applied for sulphate-dependent binding to L-selectin. In both cases, a multivalent affinity enhancement became apparent when the ligands were presented on the CDV scaffold. Furthermore, not only the clustering between our supramolecular mannosylated complex and Escherichia coli (E. coli), expressing the lectin FimH, was visualised by cryo-TEM, but also the competitive character to detach bound E. coli from a cell line, representing the uroepithelial cell surface, was demonstrated. In summary, a facile and effective supramolecular toolbox was established for various ligand-receptor recognition applications.
Collapse
Affiliation(s)
- Svenja Ehrmann
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Lee TH, Hirst DJ, Kulkarni K, Del Borgo MP, Aguilar MI. Exploring Molecular-Biomembrane Interactions with Surface Plasmon Resonance and Dual Polarization Interferometry Technology: Expanding the Spotlight onto Biomembrane Structure. Chem Rev 2018; 118:5392-5487. [PMID: 29793341 DOI: 10.1021/acs.chemrev.7b00729] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The molecular analysis of biomolecular-membrane interactions is central to understanding most cellular systems but has emerged as a complex technical challenge given the complexities of membrane structure and composition across all living cells. We present a review of the application of surface plasmon resonance and dual polarization interferometry-based biosensors to the study of biomembrane-based systems using both planar mono- or bilayers or liposomes. We first describe the optical principals and instrumentation of surface plasmon resonance, including both linear and extraordinary transmission modes and dual polarization interferometry. We then describe the wide range of model membrane systems that have been developed for deposition on the chips surfaces that include planar, polymer cushioned, tethered bilayers, and liposomes. This is followed by a description of the different chemical immobilization or physisorption techniques. The application of this broad range of engineered membrane surfaces to biomolecular-membrane interactions is then overviewed and how the information obtained using these techniques enhance our molecular understanding of membrane-mediated peptide and protein function. We first discuss experiments where SPR alone has been used to characterize membrane binding and describe how these studies yielded novel insight into the molecular events associated with membrane interactions and how they provided a significant impetus to more recent studies that focus on coincident membrane structure changes during binding of peptides and proteins. We then discuss the emerging limitations of not monitoring the effects on membrane structure and how SPR data can be combined with DPI to provide significant new information on how a membrane responds to the binding of peptides and proteins.
Collapse
Affiliation(s)
- Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Daniel J Hirst
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Ketav Kulkarni
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Mark P Del Borgo
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| |
Collapse
|
17
|
Straßburger D, Stergiou N, Urschbach M, Yurugi H, Spitzer D, Schollmeyer D, Schmitt E, Besenius P. Mannose-Decorated Multicomponent Supramolecular Polymers Trigger Effective Uptake into Antigen-Presenting Cells. Chembiochem 2018; 19:912-916. [PMID: 29486092 DOI: 10.1002/cbic.201800114] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Indexed: 11/05/2022]
Abstract
A modular route to prepare functional self-assembling dendritic peptide amphiphiles decorated with mannosides, to effectively target antigen-presenting cells, such as macrophages, is reported. The monomeric building blocks were equipped with tetra(ethylene glycol)s (TEGs) or labeled with a Cy3 fluorescent probe. Experiments on the uptake of the multifunctional supramolecular particles into murine macrophages (Mφs) were monitored by confocal microscopy and fluorescence-activated cell sorting. Mannose-decorated supramolecular polymers trigger a significantly higher cellular uptake and distribution, relative to TEG carrying bare polymers. No cytotoxicity or negative impact on cytokine production of the treated Mφs was observed, which emphasized their biocompatibility. The modular nature of the multicomponent supramolecular polymer coassembly protocol is a promising platform to develop fully synthetic multifunctional vaccines, for example, in cancer immunotherapy.
Collapse
Affiliation(s)
- David Straßburger
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Natascha Stergiou
- Institute of Immunology, University Medical Center Mainz, Langenbeckstrasse 1, Gebäude 708, 55131, Mainz, Germany
| | - Moritz Urschbach
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Hajime Yurugi
- Molecular Signaling Unit-FZI, Research Center for Immune Therapy, University Medical Center Mainz, Langenbeckstrasse 1, Gebäude 708, 55131, Mainz, Germany
| | - Daniel Spitzer
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Dieter Schollmeyer
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Edgar Schmitt
- Institute of Immunology, University Medical Center Mainz, Langenbeckstrasse 1, Gebäude 708, 55131, Mainz, Germany
| | - Pol Besenius
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
18
|
Bojarová P, Křen V. Sugared biomaterial binding lectins: achievements and perspectives. Biomater Sci 2018; 4:1142-60. [PMID: 27075026 DOI: 10.1039/c6bm00088f] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Lectins, a distinct group of glycan-binding proteins, play a prominent role in the immune system ranging from pathogen recognition and tuning of inflammation to cell adhesion or cellular signalling. The possibilities of their detailed study expanded along with the rapid development of biomaterials in the last decade. The immense knowledge of all aspects of glycan-lectin interactions both in vitro and in vivo may be efficiently used in bioimaging, targeted drug delivery, diagnostic and analytic biological methods. Practically applicable examples comprise photoluminescence and optical biosensors, ingenious three-dimensional carbohydrate microarrays for high-throughput screening, matrices for magnetic resonance imaging, targeted hyperthermal treatment of cancer tissues, selective inhibitors of bacterial toxins and pathogen-recognising lectin receptors, and many others. This review aims to present an up-to-date systematic overview of glycan-decorated biomaterials promising for interactions with lectins, especially those applicable in biology, biotechnology or medicine. The lectins of interest include galectin-1, -3 and -7 participating in tumour progression, bacterial lectins from Pseudomonas aeruginosa (PA-IL), E. coli (Fim-H) and Clostridium botulinum (HA33) or DC-SIGN, receptors of macrophages and dendritic cells. The spectrum of lectin-binding biomaterials covered herein ranges from glycosylated organic structures, calixarene and fullerene cores over glycopeptides and glycoproteins, functionalised carbohydrate scaffolds of cyclodextrin or chitin to self-assembling glycopolymer clusters, gels, micelles and liposomes. Glyconanoparticles, glycan arrays, and other biomaterials with a solid core are described in detail, including inorganic matrices like hydroxyapatite or stainless steel for bioimplants.
Collapse
Affiliation(s)
- P Bojarová
- Laboratory of Biotransformation, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ 14220 Prague 4, Czech Republic.
| | - V Křen
- Laboratory of Biotransformation, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ 14220 Prague 4, Czech Republic.
| |
Collapse
|
19
|
Fernández-Rosas J, Pessêgo M, Acuña A, Vázquez-Vázquez C, Montenegro J, Parajó M, Rodríguez-Dafonte P, Nome F, Garcia-Rio L. Novel Supramolecular Nanoparticles Derived from Cucurbit[7]uril and Zwitterionic Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3485-3493. [PMID: 29432693 DOI: 10.1021/acs.langmuir.7b04234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Binding constants, log K ≈ 6.6 M-1, and NMR characterization of the complexes formed by sulfobetaines and cucurbit[7]uril (CB7) support the electrostatic interaction as the major driving force. This very strong binding motif is cross-linked by additional CB7 molecules, resulting in the formation of supramolecular nanoparticles (SNPs) with an average diameter of 172 nm and a negative surface potential. The time course evolution of the particle size and the surface potential suggests the very fast formation of an amorphous aggregate that absorbs an additional amount of sulfobetaine. These aggregates afford very stable (more than 2 weeks) nanoparticles in an aqueous dispersion. The reversibility of the sulfobetaine/CB7 host/guest complexes allows SNP disaggregation by adding a competitive guest as shown by treatment with tetraethylammonium chloride. The addition of this competitive cation triggers a SNP-to-micelle transition. The potential application of these nanoparticles as drug delivery vehicles was investigated by using carboxyfluorescein. These experiments revealed that upon externally induced disruption of the SNPs (by tetraethylammonium chloride) the fluorescent dye was trapped in micellar aggregates that can be further disrupted by cyclodextrin addition.
Collapse
Affiliation(s)
| | - Marcia Pessêgo
- Laboratório Associado para a Química Verde (LAQV), REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia , Universidade NOVA de Lisboa , 2829-516 Monte de Caparica , Portugal
| | | | | | | | | | | | - Faruk Nome
- INCT-Catálise, Departamento de Química , Universidade Federal de Santa Catarina , 88040-900 Florianópolis , Santa Catarina Brazil
| | | |
Collapse
|
20
|
de Vries WC, Tesch M, Studer A, Ravoo BJ. Molecular Recognition and Immobilization of Ligand-Conjugated Redox-Responsive Polymer Nanocontainers. ACS APPLIED MATERIALS & INTERFACES 2017; 9:41760-41766. [PMID: 29140078 DOI: 10.1021/acsami.7b15516] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present the preparation of ligand-conjugated redox-responsive polymer nanocontainers by the supramolecular decoration of cyclodextrin vesicles with a thin redox-cleavable polymer shell that displays molecular recognition units on its surface. Two widely different recognition motifs (mannose-Concanavalin A and biotin-streptavidin) are compared and the impact of ligand density on the nanocontainer surface as well as an additional functionalization with nonadhesive poly(ethylene glycol) is studied. Aggregation assays, dynamic light scattering, and a fluorometric quantification reveal that the molecular recognition of ligand-conjugated polymer nanocontainers by receptor proteins is strongly affected by the multivalency of interactions and the association strength of the recognition motif. Finally, microcontact printing is used to prepare streptavidin-patterned surfaces, and the specific immobilization of biotin-conjugated nanocontainers is demonstrated. As a prototype of a nanosensor, these tethered nanocontainers can sense a reductive environment and react by releasing a payload.
Collapse
Affiliation(s)
- Wilke C de Vries
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster , Corrensstr. 40, D-48149 Münster, Germany
| | - Matthias Tesch
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster , Corrensstr. 40, D-48149 Münster, Germany
| | - Armido Studer
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster , Corrensstr. 40, D-48149 Münster, Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster , Corrensstr. 40, D-48149 Münster, Germany
| |
Collapse
|
21
|
Schibilla F, Voskuhl J, Fokina NA, Dahl JEP, Schreiner PR, Ravoo BJ. Host-Guest Complexes of Cyclodextrins and Nanodiamonds as a Strong Non-Covalent Binding Motif for Self-Assembled Nanomaterials. Chemistry 2017; 23:16059-16065. [PMID: 28885759 DOI: 10.1002/chem.201703392] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Indexed: 12/14/2022]
Abstract
We report the inclusion of carboxy- and amine-substituted molecular nanodiamonds (NDs) adamantane, diamantane, and triamantane by β-cyclodextrin and γ-cyclodextrin (β-CD and γ-CD), which have particularly well-suited hydrophobicity and symmetry for an optimal fit of the host and guest molecules. We studied the host-guest interactions in detail and generally observed 1:1 association of the NDs with the larger γ-CD cavity, but observed 1:2 association for the largest ND in the series (triamantane) with β-CD. We found higher binding affinities for carboxy-substituted NDs than for amine-substituted NDs. Additionally, cyclodextrin vesicles (CDVs) were decorated with d-mannose by using adamantane, diamantane, and triamantane as non-covalent anchors, and the resulting vesicles were compared with the lectin concanavalin A in agglutination experiments. Agglutination was directly correlated to the host-guest association: adamantane showed lower agglutination than di- or triamantane with β-CDV and almost no agglutination with γ-CDV, whereas high agglutination was observed for di- and triamantane with γ-CDV.
Collapse
Affiliation(s)
- Frauke Schibilla
- Organic Chemistry Institute and CeNTech, Westfälische Wilhelms-Universität Münster, Corrensstr.40, 48149, Münster, Germany
| | - Jens Voskuhl
- Organic Chemistry Institute and CeNTech, Westfälische Wilhelms-Universität Münster, Corrensstr.40, 48149, Münster, Germany.,Current address: Institute of Organic Chemistry, University of Duisburg-Essen, Universitätsstraße 7, 45141, Essen, Germany
| | - Natalie A Fokina
- Institute of Organic Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Jeremy E P Dahl
- Stanford Institute for Materials and Energy Science, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and CeNTech, Westfälische Wilhelms-Universität Münster, Corrensstr.40, 48149, Münster, Germany
| |
Collapse
|
22
|
Otremba T, Ravoo BJ. Dynamic multivalent interaction of phenylboronic acid functionalized dendrimers with vesicles. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.04.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Taabache S, Bertin A. Vesicles from Amphiphilic Dumbbells and Janus Dendrimers: Bioinspired Self-Assembled Structures for Biomedical Applications. Polymers (Basel) 2017; 9:E280. [PMID: 30970958 PMCID: PMC6432481 DOI: 10.3390/polym9070280] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/02/2017] [Accepted: 07/06/2017] [Indexed: 12/18/2022] Open
Abstract
The current review focuses on vesicles obtained from the self-assembly of two types of dendritic macromolecules, namely amphiphilic Janus dendrimers (forming dendrimersomes) and amphiphilic dumbbells. In the first part, we will present some synthetic strategies and the various building blocks that can be used to obtain dendritic-based macromolecules, thereby showing their structural versatility. We put our focus on amphiphilic Janus dendrimers and amphiphilic dumbbells that form vesicles in water but we also encompass vesicles formed thereof in organic solvents. The second part of this review deals with the production methods of these vesicles at the nanoscale but also at the microscale. Furthermore, the influence of various parameters (intrinsic to the amphiphilic JD and extrinsic-from the environment) on the type of vesicle formed will be discussed. In the third part, we will review the numerous biomedical applications of these vesicles of nano- or micron-size.
Collapse
Affiliation(s)
- Soraya Taabache
- Federal Institute for Materials Research and Testing (BAM), Department 6.0, D-12205 Berlin, Germany.
- Fraunhofer ICT-IMM, D-55129 Mainz, Germany.
| | - Annabelle Bertin
- Federal Institute for Materials Research and Testing (BAM), Department 6.0, D-12205 Berlin, Germany.
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, D-14195 Berlin, Germany.
| |
Collapse
|
24
|
Toraskar S, Gade M, Sangabathuni S, Thulasiram HV, Kikkeri R. Exploring the Influence of Shapes and Heterogeneity of Glyco-Gold Nanoparticles on Bacterial Binding for Preventing Infections. ChemMedChem 2017; 12:1116-1124. [DOI: 10.1002/cmdc.201700218] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/20/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Suraj Toraskar
- Department of Chemistry; Indian Institute of Science Education and Research, Dr. Homi Bhabha Road; Pune 411008 India
| | - Madhuri Gade
- Department of Chemistry; Indian Institute of Science Education and Research, Dr. Homi Bhabha Road; Pune 411008 India
| | - Sivakoti Sangabathuni
- Department of Chemistry; Indian Institute of Science Education and Research, Dr. Homi Bhabha Road; Pune 411008 India
| | - Hirekodathakallu V. Thulasiram
- Chemical Biology Unit, Division of Organic Chemistry; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road Pune 411008 India
| | - Raghavendra Kikkeri
- Department of Chemistry; Indian Institute of Science Education and Research, Dr. Homi Bhabha Road; Pune 411008 India
| |
Collapse
|
25
|
Xiao Y, Sun H, Du J. Sugar-Breathing Glycopolymersomes for Regulating Glucose Level. J Am Chem Soc 2017; 139:7640-7647. [DOI: 10.1021/jacs.7b03219] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yufen Xiao
- Department
of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Hui Sun
- Department
of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- Department
of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
- Shanghai
Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
26
|
Sherman SE, Xiao Q, Percec V. Mimicking Complex Biological Membranes and Their Programmable Glycan Ligands with Dendrimersomes and Glycodendrimersomes. Chem Rev 2017; 117:6538-6631. [PMID: 28417638 DOI: 10.1021/acs.chemrev.7b00097] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Synthetic vesicles have been assembled and coassembled from phospholipids, their modified versions, and other single amphiphiles into liposomes, and from block copolymers into polymersomes. Their time-consuming synthesis and preparation as stable, monodisperse, and biocompatible liposomes and polymersomes called for the elaboration of new synthetic methodologies. Amphiphilic Janus dendrimers (JDs) and glycodendrimers (JGDs) represent the most recent self-assembling amphiphiles capable of forming monodisperse, stable, and multifunctional unilamellar and multilamellar onion-like vesicles denoted dendrimersomes (DSs) and glycodendrimersomes (GDSs), dendrimercubosomes (DCs), glycodendrimercubosomes (GDCs), and other complex architectures. Amphiphilic JDs consist of hydrophobic dendrons connected to hydrophilic dendrons and can be thought of as monodisperse oligomers of a single amphiphile. They can be functionalized with a variety of molecules such as dyes, and, in the case of JGDs, with carbohydrates. Their iterative modular synthesis provides efficient access to sequence control at the molecular level, resulting in topologies with specific epitope sequence and density. DSs, GDSs, and other architectures from JDs and JGDs serve as powerful tools for mimicking biological membranes and for biomedical applications such as targeted drug and gene delivery and theranostics. This Review covers all aspects of the synthesis of JDs and JGDs and their biological activity and applications after assembly in aqueous media.
Collapse
Affiliation(s)
- Samuel E Sherman
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| | - Qi Xiao
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
27
|
Štimac A, Šekutor M, Mlinarić-Majerski K, Frkanec L, Frkanec R. Adamantane in Drug Delivery Systems and Surface Recognition. Molecules 2017; 22:molecules22020297. [PMID: 28212339 PMCID: PMC6155684 DOI: 10.3390/molecules22020297] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 01/19/2017] [Accepted: 02/11/2017] [Indexed: 11/30/2022] Open
Abstract
The adamantane moiety is widely applied in design and synthesis of new drug delivery systems and in surface recognition studies. This review focuses on liposomes, cyclodextrins, and dendrimers based on or incorporating adamantane derivatives. Our recent concept of adamantane as an anchor in the lipid bilayer of liposomes has promising applications in the field of targeted drug delivery and surface recognition. The results reported here encourage the development of novel adamantane-based structures and self-assembled supramolecular systems for basic chemical investigations as well as for biomedical application.
Collapse
Affiliation(s)
- Adela Štimac
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, 10000 Zagreb, Croatia.
| | - Marina Šekutor
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Kata Mlinarić-Majerski
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Leo Frkanec
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Ruža Frkanec
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, 10000 Zagreb, Croatia.
| |
Collapse
|
28
|
Wang J, Yao M, Li Q, Yi S, Chen X. β-Cyclodextrin induced hierarchical self-assembly of a cationic surfactant bearing an adamantane end group in aqueous solution. SOFT MATTER 2016; 12:9641-9648. [PMID: 27858041 DOI: 10.1039/c6sm02329k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A cationic surfactant with adamantane as the end group, 1-[11-((adamantane-1-carbonyl)oxy)-undecyl]pyridinium bromide (AP), has been synthesized. Its β-cyclodextrin (β-CD) induced hierarchical self-assembling behaviors in aqueous solution were investigated using transmission or scanning electron microscopy methods and small-angle X-ray scattering measurements. Like conventional single chain surfactants, micelles could be formed by AP itself in dilute solutions. However, the dramatic phase transitions of these micelles occurred when host-guest inclusions between AP and β-CD were sequentially produced at different host/guest molar ratios (R), corresponding to the supramolecules with different chemical structures. The AP micelles could be changed into spherical unilamellar vesicles by adding β-CD to reach an R value of 1 : 1. Such vesicles then evolved into multi-wall nanotubes or hydrogels when the β-CD amount was further increased to obtain an R value of 2 : 1. The unique structural characteristics of these supramolecular aggregates come from their "monolayer-like" walls, which have rarely been reported in the past for CD/surfactant inclusion complexes. The interesting results obtained here not only enrich the β-CD/surfactant aggregation systems, but also provide a novel and facile strategy to tune the morphology and structure of aggregates.
Collapse
Affiliation(s)
- Jiao Wang
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, China.
| | - Meihuan Yao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Qintang Li
- State Key Laboratory of Cultivation Base for Nonmetal Composites and Functional Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Sijing Yi
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, China.
| | - Xiao Chen
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, China.
| |
Collapse
|
29
|
Kauscher U, Ravoo BJ. A self-assembled cyclodextrin nanocarrier for photoreactive squaraine. Beilstein J Org Chem 2016; 12:2535-2542. [PMID: 28144322 PMCID: PMC5238535 DOI: 10.3762/bjoc.12.248] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/04/2016] [Indexed: 01/10/2023] Open
Abstract
Photoreactive squaraines produce cytotoxic oxygen species under irradiation and have significant potential for photodynamic therapy. Herein we report that squaraines can be immobilized on a self-assembled nanocarrier composed of amphiphilic cyclodextrins to enhance their photochemical activity. To this end, a squaraine was equipped with two adamantane moieties that act as anchors for the cyclodextrin vesicle surface. The supramolecular immobilization was monitored by using fluorescence spectroscopy and microscopy and the photochemistry of the squaraine was investigated by using absorption spectroscopy.
Collapse
Affiliation(s)
- Ulrike Kauscher
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
30
|
Himmelein S, Ravoo BJ. A Self-Assembled Sensor for Carbohydrates on the Surface of Cyclodextrin Vesicles. Chemistry 2016; 23:6034-6041. [DOI: 10.1002/chem.201603115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Sabine Himmelein
- Organic Chemistry Institute and Graduate School of Chemistry; Westfälische Wilhelms-Universität Münster; Corrensstrasse 40 48149 Münster Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Graduate School of Chemistry; Westfälische Wilhelms-Universität Münster; Corrensstrasse 40 48149 Münster Germany
| |
Collapse
|
31
|
Abstract
Current directions and emerging possibilities under investigation for the integration of synthetic and semi-synthetic multivalent architectures with biology are discussed. Attention is focussed around multivalent interactions, their fundamental role in biology, and current and potential approaches in emulating them in terms of structure and functionality using synthetic architectures.
Collapse
Affiliation(s)
- Eugene Mahon
- Conway Institute for Biomolecular and Biomedical Science, Belfield, Dublin 4, Ireland.
| | - Mihail Barboiu
- Adaptative Supramolecular Nanosystems Group, Institut Européen des Membranes, ENSCM/UMII/UMR-CNRS 5635, Pl. Eugène Bataillon, CC 047, 34095 Montpellier, Cedex 5, France.
| |
Collapse
|
32
|
Štimac A, Cvitaš JT, Frkanec L, Vugrek O, Frkanec R. Design and syntheses of mono and multivalent mannosyl-lipoconjugates for targeted liposomal drug delivery. Int J Pharm 2016; 511:44-56. [PMID: 27363934 DOI: 10.1016/j.ijpharm.2016.06.123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/23/2016] [Accepted: 06/26/2016] [Indexed: 12/21/2022]
Abstract
Multivalent mannosyl-lipoconjugates may be of interest for glycosylation of liposomes and targeted drug delivery because the mannose specifically binds to C-type lectin receptors on the particular cells. In this paper syntheses of two types of novel O-mannosides are presented. Conjugates 1 and 2 with a COOH- and NH2-functionalized spacer and the connection to a lysine and FmocNH-PEG-COOH, are described. The coupling reactions of prepared intermediates 6 and 4 with a PEGylated-DSPE or palmitic acid, respectively, are presented. Compounds 5, mono-, 8, di- and 12, tetravalent mannosyl-lipoconjugates, were synthesized. The synthesized compounds were incorporated into liposomes and liposomal preparations featuring exposed mannose units were characterized. Carbohydrate liposomal quartz crystal microbalance based assay has been established for studying carbohydrate-lectin binding. It was demonstrated that liposomes with incorporated mannosyl-lipoconjugates were effectively recognized by Con A and have great potential to be used for targeted liposomal drug delivery systems.
Collapse
Affiliation(s)
- Adela Štimac
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, 10000 Zagreb, Croatia
| | | | - Leo Frkanec
- Institute Rudjer BoškoviĿ, BijeniĿka cesta 54, 10000 Zagreb, Croatia
| | - Oliver Vugrek
- Institute Rudjer BoškoviĿ, BijeniĿka cesta 54, 10000 Zagreb, Croatia
| | - Ruža Frkanec
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, 10000 Zagreb, Croatia.
| |
Collapse
|
33
|
Schmidt B, Sankaran S, Stegemann L, Strassert CA, Jonkheijm P, Voskuhl J. Agglutination of bacteria using polyvalent nanoparticles of aggregation-induced emissive thiophthalonitrile dyes. J Mater Chem B 2016; 4:4732-4738. [PMID: 32263246 DOI: 10.1039/c6tb01210h] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel class of aggregation-induced emissive bis(phenylthio)phthalonitrile dyes were synthesized. These dyes assembled into nanoparticles that were equipped with mannose units. The nanoparticles underwent selective interactions with lectins and bacteria. The bright fluorescent aggregates aid in the visualization of the agglutination of bacteria.
Collapse
Affiliation(s)
- Bettina Schmidt
- Bioinspired Molecular Engineering Laboratory of the MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| | | | | | | | | | | |
Collapse
|
34
|
Poolman JM, Maity C, Boekhoven J, van der Mee L, le Sage VAA, Groenewold GJM, van Kasteren SI, Versluis F, van Esch JH, Eelkema R. A toolbox for controlling the properties and functionalisation of hydrazone-based supramolecular hydrogels. J Mater Chem B 2016; 4:852-858. [DOI: 10.1039/c5tb01870f] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In situ multicomponent hydrogelator formation enables straightforward chemical functionalisation of supramolecular hydrogels.
Collapse
|
35
|
Müller C, Despras G, Lindhorst TK. Organizing multivalency in carbohydrate recognition. Chem Soc Rev 2016; 45:3275-302. [DOI: 10.1039/c6cs00165c] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
36
|
Delbianco M, Bharate P, Varela-Aramburu S, Seeberger PH. Carbohydrates in Supramolecular Chemistry. Chem Rev 2015; 116:1693-752. [PMID: 26702928 DOI: 10.1021/acs.chemrev.5b00516] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Carbohydrates are involved in a variety of biological processes. The ability of sugars to form a large number of hydrogen bonds has made them important components for supramolecular chemistry. We discuss recent advances in the use of carbohydrates in supramolecular chemistry and reveal that carbohydrates are useful building blocks for the stabilization of complex architectures. Systems are presented according to the scaffold that supports the glyco-conjugate: organic macrocycles, dendrimers, nanomaterials, and polymers are considered. Glyco-conjugates can form host-guest complexes, and can self-assemble by using carbohydrate-carbohydrate interactions and other weak interactions such as π-π interactions. Finally, complex supramolecular architectures based on carbohydrate-protein interactions are discussed.
Collapse
Affiliation(s)
- Martina Delbianco
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Priya Bharate
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin , Arnimallee 22, 14195 Berlin, Germany
| | - Silvia Varela-Aramburu
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin , Arnimallee 22, 14195 Berlin, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin , Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
37
|
Zhang S, Xiao Q, Sherman SE, Muncan A, Ramos Vicente ADM, Wang Z, Hammer DA, Williams D, Chen Y, Pochan DJ, Vértesy S, André S, Klein ML, Gabius HJ, Percec V. Glycodendrimersomes from Sequence-Defined Janus Glycodendrimers Reveal High Activity and Sensor Capacity for the Agglutination by Natural Variants of Human Lectins. J Am Chem Soc 2015; 137:13334-44. [DOI: 10.1021/jacs.5b08844] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shaodong Zhang
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Qi Xiao
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Samuel E. Sherman
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Adam Muncan
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Andrea D. M. Ramos Vicente
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Zhichun Wang
- Department
of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6391, United States
| | - Daniel A. Hammer
- Department
of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6391, United States
| | - Dewight Williams
- Electron
Microscopy Resource Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6082, United States
| | - Yingchao Chen
- Department of Materials Science & Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Darrin J. Pochan
- Department of Materials Science & Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Sabine Vértesy
- Institute
of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Veterinärstrasse 13, 80539 Munich, Germany
| | - Sabine André
- Institute
of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Veterinärstrasse 13, 80539 Munich, Germany
| | - Michael L. Klein
- Institute
of Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Hans-Joachim Gabius
- Institute
of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Veterinärstrasse 13, 80539 Munich, Germany
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
38
|
Bonnet V, Gervaise C, Djedaïni-Pilard F, Furlan A, Sarazin C. Cyclodextrin nanoassemblies: a promising tool for drug delivery. Drug Discov Today 2015; 20:1120-6. [PMID: 26037681 DOI: 10.1016/j.drudis.2015.05.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/01/2015] [Accepted: 05/14/2015] [Indexed: 01/08/2023]
Abstract
Among the biodegradable and nontoxic compounds that can form nanoparticles for drug delivery, amphiphilic cyclodextrins are very promising. Apart from ionic cyclodextrins, which have been extensively studied and reviewed because of their application in gene delivery, our purpose is to provide a clear description of the supramolecular assemblies of nonionic amphiphilic cyclodextrins, which can form nanoassemblies for controlled drug release. Moreover, we focus on the relationship between their structure and physicochemical characteristics, which is crucial for self assembly and drug delivery. We also highlight the importance of the nanoparticle technology preparation for the stability and application of this nanodevice.
Collapse
Affiliation(s)
- Véronique Bonnet
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A), FRE 3517 CNRS Université de Picardie Jules Verne, ICP FR3085 CNRS, 80039 Amiens, France.
| | - Cédric Gervaise
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A), FRE 3517 CNRS Université de Picardie Jules Verne, ICP FR3085 CNRS, 80039 Amiens, France; Génie Enzymatique et Cellulaire, FRE3580 CNRS, Université de Picardie Jules Verne, 80039 Amiens, France
| | - Florence Djedaïni-Pilard
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A), FRE 3517 CNRS Université de Picardie Jules Verne, ICP FR3085 CNRS, 80039 Amiens, France
| | - Aurélien Furlan
- Génie Enzymatique et Cellulaire, FRE3580 CNRS, Université de Picardie Jules Verne, 80039 Amiens, France
| | - Catherine Sarazin
- Génie Enzymatique et Cellulaire, FRE3580 CNRS, Université de Picardie Jules Verne, 80039 Amiens, France
| |
Collapse
|
39
|
Abstract
This review describes recent results in the investigation of macrocyclic amphiphiles, which are classified based on different macrocyclic frameworks including cyclodextrins, calixarenes, cucurbiturils, pillararenes, and other macrocycles involved.
Collapse
Affiliation(s)
- Kecheng Jie
- State Key Laboratory of Chemical Engineering
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Yujuan Zhou
- State Key Laboratory of Chemical Engineering
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Yong Yao
- State Key Laboratory of Chemical Engineering
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| |
Collapse
|
40
|
Chen C, Xu H, Qian YC, Huang XJ. Glycosylation of polyphosphazenes by thiol-yne click chemistry for lectin recognition. RSC Adv 2015. [DOI: 10.1039/c4ra14012e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Strong carbohydrate–lectin binding interactions in biological systems can be mimicked through the synthesis of glucose containing macromolecules, particularly glycosylated polymers.
Collapse
Affiliation(s)
- Chen Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Huang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Yue-Cheng Qian
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Xiao-Jun Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
41
|
Abstract
Switchable DNA condensers based on β-CD bearing imidazolium and hydrolysable linkages were synthesized, showing base or enzyme-responsive switchable condensation ability.
Collapse
Affiliation(s)
- Ping Hu
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Yong Chen
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Yu Liu
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| |
Collapse
|
42
|
Lange SC, Unsleber J, Drücker P, Galla HJ, Waller MP, Ravoo BJ. pH response and molecular recognition in a low molecular weight peptide hydrogel. Org Biomol Chem 2015; 13:561-9. [DOI: 10.1039/c4ob02069c] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The preparation and characterization of a tripeptide based hydrogel, which possesses characteristic rheological properties, is pH responsive and can be functionalized at its thiol function is reported.
Collapse
Affiliation(s)
- Stefanie C. Lange
- Organic Chemistry Institute
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Jan Unsleber
- Organic Chemistry Institute
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Patrick Drücker
- Institute of Biochemistry
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Hans-Joachim Galla
- Institute of Biochemistry
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Mark P. Waller
- Organic Chemistry Institute
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| |
Collapse
|
43
|
Yan X, Sivignon A, Alcouffe P, Burdin B, Favre-Bonté S, Bilyy R, Barnich N, Fleury E, Ganachaud F, Bernard J. Brilliant glyconanocapsules for trapping of bacteria. Chem Commun (Camb) 2015; 51:13193-6. [DOI: 10.1039/c5cc04653j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
n-Heptyl α-d-mannose-functionalized nanocapsules are prepared by the Shift'N'Go process and post-modified to ensure aggregation and efficient removal of bacteria.
Collapse
Affiliation(s)
- Xibo Yan
- Université de Lyon
- Lyon
- France
- INSA-Lyon
- IMP
| | - Adeline Sivignon
- Clermont Université
- UMR 1071
- Inserm/Université d'Auvergne
- 63000 Clermont-Ferrand
- France
| | | | - Béatrice Burdin
- Centre Technologique des Microstructures (CTμ)
- Université Claude Bernard Lyon 1
- France
| | - Sabine Favre-Bonté
- Université de Lyon
- France Research Group on “Bacterial Opportunistic Pathogens and Environment”
- UMR 5557 Ecologie Microbienne
- CNRS
- Vetagro Sup and Université Lyon1
| | - Rostyslav Bilyy
- Friedrich-Alexander University of Erlangen-Nürnberg
- Department of Internal Medicine 3-Rheumatology and Immunology
- D-91054 Erlangen
- Germany
| | - Nicolas Barnich
- Clermont Université
- UMR 1071
- Inserm/Université d'Auvergne
- 63000 Clermont-Ferrand
- France
| | | | | | | |
Collapse
|
44
|
Ma X, Zhao Y. Biomedical Applications of Supramolecular Systems Based on Host–Guest Interactions. Chem Rev 2014; 115:7794-839. [DOI: 10.1021/cr500392w] [Citation(s) in RCA: 792] [Impact Index Per Article: 79.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xing Ma
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- School
of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Yanli Zhao
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- School
of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
45
|
Samanta A, Ravoo BJ. Magnetic Separation of Proteins by a Self-Assembled Supramolecular Ternary Complex. Angew Chem Int Ed Engl 2014; 53:12946-50. [DOI: 10.1002/anie.201405849] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/18/2014] [Indexed: 12/19/2022]
|
46
|
Samanta A, Ravoo BJ. Ein selbstorganisierter supramolekularer ternärer Komplex zur magnetischen Trennung von Proteinen. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201405849] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
47
|
Ji R, Cheng J, Yang T, Song C, Li L, Du FS, Li ZC. Shell-Sheddable, pH-Sensitive Supramolecular Nanoparticles Based on Ortho Ester-Modified Cyclodextrin and Adamantyl PEG. Biomacromolecules 2014; 15:3531-9. [DOI: 10.1021/bm500711c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ran Ji
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics
of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jing Cheng
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics
of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ting Yang
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics
of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Cheng−Cheng Song
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics
of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Lei Li
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics
of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Fu-Sheng Du
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics
of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zi-Chen Li
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics
of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
48
|
Zhang S, Moussodia RO, Sun HJ, Leowanawat P, Muncan A, Nusbaum CD, Chelling KM, Heiney PA, Klein ML, André S, Roy R, Gabius HJ, Percec V. Mimicking Biological Membranes with Programmable Glycan Ligands Self-Assembled from Amphiphilic Janus Glycodendrimers. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403186] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Zhang S, Moussodia RO, Sun HJ, Leowanawat P, Muncan A, Nusbaum CD, Chelling KM, Heiney PA, Klein ML, André S, Roy R, Gabius HJ, Percec V. Mimicking biological membranes with programmable glycan ligands self-assembled from amphiphilic Janus glycodendrimers. Angew Chem Int Ed Engl 2014; 53:10899-903. [PMID: 24923471 DOI: 10.1002/anie.201403186] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/02/2014] [Indexed: 12/16/2022]
Abstract
An accelerated modular synthesis produced 18 amphiphilic Janus glycodendrimers with three different topologies formed from either two or one carbohydrate head groups or a mixed constellation with a noncarbohydrate hydrophilic arm. By simple injection of their THF solutions into water or buffer, all of the Janus compounds self-assembled into uniform, stable, and soft unilamellar vesicles, denoted glycodendrimersomes. The mixed constellation topology glycodendrimersomes were demonstrated to be most efficient in binding plant, bacterial, and human lectins. This evidence with biomedically relevant receptors offers a promising perspective for the application of such glycodendrimersomes in targeted drug delivery, vaccines, and other areas of nanomedicine.
Collapse
Affiliation(s)
- Shaodong Zhang
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323 (USA) http://percec02.chem.upenn.edu/
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Chmielewski MJ, Buhler E, Candau J, Lehn JM. Multivalency by Self-Assembly: Binding of Concanavalin A to Metallosupramolecular Architectures Decorated with Multiple Carbohydrate Groups. Chemistry 2014; 20:6960-77. [DOI: 10.1002/chem.201304511] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Indexed: 12/17/2022]
|