1
|
Lippert B, Sanz Miguel PJ. Assembly of nucleobases into rings and cages via metal ions. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2105144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Bernhard Lippert
- Fakultät Chemie und Chemische Biologie, TU Dortmund, Dortmund, Germany
| | - Pablo J. Sanz Miguel
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-CSIC, Zaragoza, Spain
| |
Collapse
|
2
|
Lippert B, Sanz Miguel PJ. Beyond sole models for the first steps of Pt-DNA interactions: Fundamental properties of mono(nucleobase) adducts of PtII coordination compounds. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Raza MK, Gautam S, Howlader P, Bhattacharyya A, Kondaiah P, Chakravarty AR. Pyriplatin-Boron-Dipyrromethene Conjugates for Imaging and Mitochondria-Targeted Photodynamic Therapy. Inorg Chem 2018; 57:14374-14385. [PMID: 30376306 DOI: 10.1021/acs.inorgchem.8b02546] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Monofunctional pyriplatin analogues cis-[Pt(NH3)2(L)Cl](NO3) (1-3) having boron-dipyrromethene (BODIPY) pendants (L) with 1,3,5,7-tetramethyl-8-(4-pyridyl)-4,4'-difluoroboradiazaindacene moieties were designed and synthesized, and their photocytotoxic properties were studied. The Pt-BODIPY conjugates displayed an absorption band within 505-550 nm and a green emissive band near 535 nm in 1% DMSO/DMEM (Dulbecco's modified Eagle's medium) buffer. Complex cis-[Pt(NH3)2(4-Me-py)Cl](NO3) (4) was used as a control for determining the structural aspects by X-ray crystallography. The mono- and diiodinated BODIPY complexes 2 and 3 showed generation of singlet oxygen on light activation as evidenced from the 1,3-diphenylisobenzofuran (DPBF) titration experiments. The cytotoxicity of the BODIPY complexes was tested against A549 (human lung cancer), MCF-7 (human breast cancer), and HaCaT (human skin keratinocyte) cells in dark and visible light (400-700 nm, 10 J cm-2). While complexes 2 and 3 showed excellent photocytotoxicity (IC50 ≈ 0.05 μM), they remained essentially nontoxic in the dark (IC50 > 100 μM). The emissive bands of 1 and 2 were used for cellular imaging by confocal microscopy study, which showed their mitochondrial localization. This was further supported by platinum estimation from isolated mitochondria and mitochondrial depolarization through a JC-1 assay. The photomediated apoptotic cell death was evidenced from flow cytometric assays, annexin-V/FITC-PI (fluorescein isothiocyanate-propidium iodide) and cell cycle arrest in sub-G1 and G2/M phases. The complexes bind to 9-ethylguanine as a model nucleobase to form monoadducts. A mechanistic study on DNA photocleavage activity using pUC19 DNA showed singlet oxygen as the reactive oxygen species (ROS). The combination of photodynamic therapy with DNA cross-linking property enhanced the anticancer potential of the monofunctional BODIPY-conjugates of pyriplatins.
Collapse
|
4
|
Synthesis, characterization, DNA binding, topoisomerase I inhibition, and antiproliferation activities of (di-tert-butylbipyridine) platinum(II) complexes. TRANSIT METAL CHEM 2018. [DOI: 10.1007/s11243-018-0254-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
5
|
Lippert B, Sanz Miguel PJ. Merging Metal–Nucleobase Chemistry With Supramolecular Chemistry. ADVANCES IN INORGANIC CHEMISTRY 2018. [DOI: 10.1016/bs.adioch.2017.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Mixed guanine, adenine base quartets: possible roles of protons and metal ions in their stabilization. J Biol Inorg Chem 2017; 23:41-49. [PMID: 29218641 PMCID: PMC5756560 DOI: 10.1007/s00775-017-1507-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/18/2017] [Indexed: 11/17/2022]
Abstract
Structural variations of the well-known guanine quartet (G4) motif in nucleic acid structures, namely substitution of two guanine bases (G) by two adenine (A) nucleobases in mutual trans positions, are discussed and studied by density functional theory (DFT) methods. This work was initiated by three findings, namely (1) that GA mismatches are compatible with complementary pairing patterns in duplex-DNA structures and can, in principle, be extended to quartet structures, (2) that GA pairs can come in several variations, including with a N1 protonated adeninium moiety (AH), and (3) that cross-linking of the major donor sites of purine nucleobases (N1 and N7) by transition metal ions of linear coordination geometries produces planar purine quartets, as demonstrated by some of us in the past. Here, possible structures of mixed AGAG quartets both in the presence of protons and alkali metal ions are discussed, and in particular, the existence of a putative four-purine, two-metal motif.
Collapse
|
7
|
Raza MK, Gautam S, Garai A, Mitra K, Kondaiah P, Chakravarty AR. Monofunctional BODIPY-Appended Imidazoplatin for Cellular Imaging and Mitochondria-Targeted Photocytotoxicity. Inorg Chem 2017; 56:11019-11029. [PMID: 28846407 DOI: 10.1021/acs.inorgchem.7b01346] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Monofunctional platinum(II) complexes of formulation cis-[Pt(NH3)2(L)Cl](NO3), where L is an imidazole base conjugated to 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) with emissive (L1 in 1) and nonemissive (L2 in 2) moieties were prepared and characterized, and their singlet oxygen-mediated photoinduced cytotoxicity was studied. The 1-methylimidazole (1-MeIm) complex 3 was prepared as a control and for structural characterization by X-ray crystallography. Complexes 1 and 2 showed strong visible absorption bands at 500 nm (ε = 2.7 × 104 M-1 cm-1) and 540 nm (1.4 × 104 M-1 cm-1). Complex 1 is emissive with a band at 510 nm (ΦF = 0.09) in 1% dimethyl sulfoxide/Dulbecco's Modified Eagle's Medium (pH 7.2). Singlet oxygen generation upon photoirradiation with visible light (400-700 nm) was evidenced from 1,3-diphenylisobenzofuran titration experiments showing significant photosensitizing ability of the BODIPY complexes. Both 1 and 2 were remarkably photocytotoxic in visible light (400-700 nm, 10 J cm-2) in skin keratinocyte HaCaT and breast cancer MCF-7 cells giving IC50 values in nanomolar concentration. The complexes were, however, essentially nontoxic to the cells in the dark (IC50 > 80 μM). Complex 2 having a diiodo-BODIPY unit is nonemissive but an efficient photosensitizer with high singlet oxygen generation ability in visible light (400-700 nm). Confocal microscopy using the emissive complex 1 showed significant mitochondrial localization of the complex. Cell death via apoptotic pathway was observed from the Annexin-V-FITC/PI assay. The formation of Pt-DNA adducts was evidenced from the binding experiments of the complexes 1 and 2 with 9-ethylguanine as a model nucleobase from 1H NMR and mass spectral studies.
Collapse
Affiliation(s)
- Md Kausar Raza
- Department of Inorganic and Physical Chemistry and ‡Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore 560012, India
| | - Srishti Gautam
- Department of Inorganic and Physical Chemistry and ‡Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore 560012, India
| | - Aditya Garai
- Department of Inorganic and Physical Chemistry and ‡Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore 560012, India
| | - Koushambi Mitra
- Department of Inorganic and Physical Chemistry and ‡Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore 560012, India
| | - Paturu Kondaiah
- Department of Inorganic and Physical Chemistry and ‡Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore 560012, India
| | - Akhil R Chakravarty
- Department of Inorganic and Physical Chemistry and ‡Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore 560012, India
| |
Collapse
|
8
|
Lippert B, Sanz Miguel PJ. More of a misunderstanding than a real mismatch? Platinum and its affinity for aqua, hydroxido, and oxido ligands. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Riddell IA, Johnstone TC, Park GY, Lippard SJ. Nucleotide Binding Preference of the Monofunctional Platinum Anticancer-Agent Phenanthriplatin. Chemistry 2016; 22:7574-81. [PMID: 27111128 PMCID: PMC4884344 DOI: 10.1002/chem.201600236] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Indexed: 11/10/2022]
Abstract
The monofunctional platinum anticancer agent phenanthriplatin generates covalent adducts with the purine bases guanine and adenine. Preferential nucleotide binding was investigated by using a polymerase stop assay and linear DNA amplification with a 163-base pair DNA double helix. Similarly to cisplatin, phenanthriplatin forms the majority of adducts at guanosine residues, but significant differences in both the number and position of platination sites emerge when comparing results for the two complexes. Notably, the monofunctional complex generates a greater number of polymerase-halting lesions at adenosine residues than does cisplatin. Studies with 9-methyladenine reveal that, under abiological conditions, phenanthriplatin binds to the N(1) or N(7) position of 9-methyladenine in approximately equimolar amounts. By contrast, comparable reactions with 9-methylguanine afforded only the N(7) -bound species. Both of the 9-methyladenine linkage isomers (N(1) and N(7) ) exist as two diastereomeric species, arising from hindered rotation of the aromatic ligands about their respective platinum-nitrogen bonds. Eyring analysis of rate constants extracted from variable-temperature NMR spectroscopic data revealed that the activation energies for ligand rotation in the N(1) -bound platinum complex and the N(7) -linkage isomers are comparable. Finally, a kinetic analysis indicated that phenanthriplatin reacts more rapidly, by a factor of eight, with 9-methylguanine than with 9-methyladenine, suggesting that the distribution of lesions formed on double-stranded DNA is kinetically controlled. In addition, implications for the potent anticancer activity of phenanthriplatin are discussed herein.
Collapse
Affiliation(s)
- Imogen A Riddell
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139-4307, USA
| | - Timothy C Johnstone
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139-4307, USA
| | - Ga Young Park
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139-4307, USA
| | - Stephen J Lippard
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139-4307, USA.
| |
Collapse
|
10
|
Stereospecific intra-molecular interligand interactions affecting base-specific metal bonding to purine nucleobases in the solid state. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2013.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Fusch G, Zangrando E, Randaccio L, Lippert B. A Unique Helicate Comprised of Four Cytosine Nucleobases and Four Metal Entities (PtII, PtII, AuIII, AuI). Implications for the Interactions of Linearly Coordinated Metal Ions with Nucleotide Duplexes. Z Anorg Allg Chem 2013. [DOI: 10.1002/zaac.201300038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Nakayama S, Sintim HO. Investigating the interactions between cations, peroxidation substrates and G-quadruplex topology in DNAzyme peroxidation reactions using statistical testing. Anal Chim Acta 2012; 747:1-6. [PMID: 22986129 DOI: 10.1016/j.aca.2012.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 07/28/2012] [Accepted: 08/08/2012] [Indexed: 12/11/2022]
Abstract
Cations affect the topology and enzymatic proficiency of most macromolecular catalysts but the role of cations in DNAzyme peroxidation reactions remains unresolved. Herein, we use statistical methods (ANOVA, t-test and Wilcoxon Mann-Whitney non-parametric test) to demonstrate that there are strong associations between cations, DNAzyme topology, peroxidation substrate and peroxidation rates of G-quadruplex peroxidises. Ammonium cation was found to be superior to all tested cations, including potassium. A t-test indicated that NH(4)(+) was better than K(+) with a p-value=0.05. Interestingly, the nature of the peroxidation substrate employed affected the dependence of peroxidation rate on the cation present and of the three substrates tested, 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS), tyramine and 3,3',5,5'-tetramethylbenzidine (TMB), ABTS was the most sensitive to the nature of cation present.
Collapse
Affiliation(s)
- Shizuka Nakayama
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|