1
|
Budow-Busse S, Jana SK, Kondhare D, Daniliuc C, Seela F. 8-Furylimidazolo-2'-deoxycytidine: crystal structure, packing, atropisomerism and fluorescence. Acta Crystallogr C Struct Chem 2022; 78:141-147. [PMID: 35245210 PMCID: PMC8896525 DOI: 10.1107/s2053229622001000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/28/2022] [Indexed: 11/10/2022] Open
Abstract
8-Furylimidazolo-2'-deoxycytidine (furImidC), C14H14N4O5, is a fluorescent analogue of 2'-deoxycytidine, also displaying the same recognition face. As a constituent of DNA, furImidC forms extraordinarily strong silver-mediated self-pairs. Crystal structure determination revealed that furImidC adopts two types of disordered residues: the sugar unit and the furyl moiety. The disorder of the sugar residue amounts to an 87:13 split. The disorder of the furyl ring results from axial chirality at the C8-C2'' bond connecting the nucleobase to the heterocycle. The two atropisomers are present in unequal proportions [occupancies of 0.69 (2) and 0.31 (2)], and the nucleobase and the furyl moiety are coplanar. Considering the atomic sites with predominant occupancy, an anti conformation with χ = - 147.2 (7)° was found at the glycosylic bond and the 2'-deoxyribosyl moiety shows a C2'-endo (S, 2T1) conformation, with P = 160.0°. A 1H NMR-based conformational analysis of the furanose puckering revealed that the S conformation predominates also in solution. In the solid state, two neighbouring furImidC molecules are arranged in a head-to-tail fashion, but with a notable tilt of the molecules with respect to each other. Consequently, one N-H...N hydrogen bond is found for neighbouring molecules within one layer, while a second N-H...N hydrogen bond is formed to a molecule of an adjacent layer. In addition, hydrogen bonding is observed between the nucleobase and the sugar residue. A Hirshfeld surface analysis was performed to visualize the intermolecular interactions observed in the X-ray study. In addition, the fluorescence spectra of furImidC were measured in solvents of different polarity and viscosity. furImidC responds to microenvironmental changes (polarity and viscosity), which is explained by a hindered rotation of the furyl residue in solvents of high viscosity.
Collapse
Affiliation(s)
- Simone Budow-Busse
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Sunit K. Jana
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Dasharath Kondhare
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Constantin Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
- Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie, Universität Osnabrück, Barbarastrasse 7, 49069 Osnabrück, Germany
| |
Collapse
|
2
|
|
3
|
Cho SJ, Ghorbani-Choghamarani A, Saito Y, Hudson RHE. 6-Phenylpyrrolocytidine: An Intrinsically Fluorescent, Environmentally Responsive Nucleoside Analogue. ACTA ACUST UNITED AC 2019; 76:e75. [PMID: 30725523 DOI: 10.1002/cpnc.75] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The detailed synthetic protocols for the preparation of phosphoramidite reagents compatible with standard, automated oligonucleotide synthesis for the 2'-deoxy- and ribo-6-phenylpyrrolocyitidine are reported. Each protocol starts with the parent nucleoside and prepares the 5'-O-dimethoxytrityl-N4 -benzoyl-5-iodocytosine derivative for the nucleobase modification chemistry. The key step is the direct formation of 6-phenylpyrrolocytosine aglycon via a sequential, one-pot Pd-catalyzed Sonogashira-type cross- coupling followed by a 5-endo-dig cyclization. Subsequent standard transformations provide the deoxy- and 2'-O-tert-butyldimethysilyl protected ribo- nucleoside phosphoramidite reagents. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Sung Ju Cho
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| | - Arash Ghorbani-Choghamarani
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada.,Department of Chemistry, Faculty of Science, Ilam University, Ilam, Iran
| | - Yoshio Saito
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada.,Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, Koriyama, Fukushima, Japan
| | - Robert H E Hudson
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
4
|
Guo X, Leonard P, Ingale SA, Seela F. Gemcitabine, Pyrrologemcitabine, and 2'-Fluoro-2'-Deoxycytidines: Synthesis, Physical Properties, and Impact of Sugar Fluorination on Silver Ion Mediated Base Pairing. Chemistry 2017; 23:17740-17754. [PMID: 28906062 DOI: 10.1002/chem.201703427] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/05/2017] [Indexed: 01/06/2023]
Abstract
The stability of silver-mediated "dC-dC" base pairs relies not only on the structure of the nucleobase, but is also sensitive to structural modification of the sugar moiety. 2'-Fluorinated 2'-deoxycytidines with fluorine atoms in the arabino (up) and ribo (down) configuration as well as with geminal fluorine substitution (anticancer drug gemcitabine) and the novel fluorescent phenylpyrrolo-gemcitabine (ph PyrGem) have been synthesized. All the nucleosides display the recognition face of naturally occurring 2'-deoxycytidine. The nucleosides were converted into phosphoramidites and incorporated into 12-mer oligonucleotides by solid-phase synthesis. The addition of silver ions to DNA duplexes with a fluorine-modified "dC-dC" pair near the central position led to significant duplex stabilization. The increase in stability was higher for duplexes with fluorinated sugar residues than for those with an unchanged 2'-deoxyribose moiety. Similar observations were made for "dC-dT" pairs and to a minor extent for "dC-dA" pairs. The increase in silver ion mediated base-pair stability was reversed by annulation of a pyrrole ring to the cytosine moiety, as shown for 2'-fluorinated ph PyrGem in comparison with phenylpyrrolo-dC (ph PyrdC). This phenomenon results from stereoelectronic effects induced by fluoro substitution, which are transmitted from the sugar moiety to the silver ion mediated base pairs. The extent of the effect depends on the number of fluorine substituents, their configuration, and the structure of the nucleobase.
Collapse
Affiliation(s)
- Xiurong Guo
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149, Münster, Germany.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastraße 7, 49069, Osnabrück, Germany
| | - Peter Leonard
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149, Münster, Germany
| | - Sachin A Ingale
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149, Münster, Germany.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastraße 7, 49069, Osnabrück, Germany
| | - Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149, Münster, Germany.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastraße 7, 49069, Osnabrück, Germany
| |
Collapse
|
5
|
Duan Z, Li Z, Dai J, He H, Xiao D. Nucleotide base analog pyrrolo-deoxycytidine as fluorescent probe signal for enzyme-free and signal amplified nucleic acids detection. Talanta 2016; 164:34-38. [PMID: 28107938 DOI: 10.1016/j.talanta.2016.10.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/16/2016] [Accepted: 10/21/2016] [Indexed: 12/16/2022]
Abstract
In the present work, an enzyme-free and signal amplified nucleic acids detection method based on the fluorescent nucleotide base analog pyrrolo-deoxycytidine (P-dC) and catalyzed hairpin assembly (CHA) has been developed. In the CHA signal amplification system, two hairpin auxiliary probes, H1 and H2, which containing a fluorescent P-dC at the end of the stem, respectively, were used as the fluorescent probes. The fluorescence of P-dC in H1 and H2 was quenched owing to the stacking interaction among the bases in the stem. In the presence of the target DNA, the catalytic assembly of H1 and H2 was triggered and the target could be released during the helix DNA H1-H2 complex formation process, then the released target was used to trigger another reaction cycle. In the H1-H2 complex, P-dC was located in the flexible single-stranded DNA (ssDNA) sticky ends instead of the rigid stem, thus resulting in the increase of fluorescence. The cycling use of the target in the CHA system amplified the fluorescence signal, and the detection limit of this method was obtained as 19pM, which is 3 orders of magnitude sensitive than the conventional fluorescent nucleotide base analogs based approach without CHA signal amplification.
Collapse
Affiliation(s)
- Zhijuan Duan
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhuo Li
- College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Jianyuan Dai
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Hongfei He
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Dan Xiao
- College of Chemistry, Sichuan University, Chengdu 610064, China; College of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
6
|
Dziuba D, Pospíšil P, Matyašovský J, Brynda J, Nachtigallová D, Rulíšek L, Pohl R, Hof M, Hocek M. Solvatochromic fluorene-linked nucleoside and DNA as color-changing fluorescent probes for sensing interactions. Chem Sci 2016; 7:5775-5785. [PMID: 30034716 PMCID: PMC6021979 DOI: 10.1039/c6sc02548j] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 06/20/2016] [Indexed: 12/16/2022] Open
Abstract
A nucleoside bearing a solvatochromic push-pull fluorene fluorophore (dCFL ) was designed and synthesized by the Sonogashira coupling of alkyne-linked fluorene 8 with 5-iodo-2'-deoxycytidine. The fluorene building block 8 and labeled nucleoside dCFL exerted bright fluorescence with significant solvatochromic effect providing emission maxima ranging from 421 to 544 nm and high quantum yields even in highly polar solvents, including water. The solvatochromism of 8 was studied by DFT and ADC(2) calculations to show that, depending on the polarity of the solvent, emission either from the planar or the twisted conformation of the excited state can occur. The nucleoside was converted to its triphosphate variant dCFLTP which was found to be a good substrate for DNA polymerases suitable for the enzymatic synthesis of oligonucleotide or DNA probes by primer extension or PCR. The fluorene-linked DNA can be used as fluorescent probes for DNA-protein (p53) or DNA-lipid interactions, exerting significant color changes visible even to the naked eye. They also appear to be suitable for time-dependent fluorescence shift studies on DNA, yielding information on DNA hydration and dynamics.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Gilead & IOCB Research Center , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic .
| | - Petr Pospíšil
- J. H eyrovský Institute of Physical Chemistry , Czech Academy of Sciences , Dolejskova 3 , CZ-182 23 Prague , Czech Republic
| | - Ján Matyašovský
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Gilead & IOCB Research Center , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic .
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Gilead & IOCB Research Center , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic .
| | - Dana Nachtigallová
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Gilead & IOCB Research Center , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic .
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Gilead & IOCB Research Center , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic .
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Gilead & IOCB Research Center , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic .
| | - Martin Hof
- J. H eyrovský Institute of Physical Chemistry , Czech Academy of Sciences , Dolejskova 3 , CZ-182 23 Prague , Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Gilead & IOCB Research Center , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic .
- Department of Organic Chemistry , Faculty of Science , Charles University in Prague , Hlavova 8 , CZ-12843 Prague 2 , Czech Republic
| |
Collapse
|
7
|
Mata G, Schmidt OP, Luedtke NW. A fluorescent surrogate of thymidine in duplex DNA. Chem Commun (Camb) 2016; 52:4718-21. [DOI: 10.1039/c5cc09552b] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
DMAT is a new fluorescent thymidine mimic composed of 2′-deoxyuridine fused to dimethylaniline.
Collapse
Affiliation(s)
- Guillaume Mata
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - Olivia P. Schmidt
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - Nathan W. Luedtke
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| |
Collapse
|
8
|
Foller Larsen A, Dumat B, Wranne MS, Lawson CP, Preus S, Bood M, Gradén H, Marcus Wilhelmsson L, Grøtli M. Development of bright fluorescent quadracyclic adenine analogues: TDDFT-calculation supported rational design. Sci Rep 2015; 5:12653. [PMID: 26227585 PMCID: PMC4530663 DOI: 10.1038/srep12653] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 07/06/2015] [Indexed: 02/01/2023] Open
Abstract
Fluorescent base analogues (FBAs) comprise a family of increasingly important molecules for the investigation of nucleic acid structure and dynamics. We recently reported the quantum chemical calculation supported development of four microenvironment sensitive analogues of the quadracyclic adenine (qA) scaffold, the qANs, with highly promising absorptive and fluorescence properties that were very well predicted by TDDFT calculations. Herein, we report on the efficient synthesis, experimental and theoretical characterization of nine novel quadracyclic adenine derivatives. The brightest derivative, 2-CNqA, displays a 13-fold increased brightness (εΦF = 4500) compared with the parent compound qA and has the additional benefit of being a virtually microenvironment-insensitive fluorophore, making it a suitable candidate for nucleic acid incorporation and use in quantitative FRET and anisotropy experiments. TDDFT calculations, conducted on the nine novel qAs a posteriori, successfully describe the relative fluorescence quantum yield and brightness of all qA derivatives. This observation suggests that the TDDFT-based rational design strategy may be employed for the development of bright fluorophores built up from a common scaffold to reduce the otherwise costly and time-consuming screening process usually required to obtain useful and bright FBAs.
Collapse
Affiliation(s)
- Anders Foller Larsen
- Department of Chemistry and Chemical Engineering/Chemistry and Biochemistry, Chalmers University of Technology, S-41296 Gothenburg, Sweden
| | - Blaise Dumat
- Department of Chemistry and Chemical Engineering/Chemistry and Biochemistry, Chalmers University of Technology, S-41296 Gothenburg, Sweden
| | - Moa S. Wranne
- Department of Chemistry and Chemical Engineering/Chemistry and Biochemistry, Chalmers University of Technology, S-41296 Gothenburg, Sweden
| | - Christopher P. Lawson
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-41296 Gothenburg, Sweden
| | - Søren Preus
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, DK-8000, Denmark
| | - Mattias Bood
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-41296 Gothenburg, Sweden
| | | | - L. Marcus Wilhelmsson
- Department of Chemistry and Chemical Engineering/Chemistry and Biochemistry, Chalmers University of Technology, S-41296 Gothenburg, Sweden
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-41296 Gothenburg, Sweden
| |
Collapse
|
9
|
Yang H, Mei H, Seela F. Pyrrolo-dC Metal-Mediated Base Pairs in the Reverse Watson-Crick Double Helix: Enhanced Stability of Parallel DNA and Impact of 6-Pyridinyl Residues on Fluorescence and Silver-Ion Binding. Chemistry 2015; 21:10207-19. [PMID: 26096946 DOI: 10.1002/chem.201500582] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Indexed: 11/11/2022]
Abstract
Reverse Watson-Crick DNA with parallel-strand orientation (ps DNA) has been constructed. Pyrrolo-dC (PyrdC) nucleosides with phenyl and pyridinyl residues linked to the 6 position of the pyrrolo[2,3-d]pyrimidine base have been incorporated in 12- and 25-mer oligonucleotide duplexes and utilized as silver-ion binding sites. Thermal-stability studies on the parallel DNA strands demonstrated extremely strong silver-ion binding and strongly enhanced duplex stability. Stoichiometric UV and fluorescence titration experiments verified that a single (2py) PyrdC-(2py) PyrdC pair captures two silver ions in ps DNA. A structure for the PyrdC silver-ion base pair that aligns 7-deazapurine bases head-to-tail instead of head-to-head, as suggested for canonical DNA, is proposed. The silver DNA double helix represents the first example of a ps DNA structure built up of bidentate and tridentate reverse Watson-Crick base pairs stabilized by a dinuclear silver-mediated PyrdC pair.
Collapse
Affiliation(s)
- Haozhe Yang
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster (Germany), Fax: (+49) 251-53406857.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastraße 7, 49069 Osnabrück (Germany)
| | - Hui Mei
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster (Germany), Fax: (+49) 251-53406857.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastraße 7, 49069 Osnabrück (Germany)
| | - Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster (Germany), Fax: (+49) 251-53406857. .,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastraße 7, 49069 Osnabrück (Germany).
| |
Collapse
|
10
|
Dumat B, Bood M, Wranne MS, Lawson CP, Larsen AF, Preus S, Streling J, Gradén H, Wellner E, Grøtli M, Wilhelmsson LM. Second-generation fluorescent quadracyclic adenine analogues: environment-responsive probes with enhanced brightness. Chemistry 2015; 21:4039-48. [PMID: 25641628 DOI: 10.1002/chem.201405759] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Indexed: 01/10/2023]
Abstract
Fluorescent base analogues comprise a group of increasingly important molecules for the investigation of nucleic acid structure, dynamics, and interactions with other molecules. Herein, we report on the quantum chemical calculation aided design, synthesis, and characterization of four new putative quadracyclic adenine analogues. The compounds were efficiently synthesized from a common intermediate through a two-step pathway with the Suzuki-Miyaura coupling as the key step. Two of the compounds, qAN1 and qAN4, display brightnesses (εΦF) of 1700 and 2300, respectively, in water and behave as wavelength-ratiometric pH probes under acidic conditions. The other two, qAN2 and qAN3, display lower brightnesses but exhibit polarity-sensitive dual-band emissions that could prove useful to investigate DNA structural changes induced by DNA-protein or -drug interactions. The four qANs are very promising microenvironment-sensitive fluorescent adenine analogues that display considerable brightness for such compounds.
Collapse
Affiliation(s)
- Blaise Dumat
- Department of Chemical and Chemical Engineering/, Chemistry and Biochemistry, Chalmers University of Technology, 41296 Gothenburg (Sweden)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Mei H, Ingale SA, Seela F. Imidazolo-dC metal-mediated base pairs: purine nucleosides capture two Ag(+) ions and form a duplex with the stability of a covalent DNA cross-link. Chemistry 2014; 20:16248-57. [PMID: 25336305 DOI: 10.1002/chem.201404422] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Indexed: 12/13/2022]
Abstract
8-Phenylimidazolo-dC ((ph) ImidC, 2) forms metal-mediated DNA base pairs by entrapping two silver ions. To this end, the fluorescent "purine" 2'-deoxyribonucleoside 2 has been synthesised and converted into the phosphoramidite 6. Owing to the ease of nucleobase deprotonation, the new Ag(+) -mediated base pair containing a "purine" skeleton is much stronger than that derived from the pyrrolo- [3,4-d]pyrimidine system ((ph) PyrdC, 1). The silver-mediated (ph) ImidC-(ph) ImidC base pair fits well into the DNA double helix and has the stability of a covalent cross-link. The formation of such artificial metal base pairs might not be limited to DNA but may be applicable to other nucleic acids such as RNA, PNA and GNA as well as other biopolymers.
Collapse
Affiliation(s)
- Hui Mei
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster (Germany), Fax: (+49) 251-53406857; Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastraße 7, 49069 Osnabrück (Germany)
| | | | | |
Collapse
|
12
|
Kovaliov M, Weitman M, Major DT, Fischer B. Phenyl-imidazolo-cytidine Analogues: Structure–Photophysical Activity Relationship and Ability To Detect Single DNA Mismatch. J Org Chem 2014; 79:7051-62. [DOI: 10.1021/jo5011944] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Marina Kovaliov
- Department of Chemistry,
Gonda-Goldschmied Medical Research Center and the Lise-Meitner-Minerva
Center of Computational Quantum Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Michal Weitman
- Department of Chemistry,
Gonda-Goldschmied Medical Research Center and the Lise-Meitner-Minerva
Center of Computational Quantum Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Dan Thomas Major
- Department of Chemistry,
Gonda-Goldschmied Medical Research Center and the Lise-Meitner-Minerva
Center of Computational Quantum Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Bilha Fischer
- Department of Chemistry,
Gonda-Goldschmied Medical Research Center and the Lise-Meitner-Minerva
Center of Computational Quantum Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
13
|
Tanpure AA, Srivatsan SG. Synthesis, photophysical properties and incorporation of a highly emissive and environment-sensitive uridine analogue based on the Lucifer chromophore. Chembiochem 2014; 15:1309-16. [PMID: 24861713 DOI: 10.1002/cbic.201402052] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Indexed: 11/10/2022]
Abstract
The majority of fluorescent nucleoside analogues used in nucleic acid studies have excitation maxima in the UV region and show very low fluorescence within oligonucleotides (ONs); hence, they cannot be utilised with certain fluorescence methods and for cell-based analysis. Here, we describe the synthesis, photophysical properties and incorporation of a highly emissive and environment-sensitive uridine analogue, derived by attaching a Lucifer chromophore (1,8-naphthalimide core) at the 5-position of uracil. The emissive nucleoside displays excitation and emission maxima in the visible region and exhibits high quantum yield. Importantly, when incorporated into ON duplexes it retains appreciable fluorescence efficiency and is sensitive to the neighbouring base environment. Notably, the nucleoside signals the presence of purine repeats in ON duplexes with an enhancement in fluorescence intensity, a property rarely displayed by other nucleoside analogues.
Collapse
Affiliation(s)
- Arun A Tanpure
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008 (India)
| | | |
Collapse
|
14
|
Mei H, Yang H, Röhl I, Seela F. Silver Arrays Inside DNA Duplexes Constructed from Silver(I)-Mediated Pyrrolo-dC-Pyrrolo-dC Base Pairs. Chempluschem 2014. [DOI: 10.1002/cplu.201402060] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Mei H, Röhl I, Seela F. Ag+-mediated DNA base pairing: extraordinarily stable pyrrolo-dC-pyrrolo-dC pairs binding two silver ions. J Org Chem 2013; 78:9457-63. [PMID: 23965151 DOI: 10.1021/jo401109w] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
6-Substituted pyrrolo-dC-pyrrolo-dC mismatches selectively capture silver ions to form extraordinarily stable metal-mediated base pairs. One single modification in a 12-mer duplex causes a Tm increase of 36.0 °C relative to the metal-free mismatched duplex. Spectrophotometric titrations as well as ESI mass spectra confirmed the binding of two silver ions per base pair. The Ag(+)-mediated base pairs may permit the construction of metal-responsive DNA with a very high silver loading.
Collapse
Affiliation(s)
- Hui Mei
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology , Heisenbergstraße 11, 48149 Münster, Germany
| | | | | |
Collapse
|
16
|
Lee J, Cho HY, Hwang GT. Highly efficient quencher-free molecular beacon systems containing 2-ethynyldibenzofuran- and 2-ethynyldibenzothiophene-labeled 2'-deoxyuridine units. Chembiochem 2013; 14:1353-62. [PMID: 23824637 DOI: 10.1002/cbic.201300240] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Indexed: 12/21/2022]
Abstract
We have prepared two fluorescent DNA probes--UDBF and UDBT, containing 2-ethynyldibenzofuran and 2-ethynyldibenzothiophene moieties, respectively, covalently attached to the base dU--and incorporated them in the central positions of oligodeoxynucleotides (ODNs) so as to develop new types of quencher-free linear beacon probes and investigate the effect of functionalization of the fluorene scaffold on the photophysical properties of the fluorescent ODNs. The ODNs containing adenine flanking bases (FBs) displayed a selective fluorescence "turn-off" response to mismatched targets with guanine bases; this suggests that these probes could be used as base-discriminating fluorescent nucleotides. On the other hand, we observed a "turn-on" response to matched targets when the UDBF and UDBT units of ODNs containing pyrimidine-based FBs were positioned opposite the four natural nucleobases. In particular, an ODN incorporating UDBT and cytosine FBs has potential use in single-nucleotide polymorphism typing.
Collapse
Affiliation(s)
- Jiwon Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 1370 Sankyuk-dong, Buk-gu, Daegu 702-701, South Korea
| | | | | |
Collapse
|
17
|
Sun H, Peng X. Template-directed fluorogenic oligonucleotide ligation using "click" chemistry: detection of single nucleotide polymorphism in the human p53 tumor suppressor gene. Bioconjug Chem 2013; 24:1226-34. [PMID: 23806001 DOI: 10.1021/bc4001678] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A novel nonfluorescent alkyne-modified coumarin phosphoramidite was synthesized and successfully incorporated into oligonucleotides, which were then used in highly efficient DNA interstrand cross-linking and ligation reactions via "click" chemistry. The template-directed fluorogenic ligation "click" chemistry reaction was used for single nucleotide polymorphism analysis, where the target DNA catalyzes the ligation of two nonfluorescent probes to generate a fluorescent product. The upstream oligonucleotide probe is a nonfluorescent alkyne-modified coumarin and the downstream probe is an azide-modified oligonucleotide. When bound to a fully complementary template, the oligonucleotides ligated to produce a fluorescent product with a fluorophore at the ligation point. Wild-type and mutant p53 alleles were used to demonstrate that template-directed fluorogenic oligonucleotide ligation is sequence-specific and is capable of single nucleotide discrimination under mild conditions, even without the removal of unreacted probes.
Collapse
Affiliation(s)
- Huabing Sun
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 North Cramer Street, Milwaukee, WI 53211, USA
| | | |
Collapse
|
18
|
Pyrene and bis-pyrene DNA nucleobase conjugates: excimer and monomer fluorescence of linear and dendronized cytosine and 7-deazaguanine click adducts. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.03.054] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Tanpure AA, Pawar MG, Srivatsan SG. Fluorescent Nucleoside Analogs: Probes for Investigating Nucleic Acid Structure and Function. Isr J Chem 2013. [DOI: 10.1002/ijch.201300010] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
20
|
Alzheimer-Forschungspreis: B. Schmidt / TJ-Park-Wissenschaftspreis: J. Cheon / Imbach-Townsend-Preis: F. Seela / HMLS-Forschungspreis: C. Schultz. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201210065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Alzheimer Research Award: B. Schmidt / TJ Park Science Award: J. Cheon / Imbach-Townsend Award: F. Seela / HMLS Investigator Award: C. Schultz. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/anie.201210065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Efthymiou T, Gong W, Desaulniers JP. Chemical architecture and applications of nucleic acid derivatives containing 1,2,3-triazole functionalities synthesized via click chemistry. Molecules 2012; 17:12665-703. [PMID: 23103533 PMCID: PMC6268694 DOI: 10.3390/molecules171112665] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 10/19/2012] [Accepted: 10/19/2012] [Indexed: 11/16/2022] Open
Abstract
There is considerable attention directed at chemically modifying nucleic acids with robust functional groups in order to alter their properties. Since the breakthrough of copper-assisted azide-alkyne cycloadditions (CuAAC), there have been several reports describing the synthesis and properties of novel triazole-modified nucleic acid derivatives for potential downstream DNA- and RNA-based applications. This review will focus on highlighting representative novel nucleic acid molecular structures that have been synthesized via the “click” azide-alkyne cycloaddition. Many of these derivatives show compatibility for various applications that involve enzymatic transformation, nucleic acid hybridization, molecular tagging and purification, and gene silencing. The details of these applications are discussed. In conclusion, the future of nucleic acid analogues functionalized with triazoles is promising.
Collapse
Affiliation(s)
| | | | - Jean-Paul Desaulniers
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe St N, Oshawa, ON L1H 7K4, Canada
| |
Collapse
|