1
|
Lv N, Huang C, Huang H, Dong Z, Chen X, Lu C, Zhang Y. Overexpression of Glutathione S-Transferases in Human Diseases: Drug Targets and Therapeutic Implications. Antioxidants (Basel) 2023; 12:1970. [PMID: 38001822 PMCID: PMC10668987 DOI: 10.3390/antiox12111970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Glutathione S-transferases (GSTs) are a major class of phase II metabolic enzymes. Besides their essential role in detoxification, GSTs also exert diverse biological activities in the occurrence and development of various diseases. In the past few decades, much research interest has been paid to exploring the mechanisms of GST overexpression in tumor drug resistance. Correspondingly, many GST inhibitors have been developed and applied, solely or in combination with chemotherapeutic drugs, for the treatment of multi-drug resistant tumors. Moreover, novel roles of GSTs in other diseases, such as pulmonary fibrosis and neurodegenerative diseases, have been recognized in recent years, although the exact regulatory mechanisms remain to be elucidated. This review, firstly summarizes the roles of GSTs and their overexpression in the above-mentioned diseases with emphasis on the modulation of cell signaling pathways and protein functions. Secondly, specific GST inhibitors currently in pre-clinical development and in clinical stages are inventoried. Lastly, applications of GST inhibitors in targeting cell signaling pathways and intracellular biological processes are discussed, and the potential for disease treatment is prospected. Taken together, this review is expected to provide new insights into the interconnection between GST overexpression and human diseases, which may assist future drug discovery targeting GSTs.
Collapse
Affiliation(s)
- Ning Lv
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (N.L.); (H.H.)
| | - Chunyan Huang
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (N.L.); (H.H.)
| | - Haoyan Huang
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (N.L.); (H.H.)
| | - Zhiqiang Dong
- Department of Pharmacy, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, China;
| | - Xijing Chen
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (N.L.); (H.H.)
| | - Chengcan Lu
- Department of Pharmacy, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, China;
- Jiangning Clinical Medical College, Jiangsu University, Nanjing 211100, China
| | - Yongjie Zhang
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (N.L.); (H.H.)
| |
Collapse
|
2
|
Grenier D, Audebert S, Preto J, Guichou JF, Krimm I. Linkers in fragment-based drug design: an overview of the literature. Expert Opin Drug Discov 2023; 18:987-1009. [PMID: 37466331 DOI: 10.1080/17460441.2023.2234285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023]
Abstract
INTRODUCTION In fragment-based drug design, fragment linking is a popular strategy where two fragments binding to different sub-pockets of a target are linked together. This attractive method remains challenging especially due to the design of ideal linkers. AREAS COVERED The authors review the types of linkers and chemical reactions commonly used to the synthesis of linkers, including those utilized in protein-templated fragment self-assembly, where fragments are directly linked in the presence of the protein. Finally, they detail computational workflows and software including generative models that have been developed for fragment linking. EXPERT OPINION The authors believe that fragment linking offers key advantages for compound design, particularly for the design of bivalent inhibitors linking two distinct pockets of the same or different subunits. On the other hand, more studies are needed to increase the potential of protein-templated approaches in FBDD. Important computational tools such as structure-based de novo software are emerging to select suitable linkers. Fragment linking will undoubtedly benefit from developments in computational approaches and machine learning models.
Collapse
Affiliation(s)
- Dylan Grenier
- Team Small Molecules for Biological Targets, Centre de Recherche En Cancérologie (CRCL) - INSERM 1052 - CNRS 5286 - Centre Léon Bérard - Université Claude Bernard Lyon 1, Institut Convergence Plascan, Lyon, France
| | - Solène Audebert
- Centre de Biologie Structurale, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Jordane Preto
- Team Small Molecules for Biological Targets, Centre de Recherche En Cancérologie (CRCL) - INSERM 1052 - CNRS 5286 - Centre Léon Bérard - Université Claude Bernard Lyon 1, Institut Convergence Plascan, Lyon, France
| | - Jean-François Guichou
- Centre de Biologie Structurale, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Isabelle Krimm
- Team Small Molecules for Biological Targets, Centre de Recherche En Cancérologie (CRCL) - INSERM 1052 - CNRS 5286 - Centre Léon Bérard - Université Claude Bernard Lyon 1, Institut Convergence Plascan, Lyon, France
| |
Collapse
|
3
|
Zagiel B, Peker T, Marquant R, Cazals G, Webb G, Miclet E, Bich C, Sachon E, Moumné R. Dynamic Amino Acid Side‐Chains Grafting on Folded Peptide Backbone**. Chemistry 2022; 28:e202200454. [DOI: 10.1002/chem.202200454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Benjamin Zagiel
- Sorbonne Université École normale supérieure PSL University CNRS Laboratoire des biomolécules, LBM 75005 Paris France
| | - Taleen Peker
- Sorbonne Université École normale supérieure PSL University CNRS Laboratoire des biomolécules, LBM 75005 Paris France
| | - Rodrigue Marquant
- Sorbonne Université École normale supérieure PSL University CNRS Laboratoire des biomolécules, LBM 75005 Paris France
| | - Guillaume Cazals
- UMR 5247-CNRS-UM-ENSCM Institut des Biomolécules Max Mousseron (IBMM) Université de Montpellier 34293 Montpellier France
| | - Gabrielle Webb
- Sorbonne Université École normale supérieure PSL University CNRS Laboratoire des biomolécules, LBM 75005 Paris France
| | - Emeric Miclet
- Sorbonne Université École normale supérieure PSL University CNRS Laboratoire des biomolécules, LBM 75005 Paris France
| | - Claudia Bich
- UMR 5247-CNRS-UM-ENSCM Institut des Biomolécules Max Mousseron (IBMM) Université de Montpellier 34293 Montpellier France
| | - Emmanuelle Sachon
- Sorbonne Université École normale supérieure PSL University CNRS Laboratoire des biomolécules, LBM 75005 Paris France
- MS3 U platform UFR 926 UFR 927 Sorbonne Université 4 place Jussieu 75005 Paris France
| | - Roba Moumné
- Sorbonne Université École normale supérieure PSL University CNRS Laboratoire des biomolécules, LBM 75005 Paris France
| |
Collapse
|
4
|
Caillaud K, Ladavière C. Water‐soluble (poly)acylhydrazones: Syntheses and Applications. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kilian Caillaud
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères Université Claude Bernard Lyon1, INSA Lyon, Université Jean Monnet Villeurbanne Cédex F‐69622 France
| | - Catherine Ladavière
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères Université Claude Bernard Lyon1, INSA Lyon, Université Jean Monnet Villeurbanne Cédex F‐69622 France
| |
Collapse
|
5
|
Xu B, Tong T, Wang X, Liu F, Zhang X, Hu X, Li X, Yang X, Liao F. Short divalent ethacrynic amides as pro-inhibitors of glutathione S-transferase isozyme Mu and potent sensitisers of cisplatin-resistant ovarian cancers. J Enzyme Inhib Med Chem 2022; 37:728-742. [PMID: 35176963 PMCID: PMC8865112 DOI: 10.1080/14756366.2022.2038591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The linking of ethacrynic acid with ethylenediamine and 1,4-butanediamine gave EDEA and BDEA, respectively, as membrane-permeable divalent pro-inhibitors of glutathione S-transferase (GST). Their divalent glutathione conjugates showed subnanomolar inhibition and divalence-binding to GSTmu (GSTM) (PDB: 5HWL) at ∼0.35 min-1. In cisplatin-resistant SK-OV-3, COC1, SGC7901 and A549 cells, GSTM activities probed by 15 nM BDEA or EDEA revealed 5-fold and 1.0-fold increases in cisplatin-resistant SK-OV-3 and COC1 cells, respectively, in comparison with the susceptible parental cells. Being tolerable by HEK293 and LO2 cells, BDEA at 0.2 μM sensitised resistant SK-OV-3 and COC1 cells by ∼3- and ∼5-folds, respectively, released cytochrome c and increased apoptosis; EDEA at 1.0 μM sensitised resistant SK-OV-3 and A549 cells by ∼5- and ∼7-fold, respectively. EDEA at 1.7 μg/g sensitised resistant SK-OV-3 cells to cisplatin at 3.3 μg/g in nude mouse xenograft model. BDEA and EDEA are promising leads for probing cellular GSTM and sensitising cisplatin-resistant ovarian cancers.
Collapse
Affiliation(s)
- Bangtian Xu
- Key Laboratory of Clinical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China.,Department of Pharmacy, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Tingting Tong
- Key Laboratory of Clinical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xin Wang
- Key Laboratory of Clinical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Fang Liu
- Key Laboratory of Clinical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xiang Zhang
- Key Laboratory of Clinical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xiaolei Hu
- Key Laboratory of Clinical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xinpeng Li
- Key Laboratory of Clinical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xiaolan Yang
- Key Laboratory of Clinical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Fei Liao
- Key Laboratory of Clinical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Li Z, Zhang L, Zhou Y, Zha D, Hai Y, You L. Dynamic Covalent Reactions Controlled by Ring‐Chain Tautomerism of 2‐Formylbenzoic Acid. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ziyi Li
- College of Chemistry and Material Science Fujian Normal University Fuzhou Fujian 350007 China
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Ling Zhang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Yuntao Zhou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Daijun Zha
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Yu Hai
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lei You
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 China
| |
Collapse
|
7
|
Reznichenko O, Cucchiarini A, Gabelica V, Granzhan A. Quadruplex DNA-guided ligand selection from dynamic combinatorial libraries of acylhydrazones. Org Biomol Chem 2021; 19:379-386. [PMID: 33325973 DOI: 10.1039/d0ob01908a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dynamic combinatorial libraries of acylhydrazones were prepared from diacylhydrazides and several cationic or neutral aldehydes in the presence of 5-methoxyanthranilic acid catalyst. Pull-down experiments with magnetic beads functionalized with a G-quadruplex (G4)-forming oligonucleotide led to the identification of putative ligands, which were resynthesized or emulated by close structural analogues. G4-binding properties of novel derivatives were assessed by fluorimetric titrations, mass spectrometry and thermal denaturation experiments, giving evidence of strong binding (Kd < 10 nM) for two compounds.
Collapse
Affiliation(s)
- Oksana Reznichenko
- CNRS UMR9187, Inserm U1196, Institut Curie, PSL Research University, 91405 Orsay, France. and CNRS UMR9187, Inserm U1196, Université Paris Saclay, 91405 Orsay, France
| | - Anne Cucchiarini
- CNRS UMR9187, Inserm U1196, Institut Curie, PSL Research University, 91405 Orsay, France. and CNRS UMR9187, Inserm U1196, Université Paris Saclay, 91405 Orsay, France
| | - Valérie Gabelica
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, 33600 Pessac, France
| | - Anton Granzhan
- CNRS UMR9187, Inserm U1196, Institut Curie, PSL Research University, 91405 Orsay, France. and CNRS UMR9187, Inserm U1196, Université Paris Saclay, 91405 Orsay, France
| |
Collapse
|
8
|
Canal-Martín A, Pérez-Fernández R. Protein-Directed Dynamic Combinatorial Chemistry: An Efficient Strategy in Drug Design. ACS OMEGA 2020; 5:26307-26315. [PMID: 33110958 PMCID: PMC7581073 DOI: 10.1021/acsomega.0c03800] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/24/2020] [Indexed: 05/05/2023]
Abstract
Protein-directed dynamic combinatorial chemistry (P-D DCC) is considered a powerful strategy to identify ligands to pharmacologically relevant protein targets. The protein selects its affinity ligands in situ through a thermodynamic templated effect in which the library composition shifts to the formation of specific library members at the expense of other (nonbinding) species. The increase in concentration of the selected species is known as amplification and leads to the discovery of new hit compounds for protein targets. This Mini-Review contains an updated overview of the protein-directed DCC applications and the fundamental aspects to take into account when designing a P-D DCC experiment such as the most biocompatible reversible reactions and the methodology used to analyze the experiments.
Collapse
|
9
|
Giardina SF, Werner DS, Pingle M, Feinberg PB, Foreman KW, Bergstrom DE, Arnold LD, Barany F. Novel, Self-Assembling Dimeric Inhibitors of Human β Tryptase. J Med Chem 2020; 63:3004-3027. [PMID: 32057241 DOI: 10.1021/acs.jmedchem.9b01689] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
β-Tryptase, a homotetrameric serine protease, has four identical active sites facing a central pore, presenting an optimized setting for the rational design of bivalent inhibitors that bridge two adjacent sites. Using diol, hydroxymethyl phenols or benzoyl methyl hydroxamates, and boronic acid chemistries to reversibly join two [3-(1-acylpiperidin-4-yl)phenyl]methanamine core ligands, we have successfully produced a series of self-assembling heterodimeric inhibitors. These heterodimeric tryptase inhibitors demonstrate superior activity compared to monomeric modes of inhibition. X-ray crystallography validated the dimeric mechanism of inhibition, and compounds demonstrated high selectivity against related proteases, good target engagement, and tryptase inhibition in HMC1 xenograft models. Screening 3872 possible combinations from 44 boronic acid and 88 diol derivatives revealed several combinations that produced nanomolar inhibition, and seven unique pairs produced greater than 100-fold improvement in potency over monomeric inhibition. These heterodimeric tryptase inhibitors demonstrate the power of target-driven combinatorial chemistry to deliver bivalent drugs in a small molecule form.
Collapse
Affiliation(s)
- Sarah F Giardina
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, Box 62, New York, New York 10065, United States
| | - Douglas S Werner
- Coferon, Inc., 25 Health Sciences Drive, Mailbox 123, Stony Brook, New York 11790, United States
| | - Maneesh Pingle
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, Box 62, New York, New York 10065, United States.,Coferon, Inc., 25 Health Sciences Drive, Mailbox 123, Stony Brook, New York 11790, United States
| | - Philip B Feinberg
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, Box 62, New York, New York 10065, United States
| | - Kenneth W Foreman
- Coferon, Inc., 25 Health Sciences Drive, Mailbox 123, Stony Brook, New York 11790, United States
| | - Donald E Bergstrom
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 Stadium Mall, West Lafa-yette, Indiana 47907, United States
| | - Lee D Arnold
- Coferon, Inc., 25 Health Sciences Drive, Mailbox 123, Stony Brook, New York 11790, United States
| | - Francis Barany
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, Box 62, New York, New York 10065, United States
| |
Collapse
|
10
|
Hartman AM, Gierse RM, Hirsch AKH. Protein-Templated Dynamic Combinatorial Chemistry: Brief Overview and Experimental Protocol. European J Org Chem 2019; 2019:3581-3590. [PMID: 31680778 PMCID: PMC6813629 DOI: 10.1002/ejoc.201900327] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Indexed: 01/08/2023]
Abstract
Dynamic combinatorial chemistry (DCC) is a powerful tool to identify bioactive compounds. This efficient technique allows the target to select its own binders and circumvents the need for synthesis and biochemical evaluation of all individual derivatives. An ever-increasing number of publications report the use of DCC on biologically relevant target proteins. This minireview complements previous reviews by focusing on the experimental protocol and giving detailed examples of essential steps and factors that need to be considered, such as protein stability, buffer composition and cosolvents.
Collapse
Affiliation(s)
- Alwin M. Hartman
- Department of Drug Design and OptimizationHelmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus Building E8.166123SaarbrückenGermany
- Stratingh Institute for ChemistryHelmholtz Centre for Infection Research (HZI)University of GroningenNijenborgh 79747AG GroningenThe Netherlands
- Department of PharmacyMedicinal ChemistrySaarland UniversityCampus Building E8.166123SaarbrückenGermany
| | - Robin M. Gierse
- Department of Drug Design and OptimizationHelmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus Building E8.166123SaarbrückenGermany
- Stratingh Institute for ChemistryHelmholtz Centre for Infection Research (HZI)University of GroningenNijenborgh 79747AG GroningenThe Netherlands
- Department of PharmacyMedicinal ChemistrySaarland UniversityCampus Building E8.166123SaarbrückenGermany
| | - Anna K. H. Hirsch
- Department of Drug Design and OptimizationHelmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus Building E8.166123SaarbrückenGermany
- Stratingh Institute for ChemistryHelmholtz Centre for Infection Research (HZI)University of GroningenNijenborgh 79747AG GroningenThe Netherlands
- Department of PharmacyMedicinal ChemistrySaarland UniversityCampus Building E8.166123SaarbrückenGermany
| |
Collapse
|
11
|
Frei P, Hevey R, Ernst B. Dynamic Combinatorial Chemistry: A New Methodology Comes of Age. Chemistry 2018; 25:60-73. [DOI: 10.1002/chem.201803365] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Priska Frei
- Institute of Molecular Pharmacy, PharmacenterUniversity of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| | - Rachel Hevey
- Institute of Molecular Pharmacy, PharmacenterUniversity of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| | - Beat Ernst
- Institute of Molecular Pharmacy, PharmacenterUniversity of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| |
Collapse
|
12
|
García P, Alonso VL, Serra E, Escalante AM, Furlan RLE. Discovery of a Biologically Active Bromodomain Inhibitor by Target-Directed Dynamic Combinatorial Chemistry. ACS Med Chem Lett 2018; 9:1002-1006. [PMID: 30344907 DOI: 10.1021/acsmedchemlett.8b00247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/11/2018] [Indexed: 12/24/2022] Open
Abstract
Target-directed dynamic combinatorial chemistry (DCC) has emerged as a strategy for the identification of inhibitors of relevant therapeutic targets. In this contribution, we use this strategy for the identification of a high-affinity binder of a parasite target, the Trypanosoma cruzi bromodomain-containing protein TcBDF3. This protein is essential for viability of T. cruzi, the protozoan parasite that causes Chagas disease. A small dynamic library of acylhydrazones was prepared from aldehydes and acylhydrazides at neutral pH in the presence of aniline. The most amplified library member shows (a) high affinity for the template, (b) interesting antiparasitic activity against different parasite forms, and (c) low toxicity against Vero cells. In addition, parasites are rescued from the compound toxicity by TcBDF3 overexpression, suggesting that the toxicity of this compound is due to the TcBDF3 inhibition, i.e., the binding event that initially drives the molecular amplification is reproduced in the parasite, leading to selective toxicity.
Collapse
Affiliation(s)
- Paula García
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 531, S2002LRK Rosario, Argentina
| | - Victoria L. Alonso
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 531, S2002LRK Rosario, Argentina
- Instituto de Biología Molecular y Celular de Rosario (IBR), Universidad Nacional de Rosario, CONICET, Ocampo y Esmeralda, 2000 Rosario, Argentina
| | - Esteban Serra
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 531, S2002LRK Rosario, Argentina
- Instituto de Biología Molecular y Celular de Rosario (IBR), Universidad Nacional de Rosario, CONICET, Ocampo y Esmeralda, 2000 Rosario, Argentina
| | - Andrea M. Escalante
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 531, S2002LRK Rosario, Argentina
| | - Ricardo L. E. Furlan
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 531, S2002LRK Rosario, Argentina
| |
Collapse
|
13
|
Nisal R, P. Jose G, Shanbhag C, Kalia J. Rapid and reversible hydrazone bioconjugation in cells without the use of extraneous catalysts. Org Biomol Chem 2018; 16:4304-4310. [DOI: 10.1039/c8ob00946e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Rapid, catalyst-free and reversible bioconjugation in mammalian cells.
Collapse
Affiliation(s)
- Rahul Nisal
- Indian Institute of Science Education and Research (IISER) Pune
- Pune-411008
- India
| | - Gregor P. Jose
- Indian Institute of Science Education and Research (IISER) Pune
- Pune-411008
- India
| | - Chitra Shanbhag
- Indian Institute of Science Education and Research (IISER) Pune
- Pune-411008
- India
| | - Jeet Kalia
- Indian Institute of Science Education and Research (IISER) Pune
- Pune-411008
- India
| |
Collapse
|
14
|
Ekström AG, Wang JT, Bella J, Campopiano DJ. Non-invasive 19F NMR analysis of a protein-templated N-acylhydrazone dynamic combinatorial library. Org Biomol Chem 2018; 16:8144-8149. [DOI: 10.1039/c8ob01918e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dynamic combinatorial chemistry (DCC) is a powerful tool to identify ligands for biological targets.
Collapse
Affiliation(s)
| | | | - Juraj Bella
- EaStCHEM School of Chemistry
- University of Edinburgh
- Edinburgh
- UK
| | | |
Collapse
|
15
|
Zhang Y, Xie S, Yan M, Ramström O. Dynamic Covalent Chemistry of Aldehyde Enamines: Bi III - and Sc III -Catalysis of Amine-Enamine Exchange. Chemistry 2017; 23:11908-11912. [PMID: 28722305 PMCID: PMC5656824 DOI: 10.1002/chem.201702363] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Indexed: 01/09/2023]
Abstract
The dynamic exchange of enamines from secondary amines and enolizable aldehydes has been demonstrated in organic solvents. The enamine exchange with amines was efficiently catalyzed by Bi(OTf)3 and Sc(OTf)3 (2 mol %) and the equilibria (60 mm) could be attained within hours at room temperature. The formed dynamic covalent systems displayed high stabilities in basic environment with <2 % by-product formation within one week after complete equilibration. This study expands the scope of dynamic C-N bonds from imine chemistry to enamines, enabling further dynamic methodologies in exploration of this important class of structures in systems chemistry.
Collapse
Affiliation(s)
- Yang Zhang
- Department of ChemistryKTH-Royal Institute of TechnologyTeknikringen 3610044StockholmSweden
| | - Sheng Xie
- Department of ChemistryKTH-Royal Institute of TechnologyTeknikringen 3610044StockholmSweden
| | - Mingdi Yan
- Department of ChemistryKTH-Royal Institute of TechnologyTeknikringen 3610044StockholmSweden
- Department of ChemistryUniversity of Massachusetts Lowell1 University Ave.LowellMA01854USA
| | - Olof Ramström
- Department of ChemistryKTH-Royal Institute of TechnologyTeknikringen 3610044StockholmSweden
| |
Collapse
|
16
|
Frei P, Pang L, Silbermann M, Eriş D, Mühlethaler T, Schwardt O, Ernst B. Target-directed Dynamic Combinatorial Chemistry: A Study on Potentials and Pitfalls as Exemplified on a Bacterial Target. Chemistry 2017; 23:11570-11577. [PMID: 28654733 DOI: 10.1002/chem.201701601] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Indexed: 12/28/2022]
Abstract
Target-directed dynamic combinatorial chemistry (DCC) is an emerging technique for the efficient identification of inhibitors of pharmacologically relevant targets. In this contribution, we present an application for a bacterial target, the lectin FimH, a crucial virulence factor of uropathogenic E. coli being the main cause of urinary tract infections. A small dynamic library of acylhydrazones was formed from aldehydes and hydrazides and equilibrated at neutral pH in presence of aniline as nucleophilic catalyst. The major success factors turned out to be an accordingly adjusted ratio of scaffolds and fragments, an adequate sample preparation prior to HPLC analysis, and the data processing. Only then did the ranking of the dynamic library constituents correlate well with affinity data. Furthermore, as a support of DCC applications especially to larger libraries, a new protocol for improved hit identification was established.
Collapse
Affiliation(s)
- Priska Frei
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Lijuan Pang
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Marleen Silbermann
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Deniz Eriş
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Tobias Mühlethaler
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Oliver Schwardt
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Beat Ernst
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| |
Collapse
|
17
|
Jaegle M, Wong EL, Tauber C, Nawrotzky E, Arkona C, Rademann J. Proteintemplat-gesteuerte Fragmentligationen - von der molekularen Erkennung zur Wirkstofffindung. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 129:7464-7485. [PMID: 32313319 PMCID: PMC7159557 DOI: 10.1002/ange.201610372] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/10/2017] [Indexed: 12/28/2022]
Abstract
AbstractProteintemplat‐gesteuerte Fragmentligationen sind ein neuartiges Konzept zur Unterstützung der Wirkstofffindung und können dazu beitragen, die Wirksamkeit von Proteinliganden zu verbessern. Es handelt sich dabei um chemische Reaktionen zwischen niedermolekularen Verbindungen (“Fragmenten”), die die Oberfläche eines Proteins als Reaktionsgefäß verwenden, um die Bildung eines Proteinliganden mit erhöhter Bindungsaffinität zu katalysieren. Die Methode nutzt die molekulare Erkennung kleiner reaktiver Fragmente durch die Proteine sowohl zur Assemblierung der Liganden als auch zur Identifizierung bioaktiver Fragmentkombinationen. Chemische Synthese und Bioassay werden dabei in einem Schritt vereint. Dieser Aufsatz diskutiert die biophysikalischen Grundlagen der reversiblen und irreversiblen Fragmentligationen und gibt einen Überblick über die Methoden, mit denen die durch das Proteintemplat gebildeten Ligationsprodukte detektiert werden können. Der chemische Reaktionsraum und aktuelle Anwendungen wie auch die Bedeutung dieses Konzeptes für die Wirkstofffindung werden erörtert.
Collapse
Affiliation(s)
- Mike Jaegle
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Straße 2+4Berlin14195Deutschland
| | - Ee Lin Wong
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Straße 2+4Berlin14195Deutschland
| | - Carolin Tauber
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Straße 2+4Berlin14195Deutschland
| | - Eric Nawrotzky
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Straße 2+4Berlin14195Deutschland
| | - Christoph Arkona
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Straße 2+4Berlin14195Deutschland
| | - Jörg Rademann
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Straße 2+4Berlin14195Deutschland
| |
Collapse
|
18
|
Jaegle M, Wong EL, Tauber C, Nawrotzky E, Arkona C, Rademann J. Protein-Templated Fragment Ligations-From Molecular Recognition to Drug Discovery. Angew Chem Int Ed Engl 2017; 56:7358-7378. [PMID: 28117936 PMCID: PMC7159684 DOI: 10.1002/anie.201610372] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/10/2017] [Indexed: 12/14/2022]
Abstract
Protein-templated fragment ligation is a novel concept to support drug discovery and can help to improve the efficacy of protein ligands. Protein-templated fragment ligations are chemical reactions between small molecules ("fragments") utilizing a protein's surface as a reaction vessel to catalyze the formation of a protein ligand with increased binding affinity. The approach exploits the molecular recognition of reactive small-molecule fragments by proteins both for ligand assembly and for the identification of bioactive fragment combinations. In this way, chemical synthesis and bioassay are integrated in one single step. This Review discusses the biophysical basis of reversible and irreversible fragment ligations and gives an overview of the available methods to detect protein-templated ligation products. The chemical scope and recent applications as well as future potential of the concept in drug discovery are reviewed.
Collapse
Affiliation(s)
- Mike Jaegle
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Strasse 2+4Berlin14195Germany
| | - Ee Lin Wong
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Strasse 2+4Berlin14195Germany
| | - Carolin Tauber
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Strasse 2+4Berlin14195Germany
| | - Eric Nawrotzky
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Strasse 2+4Berlin14195Germany
| | - Christoph Arkona
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Strasse 2+4Berlin14195Germany
| | - Jörg Rademann
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Strasse 2+4Berlin14195Germany
| |
Collapse
|
19
|
van der Vlag R, Hirsch A. Analytical Methods in Protein-Templated Dynamic Combinatorial Chemistry. COMPREHENSIVE SUPRAMOLECULAR CHEMISTRY II 2017. [PMCID: PMC7150222 DOI: 10.1016/b978-0-12-409547-2.12559-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Mondal M, Radeva N, Fanlo-Virgós H, Otto S, Klebe G, Hirsch AKH. Fragment Linking and Optimization of Inhibitors of the Aspartic Protease Endothiapepsin: Fragment-Based Drug Design Facilitated by Dynamic Combinatorial Chemistry. Angew Chem Int Ed Engl 2016; 55:9422-6. [PMID: 27400756 PMCID: PMC5113778 DOI: 10.1002/anie.201603074] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/05/2016] [Indexed: 12/31/2022]
Abstract
Fragment-based drug design (FBDD) affords active compounds for biological targets. While there are numerous reports on FBDD by fragment growing/optimization, fragment linking has rarely been reported. Dynamic combinatorial chemistry (DCC) has become a powerful hit-identification strategy for biological targets. We report the synergistic combination of fragment linking and DCC to identify inhibitors of the aspartic protease endothiapepsin. Based on X-ray crystal structures of endothiapepsin in complex with fragments, we designed a library of bis-acylhydrazones and used DCC to identify potent inhibitors. The most potent inhibitor exhibits an IC50 value of 54 nm, which represents a 240-fold improvement in potency compared to the parent hits. Subsequent X-ray crystallography validated the predicted binding mode, thus demonstrating the efficiency of the combination of fragment linking and DCC as a hit-identification strategy. This approach could be applied to a range of biological targets, and holds the potential to facilitate hit-to-lead optimization.
Collapse
Affiliation(s)
- Milon Mondal
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, The Netherlands
| | - Nedyalka Radeva
- Institute of Pharmaceutical Chemistry, Marbach Weg 6, 35032, Marburg, Germany
| | - Hugo Fanlo-Virgós
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| | - Sijbren Otto
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| | - Gerhard Klebe
- Institute of Pharmaceutical Chemistry, Marbach Weg 6, 35032, Marburg, Germany
| | - Anna K H Hirsch
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, The Netherlands.
| |
Collapse
|
21
|
Mondal M, Radeva N, Fanlo‐Virgós H, Otto S, Klebe G, Hirsch AKH. Fragmentverknüpfung und ‐optimierung von Hemmstoffen der Aspartylprotease Endothiapepsin: Fragmentbasiertes Wirkstoffdesign beschleunigt durch dynamische kombinatorische Chemie. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201603074] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Milon Mondal
- Stratingh Institute for ChemistryUniversity of Groningen Nijenborgh 7 9747 AG Groningen Niederlande
| | - Nedyalka Radeva
- Institute of Pharmaceutical Chemistry Marbach Weg 6 35032 Marburg Deutschland
| | - Hugo Fanlo‐Virgós
- Centre for Systems Chemistry, Stratingh Institute for ChemistryUniversity of Groningen Nijenborgh 4 9747 AG Groningen Niederlande
| | - Sijbren Otto
- Centre for Systems Chemistry, Stratingh Institute for ChemistryUniversity of Groningen Nijenborgh 4 9747 AG Groningen Niederlande
| | - Gerhard Klebe
- Institute of Pharmaceutical Chemistry Marbach Weg 6 35032 Marburg Deutschland
| | - Anna K. H. Hirsch
- Stratingh Institute for ChemistryUniversity of Groningen Nijenborgh 7 9747 AG Groningen Niederlande
| |
Collapse
|
22
|
Schaufelberger F, Ramström O. Dynamic covalent organocatalysts discovered from catalytic systems through rapid deconvolution screening. Chemistry 2015; 21:12735-40. [PMID: 26174068 PMCID: PMC4557047 DOI: 10.1002/chem.201502088] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Indexed: 11/11/2022]
Abstract
The first example of a bifunctional organocatalyst assembled through dynamic covalent chemistry (DCC) is described. The catalyst is based on reversible imine chemistry and can catalyze the Morita-Baylis-Hillman (MBH) reaction of enones with aldehydes or N-tosyl imines. Furthermore, these dynamic catalysts were shown to be optimizable through a systemic screening approach, in which large mixtures of catalyst structures were generated, and the optimal catalyst could be directly identified by using dynamic deconvolution. This strategy allowed one-pot synthesis and in situ evaluation of several potential catalysts without the need to separate, characterize, and purify each individual structure. The systems were furthermore shown to catalyze and re-equilibrate their own formation through a previously unknown thiourea-catalyzed transimination process.
Collapse
Affiliation(s)
- Fredrik Schaufelberger
- Department of Chemistry, KTH - Royal Institute of TechnologyTeknikringen 30, 10044 Stockholm (Sweden) E-mail:
| | - Olof Ramström
- Department of Chemistry, KTH - Royal Institute of TechnologyTeknikringen 30, 10044 Stockholm (Sweden) E-mail:
| |
Collapse
|
23
|
Nowak P, Colomb-Delsuc M, Otto S, Li J. Template-Triggered Emergence of a Self-Replicator from a Dynamic Combinatorial Library. J Am Chem Soc 2015; 137:10965-9. [PMID: 26192814 DOI: 10.1021/jacs.5b04380] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Self-assembly of a specific member of a dynamic combinatorial library (DCL) may lead to self-replication of this molecule. However, if the concentration of the potential replicator in the DCL fails to exceed its critical aggregation concentration (CAC), then self-replication will not occur. We now show how addition of a template can raise the concentration of a library member-template complex beyond its CAC, leading to the onset of self-replication. Once in existence, the replicator aggregates promote further replication also in the absence of the template that induced the initial emergence of the replicator.
Collapse
Affiliation(s)
- Piotr Nowak
- Centre for Systems Chemistry, Stratingh Insitute, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Mathieu Colomb-Delsuc
- Centre for Systems Chemistry, Stratingh Insitute, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Sijbren Otto
- Centre for Systems Chemistry, Stratingh Insitute, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Jianwei Li
- Centre for Systems Chemistry, Stratingh Insitute, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
24
|
Schaufelberger F, Hu L, Ramström O. trans-Symmetric Dynamic Covalent Systems: Connected Transamination and Transimination Reactions. Chemistry 2015; 21:9776-83. [PMID: 26044061 PMCID: PMC4517097 DOI: 10.1002/chem.201500520] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Indexed: 11/08/2022]
Abstract
The development of chemical transaminations as a new type of dynamic covalent reaction is described. The key 1,3-proton shift is under complete catalytic control and can be conducted orthogonally to, or simultaneous with, transimination in the presence of an amine to rapidly yield two-dimensional dynamic systems with a high degree of complexity evolution. The transamination-transimination systems are proven to be fully reversible, stable over several days, compatible with a range of functional groups, and highly tunable. Kinetic studies show transamination to be the rate-limiting reaction in the network. Furthermore, it was discovered that readily available quinuclidine is a highly potent catalyst for aldimine transaminations. This study demonstrates how connected dynamic reactions give rise to significantly larger systems than the unconnected counterparts, and shows how reversible isomerizations can be utilized as an effective diversity-generating element.
Collapse
Affiliation(s)
- Fredrik Schaufelberger
- Department of Chemistry, KTH - Royal Institute of TechnologyTeknikringen 30, 10044 Stockholm (Sweden) E-mail:
| | - Lei Hu
- Department of Chemistry, KTH - Royal Institute of TechnologyTeknikringen 30, 10044 Stockholm (Sweden) E-mail:
| | - Olof Ramström
- Department of Chemistry, KTH - Royal Institute of TechnologyTeknikringen 30, 10044 Stockholm (Sweden) E-mail:
| |
Collapse
|
25
|
Nowak P, Saggiomo V, Salehian F, Colomb-Delsuc M, Han Y, Otto S. Localized Template-Driven Functionalization of Nanoparticles by Dynamic Combinatorial Chemistry. Angew Chem Int Ed Engl 2015; 54:4192-7. [DOI: 10.1002/anie.201409667] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/21/2015] [Indexed: 12/18/2022]
|
26
|
Nowak P, Saggiomo V, Salehian F, Colomb-Delsuc M, Han Y, Otto S. Localized Template-Driven Functionalization of Nanoparticles by Dynamic Combinatorial Chemistry. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201409667] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
Mondal M, Hirsch AKH. Dynamic combinatorial chemistry: a tool to facilitate the identification of inhibitors for protein targets. Chem Soc Rev 2015; 44:2455-88. [DOI: 10.1039/c4cs00493k] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dynamic combinatorial chemistry enables efficient identification of protein binder(s) from a library of interconverting compounds. The library responds to the addition of the target by amplifying the strongest binder.
Collapse
Affiliation(s)
- Milon Mondal
- Stratingh Institute for Chemistry
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| | - Anna K. H. Hirsch
- Stratingh Institute for Chemistry
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| |
Collapse
|
28
|
Mondal M, Groothuis DE, Hirsch AKH. Fragment growing exploiting dynamic combinatorial chemistry of inhibitors of the aspartic protease endothiapepsin. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00157a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The novel combination of fragment growing and DCC is a powerful and efficient strategy to convert a fragment into a hit.
Collapse
Affiliation(s)
- Milon Mondal
- Stratingh Institute for Chemistry
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| | - Daphne E. Groothuis
- Stratingh Institute for Chemistry
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| | - Anna K. H. Hirsch
- Stratingh Institute for Chemistry
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| |
Collapse
|
29
|
Jiang QQ, Sicking W, Ehlers M, Schmuck C. Discovery of potent inhibitors of human β-tryptase from pre-equilibrated dynamic combinatorial libraries. Chem Sci 2014; 6:1792-1800. [PMID: 29163876 PMCID: PMC5644118 DOI: 10.1039/c4sc02943g] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/05/2014] [Indexed: 01/07/2023] Open
Abstract
Pre-equilibrated combinatorial libraries based on multivalent peptide acyl hydrazones were used to find potent inhibitors of β-tryptase. The best inhibitors bind to the protein surface, and inhibit β-tryptase with nanomolar affinity (Kica. 10 nM) and high selectivity in a reversible and non-competitive way.
Pre-equilibrated dynamic combinatorial libraries based on acyl hydrazone interchange of peptide-derived hydrazides and di- and tri-aldehydes have been used to discover potent inhibitors with nanomolar affinities for β-tryptase. To identify potent inhibitors the activity of the full library containing 95 members was compared with those of sub-libraries in which individual building blocks were missing. The most active library members contain a rigid central aromatic scaffold with three cationic peptide arms. The arms of the best inhibitors also contained a tailor-made GCP oxoanion binding motif attached to a lysine side chain. The most potent tri-armed hydrazones with peptide arms GKWR or GKWK(GCP) were shown to inhibit β-tryptase (Kica. 10–20 nM) reversibly, non-competitively and selectively (compared to related serine proteases, e.g. trypsin and chymotrypsin), most likely by binding to the protein surface, also in agreement with molecular modelling calculations. These new inhibitors are one order of magnitude more efficient than related tetravalent inhibitors obtained from previous work on a split-mix-combinatorial library and were identified with significantly less effort, demonstrating the usefulness of this approach for the identification of enzyme inhibitors in general.
Collapse
Affiliation(s)
- Qian-Qian Jiang
- Institut für Organische Chemie , Universität Duisburg-Essen , Universitätsstraße 7 , 45141 Essen , Germany .
| | - Wilhelm Sicking
- Institut für Organische Chemie , Universität Duisburg-Essen , Universitätsstraße 7 , 45141 Essen , Germany .
| | - Martin Ehlers
- Institut für Organische Chemie , Universität Duisburg-Essen , Universitätsstraße 7 , 45141 Essen , Germany .
| | - Carsten Schmuck
- Institut für Organische Chemie , Universität Duisburg-Essen , Universitätsstraße 7 , 45141 Essen , Germany .
| |
Collapse
|
30
|
Li J, Nowak P, Otto S. An Allosteric Receptor by Simultaneous “Casting” and “Molding” in a Dynamic Combinatorial Library. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408907] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Li J, Nowak P, Otto S. An allosteric receptor by simultaneous "casting" and "molding" in a dynamic combinatorial library. Angew Chem Int Ed Engl 2014; 54:833-7. [PMID: 25430978 DOI: 10.1002/anie.201408907] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/31/2014] [Indexed: 01/13/2023]
Abstract
Allosteric synthetic receptors are difficult to access by design. Herein we report a dynamic combinatorial strategy towards such systems based on the simultaneous use of two different templates. Through a process of simultaneous casting (the assembly of a library member around a template) and molding (the assembly of a library member inside the binding pocket of a template), a Russian-doll-like termolecular complex was obtained with remarkable selectivity. Analysis of the stepwise formation of the complex indicates that binding of the two partners by the central macrocycle exhibits significant positive cooperativity. Such allosteric systems represent hubs that may have considerable potential in systems chemistry.
Collapse
Affiliation(s)
- Jianwei Li
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen (The Netherlands) http://www.otto-lab.com
| | | | | |
Collapse
|
32
|
Xu B, Tan D, Yang X, Hu X, Xie Y, Qin J, Chen C, He C, Li Y, Pu J, Liao F. Fluorometric titration assay of affinity of tight-binding nonfluorescent inhibitor of glutathione S-transferase. J Fluoresc 2014; 25:1-8. [PMID: 25349115 DOI: 10.1007/s10895-014-1475-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/15/2014] [Indexed: 11/27/2022]
Abstract
To determine inhibition constant (K(i)) of tight-binding inhibitor, the putative method estimated an apparent K(i) from the response of initial rates to total concentrations of the inhibitor considering its depletion during binding for conversion into the true K(i), but was impractical with glutathione S-transferase of sophisticated kinetics. A fluorometric titration assay of dissociation constant (K(d)) was thus proposed. Schistosoma japonicum glutathione S-transferase (SjGST) action on a nonfluorescent divalent pro-inhibitor and glutathione yielded a divalent product in active site to act as a tight-binding inhibitor, whose binding quenched fluorescence of SjGST at 340 nm under the excitation at 280 nm. K(d) was estimated from the response of fluorescence of SjGST at 340 nm to total concentrations of the divalent product considering its depletion during binding. By fluorometric titration assay, K(d) of two tested nonfluorescent divalent products varied from subnanomolar to nanomolar, but both were resistant to change of SjGST levels and consistent with their apparent K(i) estimated via the putative method. Hence, fluorometric titration assay of K(d) of nonfluorescent tight-binding inhibitors/ligands was effective to GST and may be universally applicable to common enzymes/proteins; affinities of tight-binding inhibitors of GST can be approximated by their apparent K(i) estimated via the putative method.
Collapse
Affiliation(s)
- Bangtian Xu
- Unit for Analytical Probes and Protein Biotechnology, Key Laboratory of Clinical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Li J, Cvrtila I, Colomb-Delsuc M, Otten E, Otto S. An “Ingredients” Approach to Functional Self-Synthesizing Materials: A Metal-Ion-Selective, Multi-Responsive, Self-Assembled Hydrogel. Chemistry 2014; 20:15709-14. [DOI: 10.1002/chem.201404977] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Indexed: 12/22/2022]
|
34
|
Herrmann A. Dynamic combinatorial/covalent chemistry: a tool to read, generate and modulate the bioactivity of compounds and compound mixtures. Chem Soc Rev 2014; 43:1899-933. [PMID: 24296754 DOI: 10.1039/c3cs60336a] [Citation(s) in RCA: 281] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Reversible covalent bond formation under thermodynamic control adds reactivity to self-assembled supramolecular systems, and is therefore an ideal tool to assess complexity of chemical and biological systems. Dynamic combinatorial/covalent chemistry (DCC) has been used to read structural information by selectively assembling receptors with the optimum molecular fit around a given template from a mixture of reversibly reacting building blocks. This technique allows access to efficient sensing devices and the generation of new biomolecules, such as small molecule receptor binders for drug discovery, but also larger biomimetic polymers and macromolecules with particular three-dimensional structural architectures. Adding a kinetic factor to a thermodynamically controlled equilibrium results in dynamic resolution and in self-sorting and self-replicating systems, all of which are of major importance in biological systems. Furthermore, the temporary modification of bioactive compounds by reversible combinatorial/covalent derivatisation allows control of their release and facilitates their transport across amphiphilic self-assembled systems such as artificial membranes or cell walls. The goal of this review is to give a conceptual overview of how the impact of DCC on supramolecular assemblies at different levels can allow us to understand, predict and modulate the complexity of biological systems.
Collapse
Affiliation(s)
- Andreas Herrmann
- Firmenich SA, Division Recherche et Développement, Route des Jeunes 1, B. P. 239, CH-1211 Genève 8, Switzerland.
| |
Collapse
|
35
|
Mahon CS, Fulton DA. Mimicking nature with synthetic macromolecules capable of recognition. Nat Chem 2014; 6:665-72. [PMID: 25054935 DOI: 10.1038/nchem.1994] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 05/30/2014] [Indexed: 02/06/2023]
Abstract
Nature has, through billions of years of evolution, assembled a multitude of polymeric macromolecules capable of exquisite molecular recognition. This functionality arises from the precise control exerted over their biosynthesis that results in key residues being anchored in the appropriate positions to interact with target substrates. Developing 'wholly synthetic' macromolecular analogues that can mimic this behaviour presents a considerable challenge to chemists, who lack the 'biological machinery' used in nature to assemble polymers with such precision. In addressing this challenge, familiar chemical concepts, such as combinatorial methods and supramolecular interactions, have been adapted for application in the macromolecular arena. Working from a limited set of residues, synthetic macromolecules have been produced that display surprisingly high binding affinities towards target proteins, even possessing useful in vivo activities. These observations are all the more surprising when one considers the heterogeneity inherent within these synthetic macromolecular receptors, and provoke intriguing questions regarding our assumptions about the design of receptors.
Collapse
Affiliation(s)
- Clare S Mahon
- Chemical Nanoscience Laboratory, School of Chemistry, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - David A Fulton
- Chemical Nanoscience Laboratory, School of Chemistry, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
36
|
One-pot four-component synthesis of 4-hydrazinothiazoles: novel scaffolds for drug discovery. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.08.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
37
|
Biased and unbiased strategies to identify biologically active small molecules. Bioorg Med Chem 2014; 22:4474-89. [DOI: 10.1016/j.bmc.2014.04.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/03/2014] [Accepted: 04/10/2014] [Indexed: 12/20/2022]
|
38
|
Milroy LG, Grossmann TN, Hennig S, Brunsveld L, Ottmann C. Modulators of Protein–Protein Interactions. Chem Rev 2014; 114:4695-748. [DOI: 10.1021/cr400698c] [Citation(s) in RCA: 352] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lech-Gustav Milroy
- Laboratory
of Chemical Biology and Institute of Complex Molecular Systems, Department
of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech
2, 5612 AZ Eindhoven, The Netherlands
| | - Tom N. Grossmann
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn Straße 15, 44227 Dortmund, Germany
- Department
of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | - Sven Hennig
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn Straße 15, 44227 Dortmund, Germany
| | - Luc Brunsveld
- Laboratory
of Chemical Biology and Institute of Complex Molecular Systems, Department
of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech
2, 5612 AZ Eindhoven, The Netherlands
| | - Christian Ottmann
- Laboratory
of Chemical Biology and Institute of Complex Molecular Systems, Department
of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech
2, 5612 AZ Eindhoven, The Netherlands
| |
Collapse
|
39
|
Ulrich S, Dumy P. Probing secondary interactions in biomolecular recognition by dynamic combinatorial chemistry. Chem Commun (Camb) 2014; 50:5810-25. [DOI: 10.1039/c4cc00263f] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|