1
|
Zhong L, Banigo AT, Zoetebier B, Karperien M. Bioactive Hydrogels Based on Tyramine and Maleimide Functionalized Dextran for Tissue Engineering Applications. Gels 2024; 10:566. [PMID: 39330167 PMCID: PMC11431488 DOI: 10.3390/gels10090566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
Hydrogels are widely used in tissue engineering due to their ability to form three-dimensional (3D) structures that support cellular functions and mimic the extracellular matrix (ECM). Despite their advantages, dextran-based hydrogels lack intrinsic biological activity, limiting their use in this field. Here, we present a strategy for developing bioactive hydrogels through sequential thiol-maleimide bio-functionalization and enzyme-catalyzed crosslinking. The hydrogel network is formed through the reaction of tyramine moieties in the presence of horseradish peroxidase (HRP) and hydrogen peroxide (H2O2), allowing for tunable gelation time and stiffness by adjusting H2O2 concentrations. Maleimide groups on the hydrogel backbone enable the coupling of thiol-containing bioactive molecules, such as arginylglycylaspartic acid (RGD) peptides, to enhance biological activity. We examined the effects of hydrogel stiffness and RGD concentration on human mesenchymal stem cells (hMSCs) during differentiation and found that hMSCs encapsulated within these hydrogels exhibited over 88% cell viability on day 1 across all conditions, with a slight reduction to 60-81% by day 14. Furthermore, the hydrogels facilitated adipogenic differentiation, as evidenced by positive Oil Red O staining. These findings demonstrate that DexTA-Mal hydrogels create a biocompatible environment that is conducive to cell viability and differentiation, offering a versatile platform for future tissue engineering applications.
Collapse
Affiliation(s)
| | | | | | - Marcel Karperien
- Department of Developmental BioEngineering, Faculty of Science and Technology, TechMed Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands; (L.Z.); (A.T.B.); (B.Z.)
| |
Collapse
|
2
|
Voss S, Adair LD, Achazi K, Kim H, Bergemann S, Bartenschlager R, New EJ, Rademann J, Nitsche C. Cell-Penetrating Peptide-Bismuth Bicycles. Angew Chem Int Ed Engl 2024; 63:e202318615. [PMID: 38126926 DOI: 10.1002/anie.202318615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023]
Abstract
Cell-penetrating peptides (CPPs) play a significant role in the delivery of cargos into human cells. We report the first CPPs based on peptide-bismuth bicycles, which can be readily obtained from commercially available peptide precursors, making them accessible for a wide range of applications. These CPPs enter human cells as demonstrated by live-cell confocal microscopy using fluorescently labelled peptides. We report efficient sequences that demonstrate increased cellular uptake compared to conventional CPPs like the TAT peptide (derived from the transactivating transcriptional activator of human immunodeficiency virus 1) or octaarginine (R8 ), despite requiring only three positive charges. Bicyclization triggered by the presence of bismuth(III) increases cellular uptake by more than one order of magnitude. Through the analysis of cell lysates using inductive coupled plasma mass spectrometry (ICP-MS), we have introduced an alternative approach to examine the cellular uptake of CPPs. This has allowed us to confirm the presence of bismuth in cells after exposure to our CPPs. Mechanistic studies indicated an energy-dependent endocytic cellular uptake sensitive to inhibition by rottlerin, most likely involving macropinocytosis.
Collapse
Affiliation(s)
- Saan Voss
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- Department of Biology, Chemistry and Pharmacy, Institute of Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Liam D Adair
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Katharina Achazi
- Institut für Chemie und Biochemie, Freie Universität Berlin, Altensteinstraße 23a, 14195, Berlin, Germany
| | - Heeyoung Kim
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research (CIID), 69120, Heidelberg, Germany
- German Center for Infection Research, Heidelberg partner site, 69120, Heidelberg, Germany
| | - Silke Bergemann
- Department of Biology, Chemistry and Pharmacy, Institute of Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Ralf Bartenschlager
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research (CIID), 69120, Heidelberg, Germany
- German Center for Infection Research, Heidelberg partner site, 69120, Heidelberg, Germany
| | - Elizabeth J New
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jörg Rademann
- Department of Biology, Chemistry and Pharmacy, Institute of Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
3
|
Bitsch P, Baum ES, Beltrán Hernández I, Bitsch S, Harwood J, Oliveira S, Kolmar H. Penetration of Nanobody-Dextran Polymer Conjugates through Tumor Spheroids. Pharmaceutics 2023; 15:2374. [PMID: 37896133 PMCID: PMC10609859 DOI: 10.3390/pharmaceutics15102374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/29/2023] Open
Abstract
Here we report the generation of nanobody dextran polymer conjugates (dextraknobs) that are loaded with small molecules, i.e., fluorophores or photosensitizers, for potential applications in cancer diagnostics and therapy. To this end, the molecules are conjugated to the dextran polymer which is coupled to the C-terminus of an EGFR-specific nanobody using chemoenzymatic approaches. A monovalent EGFR-targeted nanobody and biparatopic version modified with different dextran average molecular weights (1000, 5000, and 10,000) were probed for their ability to penetrate tumor spheroids. For monovalent Cy5-labeled dextraknobs, the utilization of smaller sized dextran (MW 5000 vs. 10,000) was found to be beneficial for more homogeneous penetration into A431 tumor spheroids over time. For the biparatopic dual nanobody comprising MW 1000, 5000, and 10,000 dextran labeled with photosensitizer IRDye700DX, penetration behavior was comparable to that of a direct nanobody-photosensitizer conjugate lacking a dextran scaffold. Additionally, dextraknobs labeled with IRDye700DX incubated with cells in 2D and 3D showed potent cell killing upon illumination, thus inducing photodynamic therapy (PDT). In line with previous results, monovalent nanobody conjugates displayed deeper and more homogenous penetration through spheroids than the bivalent conjugates. Importantly, the smaller size dextrans did not affect the distribution of the conjugates, thus encouraging further development of dextraknobs.
Collapse
Affiliation(s)
- Peter Bitsch
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Str. 4, 64287 Darmstadt, Germany; (P.B.); (S.B.); (J.H.)
| | - Eva S. Baum
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; (E.S.B.); (I.B.H.)
| | - Irati Beltrán Hernández
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; (E.S.B.); (I.B.H.)
- Pharmaceutics, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Sebastian Bitsch
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Str. 4, 64287 Darmstadt, Germany; (P.B.); (S.B.); (J.H.)
| | - Jakob Harwood
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Str. 4, 64287 Darmstadt, Germany; (P.B.); (S.B.); (J.H.)
| | - Sabrina Oliveira
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; (E.S.B.); (I.B.H.)
- Pharmaceutics, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Str. 4, 64287 Darmstadt, Germany; (P.B.); (S.B.); (J.H.)
- Centre of Synthetic Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
4
|
Mohan T, Kleinschek KS, Kargl R. Polysaccharide peptide conjugates: Chemistry, properties and applications. Carbohydr Polym 2022; 280:118875. [PMID: 35027118 DOI: 10.1016/j.carbpol.2021.118875] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/25/2021] [Accepted: 11/05/2021] [Indexed: 11/02/2022]
Abstract
The intention of this publication is to give an overview on research related to conjugates of polysaccharides and peptides. Dextran, chitosan, and alginate were selected, to cover four of the most often encountered functional groups known to be present in polysaccharides. These groups are the hydroxyl, the amine, the carboxyl, and the acetal functionality. A collection of the commonly used chemical reactions for conjugation is provided. Conjugation results into distinct properties compared to the parent polysaccharide, and a number of these characteristics are highlighted. This review aims at demonstrating the applicability of said conjugates with a strong emphasis on biomedical applications, drug delivery, biosensing, and tissue engineering. Some suggestions are made for more rigorous chemistries and analytics that could be investigated. Finally, an outlook is given into which direction the field could be developed further. We hope that this survey provides the reader with a comprehensive summary and contributes to the progress of works that aim at synthetically combining two of the main building blocks of life into supramolecular structures with unprecedented biological response.
Collapse
Affiliation(s)
- Tamilselvan Mohan
- Institute for Chemistry and Technology of Biobased Systems (IBIOSYS), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Karin Stana Kleinschek
- Institute for Chemistry and Technology of Biobased Systems (IBIOSYS), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Rupert Kargl
- Institute for Chemistry and Technology of Biobased Systems (IBIOSYS), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria; Institute for Automation, Faculty of Electrical Engineering and Computer Science, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia.
| |
Collapse
|
5
|
Schroeder B, Demirel P, Fischer C, Masri E, Kallis S, Redl L, Rudolf T, Bergemann S, Arkona C, Nitsche C, Bartenschlager R, Rademann J. Nanoparticular Inhibitors of Flavivirus Proteases from Zika, West Nile and Dengue Virus Are Cell-Permeable Antivirals. ACS Med Chem Lett 2021; 12:1955-1961. [PMID: 34917260 DOI: 10.1021/acsmedchemlett.1c00515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/16/2021] [Indexed: 11/28/2022] Open
Abstract
Viral proteases have been established as drug targets in several viral diseases including human immunodeficiency virus and hepatitis C virus infections due to the essential role of these enzymes in virus replication. In contrast, no antiviral therapy is available to date against flaviviral infections including those by Zika virus (ZIKV), West Nile virus (WNV), or dengue virus (DENV). Numerous potent inhibitors of flaviviral proteases have been reported; however, a huge gap remains between the in vitro and intracellular activities, possibly due to low cellular uptake of the charged compounds. Here, we present an alternative, nanoparticular approach to antivirals. Conjugation of peptidomimetic inhibitors and cell-penetrating peptides to dextran yielded chemically defined nanoparticles that were potent inhibitors of flaviviral proteases. Peptide-dextran conjugates inhibited viral replication and infection in cells at nontoxic, low micromolar or even nanomolar concentrations. Thus, nanoparticular antivirals might be alternative starting points for the development of broad-spectrum antiflaviviral drugs.
Collapse
Affiliation(s)
- Barbara Schroeder
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2 + 4, 14195 Berlin, Germany
| | - Peter Demirel
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2 + 4, 14195 Berlin, Germany
| | - Christina Fischer
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2 + 4, 14195 Berlin, Germany
| | - Enaam Masri
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2 + 4, 14195 Berlin, Germany
| | - Stephanie Kallis
- Department for Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
- German Center for Infection Research (DZIF), Heidelberg partner site, 69120 Heidelberg, Germany
| | - Lisa Redl
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2 + 4, 14195 Berlin, Germany
| | - Thomas Rudolf
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2 + 4, 14195 Berlin, Germany
| | - Silke Bergemann
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2 + 4, 14195 Berlin, Germany
| | - Christoph Arkona
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2 + 4, 14195 Berlin, Germany
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Ralf Bartenschlager
- Department for Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
- German Center for Infection Research (DZIF), Heidelberg partner site, 69120 Heidelberg, Germany
| | - Jörg Rademann
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2 + 4, 14195 Berlin, Germany
| |
Collapse
|
6
|
Becker B, Englert S, Schneider H, Yanakieva D, Hofmann S, Dombrowsky C, Macarrón Palacios A, Bitsch S, Elter A, Meckel T, Kugler B, Schirmacher A, Avrutina O, Diederichsen U, Kolmar H. Multivalent dextran hybrids for efficient cytosolic delivery of biomolecular cargoes. J Pept Sci 2021; 27:e3298. [PMID: 33458922 DOI: 10.1002/psc.3298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/23/2022]
Abstract
The development of novel biotherapeutics based on peptides and proteins is often limited to extracellular targets, because these molecules are not able to reach the cytosol. In recent years, several approaches were proposed to overcome this limitation. A plethora of cell-penetrating peptides (CPPs) was developed for cytoplasmic delivery of cell-impermeable cargo molecules. For many CPPs, multimerization or multicopy arrangement on a scaffold resulted in improved delivery but also higher cytotoxicity. Recently, we introduced dextran as multivalent, hydrophilic polysaccharide scaffold for multimerization of cell-targeting cargoes. Here, we investigated covalent conjugation of a CPP to dextran in multiple copies and assessed the ability of resulted molecular hybrid to enter the cytoplasm of mammalian cells without largely compromising cell viability. As a CPP, we used a novel, low-toxic cationic amphiphilic peptide L17E derived from M-lycotoxin. Here, we show that cell-penetrating properties of L17E are retained upon multivalent covalent linkage to dextran. Dextran-L17E efficiently mediated cytoplasmic translocation of an attached functional peptide and a peptide nucleic acid (PNA). Moreover, a synthetic route was established to mask the lysine side chains of L17E with a photolabile protecting group thus opening avenues for light-triggered activation of cellular uptake.
Collapse
Affiliation(s)
- Bastian Becker
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, 64287, Germany
| | - Simon Englert
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, 64287, Germany
| | - Hendrik Schneider
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, 64287, Germany
| | - Desislava Yanakieva
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, 64287, Germany
| | - Sarah Hofmann
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, 64287, Germany
| | - Carolin Dombrowsky
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, 64287, Germany
| | - Arturo Macarrón Palacios
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, 64287, Germany
| | - Sebastian Bitsch
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, 64287, Germany
| | - Adrian Elter
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, 64287, Germany.,Merck Lab, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, Darmstadt, 64287, Germany
| | - Tobias Meckel
- Merck Lab, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, Darmstadt, 64287, Germany
| | - Benedikt Kugler
- Institute for Organic and Biomolecular Chemistry, Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen, 37077, Germany
| | - Anastasyia Schirmacher
- Institute for Organic and Biomolecular Chemistry, Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen, 37077, Germany
| | - Olga Avrutina
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, 64287, Germany
| | - Ulf Diederichsen
- Institute for Organic and Biomolecular Chemistry, Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen, 37077, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, 64287, Germany
| |
Collapse
|
7
|
KARIYAWASAM K, GHATTAS W, DE LOS SANTOS YL, DOUCET N, GAILLARD S, RENAUD JL, AVENIER F, MAHY JP, RICOUX R. Artificial iron hydrogenase made by covalent grafting of Knölker's complex into xylanase: Application in asymmetric hydrogenation of an aryl ketone in water. Biotechnol Appl Biochem 2020; 67:563-573. [PMID: 32134142 PMCID: PMC7483719 DOI: 10.1002/bab.1906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/02/2020] [Indexed: 12/24/2022]
Abstract
We report a new artificial hydrogenase made by covalent anchoring of the iron Knölker's complex to a xylanase S212C variant. This artificial metalloenzyme was found to be able to catalyze efficiently the transfer hydrogenation of the benchmark substrate trifluoroacetophenone by sodium formate in water, yielding the corresponding secondary alcohol as a racemic. The reaction proceeded more than threefold faster with the XlnS212CK biohybrid than with the Knölker's complex alone. In addition, efficient conversion of trifluoroacetophenone to its corresponding alcohol was reached within 60 H with XlnS212CK, whereas a ≈2.5-fold lower conversion was observed with Knölker's complex alone as catalyst. Moreover, the data were rationalized with a computational strategy suggesting the key factors of the selectivity. These results suggested that the Knölker's complex was most likely flexible and could experience free rotational reorientation within the active-site pocket of Xln A, allowing it to access the subsite pocket populated by trifluoroacetophenone.
Collapse
Affiliation(s)
- Kalani KARIYAWASAM
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), UMR 8182 CNRS, Laboratoire de Chimie Bioorganique et Bioinorganique, Bât. 420, Université Paris-sud, Université Paris-Saclay, 91405 Orsay cedex, France
| | - Wadih GHATTAS
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), UMR 8182 CNRS, Laboratoire de Chimie Bioorganique et Bioinorganique, Bât. 420, Université Paris-sud, Université Paris-Saclay, 91405 Orsay cedex, France
| | - Yossef López DE LOS SANTOS
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Réseau International des Instituts Pasteur, 531 Boulevard des Prairies, Laval (Québec) H7V 1B7 Canada
| | - Nicolas DOUCET
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Réseau International des Instituts Pasteur, 531 Boulevard des Prairies, Laval (Québec) H7V 1B7 Canada
| | - Sylvain GAILLARD
- Université de Caen-Ecole Nationale Supérieure d’Ingénieurs de Caen Laboratoire de Chimie Moléculaire et Thioorganique - UMR CNRS 6507, 6 bd du Maréchal Juin,14050 Caen, France
| | - Jean-Luc RENAUD
- Université de Caen-Ecole Nationale Supérieure d’Ingénieurs de Caen Laboratoire de Chimie Moléculaire et Thioorganique - UMR CNRS 6507, 6 bd du Maréchal Juin,14050 Caen, France
| | - Frédéric AVENIER
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), UMR 8182 CNRS, Laboratoire de Chimie Bioorganique et Bioinorganique, Bât. 420, Université Paris-sud, Université Paris-Saclay, 91405 Orsay cedex, France
| | - Jean-Pierre MAHY
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), UMR 8182 CNRS, Laboratoire de Chimie Bioorganique et Bioinorganique, Bât. 420, Université Paris-sud, Université Paris-Saclay, 91405 Orsay cedex, France
| | - Rémy RICOUX
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), UMR 8182 CNRS, Laboratoire de Chimie Bioorganique et Bioinorganique, Bât. 420, Université Paris-sud, Université Paris-Saclay, 91405 Orsay cedex, France
| |
Collapse
|
8
|
Schneider H, Yanakieva D, Macarrón A, Deweid L, Becker B, Englert S, Avrutina O, Kolmar H. TRAIL‐Inspired Multivalent Dextran Conjugates Efficiently Induce Apoptosis upon DR5 Receptor Clustering. Chembiochem 2019; 20:3006-3012. [DOI: 10.1002/cbic.201900251] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/05/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Hendrik Schneider
- Clemens-Schöpf-Institut für Organische Chemie und BiochemieTechnische Universität Darmstadt Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - Desislava Yanakieva
- Clemens-Schöpf-Institut für Organische Chemie und BiochemieTechnische Universität Darmstadt Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - Arturo Macarrón
- Clemens-Schöpf-Institut für Organische Chemie und BiochemieTechnische Universität Darmstadt Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - Lukas Deweid
- Clemens-Schöpf-Institut für Organische Chemie und BiochemieTechnische Universität Darmstadt Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - Bastian Becker
- Clemens-Schöpf-Institut für Organische Chemie und BiochemieTechnische Universität Darmstadt Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - Simon Englert
- Clemens-Schöpf-Institut für Organische Chemie und BiochemieTechnische Universität Darmstadt Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - Olga Avrutina
- Clemens-Schöpf-Institut für Organische Chemie und BiochemieTechnische Universität Darmstadt Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - Harald Kolmar
- Clemens-Schöpf-Institut für Organische Chemie und BiochemieTechnische Universität Darmstadt Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| |
Collapse
|
9
|
Schneider H, Deweid L, Pirzer T, Yanakieva D, Englert S, Becker B, Avrutina O, Kolmar H. Dextramabs: A Novel Format of Antibody-Drug Conjugates Featuring a Multivalent Polysaccharide Scaffold. ChemistryOpen 2019; 8:354-357. [PMID: 30976476 PMCID: PMC6437811 DOI: 10.1002/open.201900066] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Indexed: 11/09/2022] Open
Abstract
Antibody-drug conjugates (ADCs) are multicomponent biomolecules that have emerged as a powerful tool for targeted tumor therapy. Combining specific binding of an immunoglobulin with toxic properties of a payload, they however often suffer from poor hydrophilicity when loaded with a high amount of toxins. To address these issues simultaneously, we developed dextramabs, a novel class of hybrid antibody-drug conjugates. In these architectures, the therapeutic antibody trastuzumab is equipped with a multivalent dextran polysaccharide that enables efficient loading with a potent toxin in a controllable fashion. Our modular chemoenzymatic approach provides an access to synthetic dextramabs bearing monomethyl auristatin as releasable cytotoxic cargo. They possess high drug-to-antibody ratios, remarkable hydrophilicity, and high toxicity in vitro.
Collapse
Affiliation(s)
- Hendrik Schneider
- Clemens-Schöpf-Institut für Organische Chemie und BiochemieTechnische Universität DarmstadtAlarich-Weiss-Straße 464287DarmstadtGermany
| | - Lukas Deweid
- Clemens-Schöpf-Institut für Organische Chemie und BiochemieTechnische Universität DarmstadtAlarich-Weiss-Straße 464287DarmstadtGermany
| | - Thomas Pirzer
- Clemens-Schöpf-Institut für Organische Chemie und BiochemieTechnische Universität DarmstadtAlarich-Weiss-Straße 464287DarmstadtGermany
| | - Desislava Yanakieva
- Clemens-Schöpf-Institut für Organische Chemie und BiochemieTechnische Universität DarmstadtAlarich-Weiss-Straße 464287DarmstadtGermany
| | - Simon Englert
- Clemens-Schöpf-Institut für Organische Chemie und BiochemieTechnische Universität DarmstadtAlarich-Weiss-Straße 464287DarmstadtGermany
| | - Bastian Becker
- Clemens-Schöpf-Institut für Organische Chemie und BiochemieTechnische Universität DarmstadtAlarich-Weiss-Straße 464287DarmstadtGermany
| | - Olga Avrutina
- Clemens-Schöpf-Institut für Organische Chemie und BiochemieTechnische Universität DarmstadtAlarich-Weiss-Straße 464287DarmstadtGermany
| | - Harald Kolmar
- Clemens-Schöpf-Institut für Organische Chemie und BiochemieTechnische Universität DarmstadtAlarich-Weiss-Straße 464287DarmstadtGermany
| |
Collapse
|
10
|
Galli M, Rossotti B, Arosio P, Ferretti AM, Panigati M, Ranucci E, Ferruti P, Salvati A, Maggioni D. A new catechol-functionalized polyamidoamine as an effective SPION stabilizer. Colloids Surf B Biointerfaces 2019; 174:260-269. [DOI: 10.1016/j.colsurfb.2018.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/17/2018] [Accepted: 11/03/2018] [Indexed: 11/25/2022]
|
11
|
Elschner T, Obst F, Heinze T. Furfuryl‐ and Maleimido Polysaccharides: Synthetic Strategies Toward Functional Biomaterials. Macromol Biosci 2018; 18:e1800258. [DOI: 10.1002/mabi.201800258] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/22/2018] [Accepted: 08/30/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Thomas Elschner
- Dr. T. Elschner, Prof. T. HeinzeCenter of Excellence for Polysaccharide ResearchInstitute of Organic Chemistry and Macromolecular ChemistryFriedrich Schiller University of Jena Humboldtstraße 10, 07743 Jena Germany
| | - Franziska Obst
- F. ObstLeibniz‐Institut für Polymerforschung Dresden e.V. Hohe Straße 6, 01069 Dresden Germany
| | - Thomas Heinze
- Dr. T. Elschner, Prof. T. HeinzeCenter of Excellence for Polysaccharide ResearchInstitute of Organic Chemistry and Macromolecular ChemistryFriedrich Schiller University of Jena Humboldtstraße 10, 07743 Jena Germany
| |
Collapse
|
12
|
Xu X, Li Y, Liang Q, Song Z, Li F, He H, Wang J, Zhu L, Lin Z, Yin L. Efficient Gene Delivery Mediated by a Helical Polypeptide: Controlling the Membrane Activity via Multivalency and Light-Assisted Photochemical Internalization (PCI). ACS APPLIED MATERIALS & INTERFACES 2018; 10:256-266. [PMID: 29206023 DOI: 10.1021/acsami.7b15896] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The development of robust and nontoxic membrane-penetrating materials is highly demanded for nonviral gene delivery. Herein, a photosensitizer (PS)-embedded, star-shaped helical polypeptide was developed, which combines the advantages of multivalency-enhanced intracellular DNA uptake and light-strengthened endosomal escape to enable highly efficient gene delivery with low toxicity. 5,10,15,20-Tetrakis-(4-aminophenyl) porphyrin as a selected PS initiated ring-opening polymerization of N-carboxyanhydride and yielded a star-shaped helical polypeptide after side-chain functionalization with guanidine groups. The star polypeptide afforded a notably higher transfection efficiency and lower cytotoxicity than those of its linear analogue. Light irradiation caused almost complete (∼90%) endosomal release of the DNA cargo via the photochemical internalization (PCI) mechanism and further led to a 6-8-fold increment of the transfection efficiency in HeLa, B16F10, and RAW 264.7 cells, outperforming commercial reagent 25k PEI by up to 3 orders of magnitude. Because the PS and DNA cargoes were compartmentalized distantly in the core and polypeptide layers, respectively, the generated reactive oxygen species caused minimal damage to DNA molecules to preserve their transfection potency. Such multivalency- and PCI-potentiated gene delivery efficiency was also demonstrated in vivo in melanoma-bearing mice. This study thus provides a promising strategy to overcome the multiple membrane barriers against nonviral gene delivery.
Collapse
Affiliation(s)
- Xin Xu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, China
| | - Yongjuan Li
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, China
| | - Qiujun Liang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, China
| | - Ziyuan Song
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign , 1304 W Green Street, Urbana, Illinois 61801, United States
| | - Fangfang Li
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, China
| | - Hua He
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, China
| | - Jinhui Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, China
| | - Lipeng Zhu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, China
| | - Zhifeng Lin
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University of Medicine , Shanghai 200080, China
| | - Lichen Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, China
| |
Collapse
|
13
|
Munneke S, Dangerfield EM, Stocker BL, Timmer MSM. The versatility of N-alkyl-methoxyamine bi-functional linkers for the preparation of glycoconjugates. Glycoconj J 2017; 34:633-642. [PMID: 28725972 DOI: 10.1007/s10719-017-9785-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 11/25/2022]
Abstract
The application of N-glycosyl-N-alkyl-methoxyamine bi-functional linkers for the synthesis of a variety of glycoconjugates is described. The linker contains a specific functional group, such as an amine, azide, thiol, or carboxylic acid, which can be used for conjugation methodologies that include amide ligation, sulfonylation, copper-mediated Huisgen cycloaddition or thiol-maleimide coupling. In this way, glycoconjugates equipped with biotin, a fluorescent reporter, or a protein were efficiently synthesised, thus demonstrating the versatility of this type of oxyamine linker for the construction of glycoconjugate probes.
Collapse
Affiliation(s)
- Stefan Munneke
- School of Chemical and Physical Sciences, PO Box 600, Wellington, New Zealand
| | - Emma M Dangerfield
- School of Chemical and Physical Sciences, PO Box 600, Wellington, New Zealand
| | - Bridget L Stocker
- School of Chemical and Physical Sciences, PO Box 600, Wellington, New Zealand.
| | - Mattie S M Timmer
- School of Chemical and Physical Sciences, PO Box 600, Wellington, New Zealand.
| |
Collapse
|
14
|
Synthesis and film formation of furfuryl- and maleimido carbonic acid derivatives of dextran. Carbohydr Polym 2017; 161:1-9. [DOI: 10.1016/j.carbpol.2016.12.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/14/2016] [Accepted: 12/18/2016] [Indexed: 11/23/2022]
|
15
|
Galli M, Guerrini A, Cauteruccio S, Thakare P, Dova D, Orsini F, Arosio P, Carrara C, Sangregorio C, Lascialfari A, Maggioni D, Licandro E. Superparamagnetic iron oxide nanoparticles functionalized by peptide nucleic acids. RSC Adv 2017. [DOI: 10.1039/c7ra00519a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hydrophilic SPION were decorated with PNA decamers by SH/maleimide clickreaction as potential MRI and hyperthermia agents, and PNA carriers.
Collapse
Affiliation(s)
- Marco Galli
- Dipartimento di Chimica
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - Andrea Guerrini
- LA.M.M. c/o Dipartimento di Chimica
- Università degli Studi di Firenze
- 50019 Sesto F.no (FI)
- Italy
| | - Silvia Cauteruccio
- Dipartimento di Chimica
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - Pramod Thakare
- Dipartimento di Chimica
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - Davide Dova
- Dipartimento di Chimica
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - Francesco Orsini
- Dipartimento di Fisica
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - Paolo Arosio
- Dipartimento di Fisica
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - Claudio Carrara
- Dipartimento di Chimica
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | | | | | - Daniela Maggioni
- Dipartimento di Chimica
- Università degli Studi di Milano
- 20133 Milano
- Italy
- Consorzio INSTM
| | - Emanuela Licandro
- Dipartimento di Chimica
- Università degli Studi di Milano
- 20133 Milano
- Italy
- Consorzio INSTM
| |
Collapse
|
16
|
Hersey JS, Meller A, Grinstaff MW. Functionalized Nanofiber Meshes Enhance Immunosorbent Assays. Anal Chem 2015; 87:11863-70. [PMID: 26551162 DOI: 10.1021/acs.analchem.5b03386] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Three-dimensional substrates with high surface-to-volume ratios and subsequently large protein binding capacities are of interest for advanced immunosorbent assays utilizing integrated microfluidics and nanosensing elements. A library of bioactive and antifouling electrospun nanofiber substrates, which are composed of high-molecular-weight poly(oxanorbornene) derivatives, is described. Specifically, a set of copolymers are synthesized from three 7-oxanorbornene monomers to create a set of water insoluble copolymers with both biotin (bioactive) and triethylene glycol (TEG) (antifouling) functionality. Porous three-dimensional nanofiber meshes are electrospun from these copolymers with the ability to specifically bind streptavidin while minimizing the nonspecific binding of other proteins. Fluorescently labeled streptavidin is used to quantify the streptavidin binding capacity of each mesh type through confocal microscopy. A simplified enzyme-linked immunosorbent assay (ELISA) is presented to assess the protein binding capabilities and detection limits of these nanofiber meshes under both static conditions (26 h) and flow conditions (1 h) for a model target protein (i.e., mouse IgG) using a horseradish peroxidase (HRP) colorimetric assay. Bioactive and antifouling nanofiber meshes outperform traditional streptavidin-coated polystyrene plates under flow, validating their use in future advanced immunosorbent assays and their compatibility with microfluidic-based biosensors.
Collapse
Affiliation(s)
- Joseph S Hersey
- Boston University , Boston Massachusetts 02215, United States
| | - Amit Meller
- Boston University , Boston Massachusetts 02215, United States.,Technion - Israel Institute of Technology , Haifa 32000, Israel
| | | |
Collapse
|
17
|
Kostova V, Dransart E, Azoulay M, Brulle L, Bai SK, Florent JC, Johannes L, Schmidt F. Targeted Shiga toxin-drug conjugates prepared via Cu-free click chemistry. Bioorg Med Chem 2015; 23:7150-7. [PMID: 26507432 DOI: 10.1016/j.bmc.2015.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 11/16/2022]
Abstract
The main drawback of the anticancer chemotherapy consists in the lack of drug selectivity causing severe side effects. The targeted drug delivery appears to be a very promising strategy for controlling the biodistribution of the cytotoxic agent only on malignant tissues by linking it to tumor-targeting moiety. Here we exploit the natural characteristics of Shiga toxin B sub-unit (STxB) as targeting carrier on Gb3-positive cancer cells. Two cytotoxic conjugates STxB-doxorubicin (STxB-Doxo) and STxB-monomethyl auristatin F (STxB-MMAF) were synthesised using copper-free 'click' chemistry. Both conjugates were obtained in very high yield and demonstrated strong tumor inhibition activity in a nanomolar range on Gb3-positive cells.
Collapse
Affiliation(s)
- Vesela Kostova
- Institut Curie, CNRS, UMR 3666/INSERM U1143, 26 rue d'Ulm, 75248 Cedex 05 Paris, France
| | - Estelle Dransart
- Institut Curie, CNRS, UMR 3666/INSERM U1143, 26 rue d'Ulm, 75248 Cedex 05 Paris, France
| | - Michel Azoulay
- Institut Curie, CNRS, UMR 3666/INSERM U1143, 26 rue d'Ulm, 75248 Cedex 05 Paris, France
| | - Laura Brulle
- Institut Curie, CNRS, UMR 3666/INSERM U1143, 26 rue d'Ulm, 75248 Cedex 05 Paris, France
| | - Siau-Kun Bai
- Institut Curie, CNRS, UMR 3666/INSERM U1143, 26 rue d'Ulm, 75248 Cedex 05 Paris, France
| | - Jean-Claude Florent
- Institut Curie, CNRS, UMR 3666/INSERM U1143, 26 rue d'Ulm, 75248 Cedex 05 Paris, France
| | - Ludger Johannes
- Institut Curie, CNRS, UMR 3666/INSERM U1143, 26 rue d'Ulm, 75248 Cedex 05 Paris, France
| | - Frédéric Schmidt
- Institut Curie, CNRS, UMR 3666/INSERM U1143, 26 rue d'Ulm, 75248 Cedex 05 Paris, France.
| |
Collapse
|
18
|
Falk SJ, Guo LY, Sekulic N, Smoak EM, Mani T, Logsdon GA, Gupta K, Jansen LET, Van Duyne GD, Vinogradov SA, Lampson MA, Black BE. Chromosomes. CENP-C reshapes and stabilizes CENP-A nucleosomes at the centromere. Science 2015; 348:699-703. [PMID: 25954010 DOI: 10.1126/science.1259308] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Inheritance of each chromosome depends upon its centromere. A histone H3 variant, centromere protein A (CENP-A), is essential for epigenetically marking centromere location. We find that CENP-A is quantitatively retained at the centromere upon which it is initially assembled. CENP-C binds to CENP-A nucleosomes and is a prime candidate to stabilize centromeric chromatin. Using purified components, we find that CENP-C reshapes the octameric histone core of CENP-A nucleosomes, rigidifies both surface and internal nucleosome structure, and modulates terminal DNA to match the loose wrap that is found on native CENP-A nucleosomes at functional human centromeres. Thus, CENP-C affects nucleosome shape and dynamics in a manner analogous to allosteric regulation of enzymes. CENP-C depletion leads to rapid removal of CENP-A from centromeres, indicating their collaboration in maintaining centromere identity.
Collapse
Affiliation(s)
- Samantha J Falk
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lucie Y Guo
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nikolina Sekulic
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Evan M Smoak
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tomoyasu Mani
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Glennis A Logsdon
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kushol Gupta
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Gregory D Van Duyne
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael A Lampson
- Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ben E Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
19
|
Koschek K, Durmaz V, Krylova O, Wieczorek M, Gupta S, Richter M, Bujotzek A, Fischer C, Haag R, Freund C, Weber M, Rademann J. Peptide-polymer ligands for a tandem WW-domain, an adaptive multivalent protein-protein interaction: lessons on the thermodynamic fitness of flexible ligands. Beilstein J Org Chem 2015; 11:837-47. [PMID: 26124884 PMCID: PMC4464424 DOI: 10.3762/bjoc.11.93] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 04/30/2015] [Indexed: 12/22/2022] Open
Abstract
Three polymers, poly(N-(2-hydroxypropyl)methacrylamide) (pHPMA), hyperbranched polyglycerol (hPG), and dextran were investigated as carriers for multivalent ligands targeting the adaptive tandem WW-domain of formin-binding protein (FBP21). Polymer carriers were conjugated with 3–9 copies of the proline-rich decapeptide GPPPRGPPPR-NH2 (P1). Binding of the obtained peptide–polymer conjugates to the tandem WW-domain was investigated employing isothermal titration calorimetry (ITC) to determine the binding affinity, the enthalpic and entropic contributions to free binding energy, and the stoichiometry of binding for all peptide–polymer conjugates. Binding affinities of all multivalent ligands were in the µM range, strongly amplified compared to the monovalent ligand P1 with a KD > 1 mM. In addition, concise differences were observed, pHPMA and hPG carriers showed moderate affinity and bound 2.3–2.8 peptides per protein binding site resulting in the formation of aggregates. Dextran-based conjugates displayed affinities down to 1.2 µM, forming complexes with low stoichiometry, and no precipitation. Experimental results were compared with parameters obtained from molecular dynamics simulations in order to understand the observed differences between the three carrier materials. In summary, the more rigid and condensed peptide–polymer conjugates based on the dextran scaffold seem to be superior to induce multivalent binding and to increase affinity, while the more flexible and dendritic polymers, pHPMA and hPG are suitable to induce crosslinking upon binding.
Collapse
Affiliation(s)
- Katharina Koschek
- Institute of Pharmacy & Institute of Chemistry and Biochemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany ; Department of Medicinal Chemistry, Leibniz Institut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany ; Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Wiener Str. 12, 28359 Bremen, Germany
| | - Vedat Durmaz
- Konrad-Zuse-Zentrum für Informationstechnik Berlin, Numerical Analysis and Modelling, Takustr. 7, 14195 Berlin, Germany
| | - Oxana Krylova
- Department of Medicinal Chemistry, Leibniz Institut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Marek Wieczorek
- Institute of Pharmacy & Institute of Chemistry and Biochemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany ; Department of Medicinal Chemistry, Leibniz Institut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Shilpi Gupta
- Institute of Pharmacy & Institute of Chemistry and Biochemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Martin Richter
- Institute of Pharmacy & Institute of Chemistry and Biochemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany ; Department of Medicinal Chemistry, Leibniz Institut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Alexander Bujotzek
- Konrad-Zuse-Zentrum für Informationstechnik Berlin, Numerical Analysis and Modelling, Takustr. 7, 14195 Berlin, Germany
| | - Christina Fischer
- Institute of Pharmacy & Institute of Chemistry and Biochemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Rainer Haag
- Institute of Pharmacy & Institute of Chemistry and Biochemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Christian Freund
- Institute of Pharmacy & Institute of Chemistry and Biochemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany ; Department of Medicinal Chemistry, Leibniz Institut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Marcus Weber
- Konrad-Zuse-Zentrum für Informationstechnik Berlin, Numerical Analysis and Modelling, Takustr. 7, 14195 Berlin, Germany
| | - Jörg Rademann
- Institute of Pharmacy & Institute of Chemistry and Biochemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany ; Department of Medicinal Chemistry, Leibniz Institut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| |
Collapse
|
20
|
Kuang X, Liu G, Dong X, Liu X, Xu J, Wang D. Facile fabrication of fast recyclable and multiple self-healing epoxy materials through diels-alder adduct cross-linker. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/pola.27655] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Xiao Kuang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences; Beijing 100190 People's Republic of China
| | - Guoming Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences; Beijing 100190 People's Republic of China
| | - Xia Dong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences; Beijing 100190 People's Republic of China
| | - Xianggui Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences; Beijing 100190 People's Republic of China
| | - Jianjun Xu
- DSM Resolve; P.O. Box 18, 6160 MD Geleen the Netherlands
| | - Dujin Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences; Beijing 100190 People's Republic of China
| |
Collapse
|
21
|
Yu H, Sun J, Zhang Y, Zhang G, Chu Y, Zhuo R, Jiang X. pH- and β-cyclodextrin-responsive micelles based on polyaspartamide derivatives as drug carrier. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/pola.27584] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Huan Yu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry; Wuhan University; Wuhan 430072 People's Republic of China
| | - Jian Sun
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry; Wuhan University; Wuhan 430072 People's Republic of China
| | - Yunti Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry; Wuhan University; Wuhan 430072 People's Republic of China
| | - Guangyan Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry; Wuhan University; Wuhan 430072 People's Republic of China
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Department of Light Industry; Hubei University of Technology; Wuhan 430068 People's Republic of China
| | - Yanfeng Chu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry; Wuhan University; Wuhan 430072 People's Republic of China
| | - Renxi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry; Wuhan University; Wuhan 430072 People's Republic of China
| | - Xulin Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry; Wuhan University; Wuhan 430072 People's Republic of China
| |
Collapse
|
22
|
Witsenburg JJ, Sinzinger MD, Stoevesandt O, Ruttekolk IR, Roth G, Adjobo-Hermans MJW, Brock R. A peptide-functionalized polymer as a minimal scaffold protein to enhance cluster formation in early T cell signal transduction. Chembiochem 2015; 16:602-10. [PMID: 25663649 DOI: 10.1002/cbic.201402622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Indexed: 12/28/2022]
Abstract
In cellular signal transduction, scaffold proteins provide binding sites to organize signaling proteins into supramolecular complexes and act as nodes in the signaling network. Furthermore, multivalent interactions between the scaffold and other signaling proteins contribute to the formation of protein microclusters. Such microclusters are prominent in early T cell signaling. Here, we explored the minimal structural requirement for a scaffold protein by coupling multiple copies of a proline-rich peptide corresponding to an interaction motif for the SH3 domain of the adaptor protein GADS to an N-(2-hydroxypropyl)methacrylamide polymer backbone. When added to GADS-containing cell lysates, these scaffolds (but not individual peptides) promoted the binding of GADS to peptide microarrays. This can be explained by the cross-linking of GADS into larger complexes. Furthermore, following import into Jurkat T cell leukemia cells, this synthetic scaffold enhanced the formation of microclusters of signaling proteins.
Collapse
Affiliation(s)
- J Joris Witsenburg
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Geert Grooteplein 28, 6525 GA Nijmegen (The Netherlands)
| | | | | | | | | | | | | |
Collapse
|
23
|
Chu DSH, Bocek MJ, Shi J, Ta A, Ngambenjawong C, Rostomily RC, Pun SH. Multivalent display of pendant pro-apoptotic peptides increases cytotoxic activity. J Control Release 2015; 205:155-61. [PMID: 25596326 DOI: 10.1016/j.jconrel.2015.01.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/11/2015] [Accepted: 01/13/2015] [Indexed: 10/24/2022]
Abstract
Several cationic antimicrobial peptides have been investigated as potential anti-cancer drugs due to their demonstrated selective toxicity towards cancer cells relative to normal cells. For example, intracellular delivery of KLA, a pro-apoptotic peptide, results in toxicity against a variety of cancer cell lines; however, the relatively low activity and small size lead to rapid renal excretion when applied in vivo, limiting its therapeutic potential. In this work, apoptotic peptide-polymer hybrid materials were developed to increase apoptotic peptide activity via multivalent display. Multivalent peptide materials were prepared with comb-like structure by RAFT copolymerization of peptide macromonomers with N-(2-hydroxypropyl) methacrylamide (HPMA). Polymers displayed a GKRK peptide sequence for targeting p32, a protein often overexpressed on the surface of cancer cells, either fused with or as a comonomer to a KLA macromonomer. In three tested cancer cell lines, apoptotic polymers were significantly more cytotoxic than free peptides as evidenced by an order of magnitude decrease in IC50 values for the polymers compared to free peptide. The uptake efficiency and intracellular trafficking of one polymer construct was determined by radiolabeling and subcellular fractionation. Despite their more potent cytotoxic profile, polymeric KLA constructs have poor cellular uptake efficiency (<1%). A significant fraction (20%) of internalized constructs localize with intact mitochondrial fractions. In an effort to increase cellular uptake, polymer amines were converted to guanidines by reaction with O-methylisourea. Guanidinylated polymers disrupted function of isolated mitochondria more than their lysine-based analogs, but overall toxicity was decreased, likely due to inefficient mitochondrial trafficking. Thus, while multivalent KLA polymers are more potent than KLA peptides, these materials can be substantially improved by designing next generation materials with improved cellular internalization and mitochondrial targeting efficiency.
Collapse
Affiliation(s)
- David S H Chu
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, USA
| | - Michael J Bocek
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, USA
| | - Julie Shi
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, USA
| | - Anh Ta
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, USA
| | - Chayanon Ngambenjawong
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, USA
| | - Robert C Rostomily
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
| | - Suzie H Pun
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
24
|
Wang S, Wu B, Liu F, Gao Y, Zhang W. A well-defined alternating copolymer based on a salicylaldimine Schiff base for highly sensitive zinc(ii) detection and pH sensing in aqueous solution. Polym Chem 2015. [DOI: 10.1039/c4py01298d] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a new strategy to fabricate well-defined alternating Schiff base copolymers of poly(VBCDEG-alt-SaAEMI)s which display two distinguishable color fluorescence “OFF–ON” responses to zinc ions and pH in aqueous solution.
Collapse
Affiliation(s)
- Shangfeng Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials
- College of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Bin Wu
- Shanghai Key Laboratory of Advanced Polymeric Materials
- College of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Feng Liu
- Shanghai Key Laboratory of Advanced Polymeric Materials
- College of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Yun Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials
- College of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Weian Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials
- College of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| |
Collapse
|
25
|
Li Y, Li T, Wang J, Bao X, Zhao Y, Wu C. Multivalent peptides displayed on OEGMA-based copolymers for the modulation of protein–protein interactions. Polym Chem 2015. [DOI: 10.1039/c5py01080b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report a new class of copolymer–peptide conjugates which exploits the comb-shaped pOEGMA as a polymeric backbone, into which multiple copies of peptide chains that can modulate intracellular p53–Mdm2 or p53–Mdm4 protein interactions are incorporated.
Collapse
Affiliation(s)
- Yujie Li
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Tao Li
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Jinghui Wang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Xiaojia Bao
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Yibing Zhao
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Chuanliu Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| |
Collapse
|
26
|
Multivalent presentation of the cell-penetrating peptide nona-arginine on a linear scaffold strongly increases its membrane-perturbing capacity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:3097-106. [DOI: 10.1016/j.bbamem.2014.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 07/23/2014] [Accepted: 08/01/2014] [Indexed: 01/12/2023]
|
27
|
Koschek K, Dathe M, Rademann J. Effects of Charge and Charge Distribution on the Cellular Uptake of Multivalent Arginine-Containing Peptide-Polymer Conjugates. Chembiochem 2013; 14:1982-90. [DOI: 10.1002/cbic.201300365] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Indexed: 12/19/2022]
|
28
|
Nischan N, Chakrabarti A, Serwa RA, Bovee-Geurts PHM, Brock R, Hackenberger CPR. Stabilization of Peptides for Intracellular Applications by Phosphoramidate-Linked Polyethylene Glycol Chains. Angew Chem Int Ed Engl 2013; 52:11920-4. [DOI: 10.1002/anie.201303467] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Indexed: 11/11/2022]
|
29
|
Nischan N, Chakrabarti A, Serwa RA, Bovee-Geurts PHM, Brock R, Hackenberger CPR. Stabilisierung von Peptiden für intrazelluläre Anwendungen mit Phosphoramidat-verzweigten Polyethylenglycol-Ketten. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201303467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|