1
|
Ponkshe A, Thakur P. Solar light-driven photocatalytic degradation and mineralization of beta blockers propranolol and atenolol by carbon dot/TiO 2 composite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:15614-15630. [PMID: 34628578 DOI: 10.1007/s11356-021-16796-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Herein improved solar light-driven photocatalytic degradation and mineralization of two emerging pollutants as well as recalcitrant beta blockers propranolol (PR) and atenolol (AT) have been demonstrated by metal-free carbon dot/TiO2 (CDT) composite. Hydrothermally synthesized TiO2 has been decorated with electrochemically synthesized carbon dots (CDs) and was well characterized by various analytical techniques viz. XRD, FTIR, Raman, XPS, UV-visible DRS, FESEM, and TEM. The optimized CDT composite, 2CDT (2 mL carbon dot/TiO2), showed ~ 3.45- and ~ 1.75-fold enhancement in the photodegradation rate as compared to pristine TiO2 for PR and AT respectively in 1 hour of irradiation along with complete degradation of PR and AT after 3 hours of irradiation. 2CDT exhibited 76% and 80% mineralization of PR and AT in contrast with 62% and 47% observed by pristine TiO2. Further, the major reaction intermediates formed after degradation have been identified by HPLC/MS analysis, confirming more than 99% reduction of the parent compound for both PR and AT. Reusability of the optimized catalyst also showed successful degradation up to 3 cycles, showing reduction abilities of 97%, 95%, and 94% for 1st, 2nd, and 3rd cycle respectively. The enhanced degradation and mineralization efficiency of the 2CDT composite could be attributed to the excellent photosensitizer and electron reservoir properties of the CD along with upconverted photoluminescence behavior. The present study unlocks the possibility of using metal-free, facile CDT composite for effective degradation and mineralization of widely used beta blockers and other pharmaceuticals.
Collapse
Affiliation(s)
- Amruta Ponkshe
- Department of Environmental Sciences, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Pragati Thakur
- epartment of Chemistry, Savitribai Phule Pune University, Ganeshkhind, Pune , 411007, India.
| |
Collapse
|
2
|
EL-Saeid MH, BaQais A, Alshabanat M. Study of the Photocatalytic Degradation of Highly Abundant Pesticides in Agricultural Soils. Molecules 2022; 27:634. [PMID: 35163899 PMCID: PMC8840474 DOI: 10.3390/molecules27030634] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/17/2022] Open
Abstract
Organic pesticides are major sources of soil pollution in agricultural lands. Most of these pesticides are persistent and tend to bio accumulate in humans upon consumption of contaminated plants. In this study, we investigate different natural soil samples that were collected from agricultural lands. The samples revealed the presence of 18 pesticides that belong to four different groups including organochlorines (OCP), organophosphorus (OPP), carbamates (Carb), and pyrethroids (Pyrth). The photocatalytic degradation of the five most abundant pesticides was studied in the presence and absence of 1% TiO2 or ZnO photocatalysts under UV irradiation at a wavelength of 306 nm. The five abundant pesticides were Atrazine (OCP), Chlorpyrifos methyl (OPP), Dimethoate (OPP), Heptachlor (OCP), and Methomyl (Carb). The results showed that photolysis of all pesticides was complete under UV radiation for irradiation times between 64-100 h. However, both photocatalysts enhanced photocatalytic degradation of the pesticides in comparison with photolysis. The pesticides were photocatalytically degraded completely within 20-24 h of irradiation. The TiO2 photocatalyst showed higher activity compared to ZnO. The organochlorine heptachlor, which is very toxic and persistent, was completely degraded within 30 h using TiO2 photocatalyst for the first time in soil. The mechanism of photocatalytic degradation of the pesticides was explained and the effects of different factors on the degradation process in the soil were discussed.
Collapse
Affiliation(s)
- Mohamed H. EL-Saeid
- Chromatographic Analysis Unit, Soil Science Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
| | - Amal BaQais
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia;
| | - Mashael Alshabanat
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia;
| |
Collapse
|
3
|
Liu J, Zhu Y, Chen J, Butenko DS, Ren J, Yang X, Lu P, Meng P, Xu Y, Yang D, Zhang S. Visible-light driven rapid bacterial inactivation on red phosphorus/titanium oxide nanofiber heterostructures. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125462. [PMID: 33930973 DOI: 10.1016/j.jhazmat.2021.125462] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/02/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Photocatalytic water disinfection has emerged as a promising approach for water purification. However, exploring efficient and rapid visible light driven materials for photocatalytic bacterial inactivation is still a challenging problem. Herein, red phosphorus/titanium oxide (TiO2@RP) nanofibers were developed for effective water disinfection by a vacuum ampoule strategy. The complete E. coli and S. aureus (7-log CFU mL-1) could be rapidly killed within 25 min and 30 min over the optimized TiO2@RP heterostructure under the white LED irradiation. The efficient photocatalytic antibacterial activity should be mainly ascribed to the synergetic enhancement in light absorption by RP decoration and charge migration and separation by the interface between TiO2 and RP. And then more unpaired photo-carriers would be transferred to the surface to facilitate the generation of photo-holes, •O2- radicals, and H2O2 species, which could destroy the bacterial cells efficiently.
Collapse
Affiliation(s)
- Jiaxiu Liu
- Department of Blood Transfusion & Department of Nephrology & Medical Research Center & Department of Physical Medicine and Rehabilitation, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China; School of Basic Medicine, Medical College, Qingdao University, Qingdao 266071, China
| | - Yukun Zhu
- Department of Blood Transfusion & Department of Nephrology & Medical Research Center & Department of Physical Medicine and Rehabilitation, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China; School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
| | - Jingying Chen
- Department of Blood Transfusion & Department of Nephrology & Medical Research Center & Department of Physical Medicine and Rehabilitation, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China; School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China; School of Basic Medicine, Medical College, Qingdao University, Qingdao 266071, China
| | - Denys S Butenko
- College of Physics, Jilin University, Changchun 130012, China
| | - Jun Ren
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China
| | - Xianfeng Yang
- Analytical and Testing Centre, South China University of Technology, Guangzhou 510640, China
| | - Ping Lu
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
| | - Pingping Meng
- Department of Blood Transfusion & Department of Nephrology & Medical Research Center & Department of Physical Medicine and Rehabilitation, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Yan Xu
- Department of Blood Transfusion & Department of Nephrology & Medical Research Center & Department of Physical Medicine and Rehabilitation, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China.
| | - Dongjiang Yang
- Department of Blood Transfusion & Department of Nephrology & Medical Research Center & Department of Physical Medicine and Rehabilitation, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China; School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China; Queensland Micro, and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Brisbane, Queensland 4111, Australia.
| | - Shuchao Zhang
- Department of Blood Transfusion & Department of Nephrology & Medical Research Center & Department of Physical Medicine and Rehabilitation, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China; School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China; School of Basic Medicine, Medical College, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
4
|
Khan MS, Shah JA, Arshad M, Halim SA, Khan A, Shaikh AJ, Riaz N, Khan AJ, Arfan M, Shahid M, Pervez A, Al-Harrasi A, Bilal M. Photocatalytic Decolorization and Biocidal Applications of Nonmetal Doped TiO 2: Isotherm, Kinetic Modeling and In Silico Molecular Docking Studies. Molecules 2020; 25:molecules25194468. [PMID: 33003312 PMCID: PMC7583793 DOI: 10.3390/molecules25194468] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/29/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022] Open
Abstract
Textile dyes and microbial contamination of surface water bodies have been recognized as emerging quality concerns around the globe. The simultaneous resolve of such impurities can pave the route for an amicable technological solution. This study reports the photocatalytic performance and the biocidal potential of nitrogen-doped TiO2 against reactive black 5 (RB5), a double azo dye and E. coli. Molecular docking was performed to identify and quantify the interactions of the TiO2 with β-lactamase enzyme and to predict the biocidal mechanism. The sol-gel technique was employed for the synthesis of different mol% nitrogen-doped TiO2. The synthesized photocatalysts were characterized using thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Brunauer–Emmett–Teller (BET) and diffuse reflectance spectroscopy (DRS). The effects of different synthesis and reaction parameters were studied. RB5 dye degradation was monitored by tracking shifts in the absorption spectrum and percent chemical oxygen demand (COD) removal. The best nanomaterial depicted 5.57 nm crystallite size, 49.54 m2 g−1 specific surface area, 11–40 nm particle size with spherical morphologies, and uniform distribution. The RB5 decolorization data fits well with the pseudo-first-order kinetic model, and the maximum monolayer coverage capacity for the Langmuir adsorption model was found to be 40 mg g−1 with Kads of 0.113 mg−1. The LH model yielded a higher coefficient KC (1.15 mg L−1 h−1) compared to the adsorption constant KLH (0.3084 L mg−1). 90% COD removal was achieved in 60 min of irradiation, confirmed by the disappearance of spectral peaks. The best-optimized photocatalysts showed a noticeable biocidal potential against human pathogenic strain E. coli in 150 min. The biocidal mechanism of best-optimized photocatalyst was predicted by molecular docking simulation against E. coli β-lactamase enzyme. The docking score (−7.6 kcal mol−1) and the binding interaction with the active site residues (Lys315, Thr316, and Glu272) of β-lactamase further confirmed that inhibition of β-lactamase could be a most probable mechanism of biocidal activity.
Collapse
Affiliation(s)
- Muhammad Saqib Khan
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (M.S.K.); (J.A.S.); (N.R.); (A.J.K.); (A.P.)
| | - Jehanzeb Ali Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (M.S.K.); (J.A.S.); (N.R.); (A.J.K.); (A.P.)
| | - Muhammad Arshad
- Institute of Environmental Sciences and Engineering (IESE), SCEE, National University of Sciences and Technology, Islamabad 44000, Pakistan;
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman; (S.A.H.); (A.K.)
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman; (S.A.H.); (A.K.)
| | - Ahson Jabbar Shaikh
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan;
| | - Nadia Riaz
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (M.S.K.); (J.A.S.); (N.R.); (A.J.K.); (A.P.)
| | - Asim Jahangir Khan
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (M.S.K.); (J.A.S.); (N.R.); (A.J.K.); (A.P.)
| | - Muhammad Arfan
- Department of Chemistry, SNS, National University of Sciences and Technology, Islamabad 44000, Pakistan;
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan;
| | - Arshid Pervez
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (M.S.K.); (J.A.S.); (N.R.); (A.J.K.); (A.P.)
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman; (S.A.H.); (A.K.)
- Correspondence: (A.A.-H.); (M.B.); Tel.: +968-25446328 (A.A.-H.); +92-992-383591 (M.B.)
| | - Muhammad Bilal
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (M.S.K.); (J.A.S.); (N.R.); (A.J.K.); (A.P.)
- Correspondence: (A.A.-H.); (M.B.); Tel.: +968-25446328 (A.A.-H.); +92-992-383591 (M.B.)
| |
Collapse
|
5
|
Meng J, Xiao Y, Huang Y, Liu X, Zhao J. Solvent-free hydroamination of phenylacetylene by plasmonic gold nanoparticles coupled with a TiO2 2D photonic layer on nanotube arrays. NEW J CHEM 2020. [DOI: 10.1039/d0nj04132g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Plasmonic Au/TiO2 PCNTs with extremely high anatase (004) exhibits extreme excellent performance on solvent-free hydroamination of phenylacetylene under visible-light irradiation from both sides.
Collapse
Affiliation(s)
- Jie Meng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- School of Chemistry and Chemical Engineering
- Tianjin University of Technology
- Tianjin 300384
- China
| | - Yunheng Xiao
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- School of Chemistry and Chemical Engineering
- Tianjin University of Technology
- Tianjin 300384
- China
| | - Yiming Huang
- State Key Laboratory of the Pulp and Paper Engineering
- School of Light Industry and Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Xuguang Liu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- School of Chemistry and Chemical Engineering
- Tianjin University of Technology
- Tianjin 300384
- China
| | - Jian Zhao
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- School of Chemistry and Chemical Engineering
- Tianjin University of Technology
- Tianjin 300384
- China
| |
Collapse
|
6
|
Dey K, Ganguli S, Alam MS. Benign Hydrothermal Synthesis of N‐doped TiO
2
and TiO
2
‐CoS Nanostructures for Enhanced Visible‐Light Driven Photocatalytic Activity. ChemistrySelect 2019. [DOI: 10.1002/slct.201903406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kamol Dey
- Biomaterials Research Laboratory, Department of Applied Chemistry and Chemical Engineering, Faculty of ScienceUniversity of Chittagong Chittagong- 4331 Bangladesh
- Department of Mechanical and Industrial EngineeringUniversity of Brescia Brescia- 25123 Italy
| | - Sumon Ganguli
- Biomaterials Research Laboratory, Department of Applied Chemistry and Chemical Engineering, Faculty of ScienceUniversity of Chittagong Chittagong- 4331 Bangladesh
| | - M. S. Alam
- Department of Physics, Faculty of ScienceUniversity of Chittagong Chittagong- 4331 Bangladesh
| |
Collapse
|
7
|
Yang T, Yu Q, Wang H. Photocatalytic Reduction of CO2 to CH3OH Coupling with the Oxidation of Amine to Imine. Catal Letters 2018. [DOI: 10.1007/s10562-018-2412-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Sharma S, Umar A, Mehta SK, Ibhadon AO, Kansal SK. Solar light driven photocatalytic degradation of levofloxacin using TiO2/carbon-dot nanocomposites. NEW J CHEM 2018. [DOI: 10.1039/c7nj05118b] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper reports the synthesis of TiO2 quantum dots, carbon dots (C-dots), and TiO2/C-dots using facile sol–gel and hydrothermal methods.
Collapse
Affiliation(s)
- Shelja Sharma
- Department of Chemistry and Centre of Advanced Studies
- Panjab University
- Chandigarh-160014
- India
| | - Ahmad Umar
- Department of Chemistry
- College of Science and Arts
- Najran University
- P. O. Box-1988
- Najran-11001
| | - Surinder Kumar Mehta
- Department of Chemistry and Centre of Advanced Studies
- Panjab University
- Chandigarh-160014
- India
| | - Alex O. Ibhadon
- Department of Chemical Engineering, University of Hull
- Hull
- UK
| | - Sushil Kumar Kansal
- Dr. S. S. Bhatnagar University Institute of Chemical Engineering and Technology
- Panjab University
- Chandigarh-160014
- India
| |
Collapse
|
9
|
Lai LL, Wen W, Wu JM. Hierarchical nanosheet-assembled yolk–shell TiO2microspheres with improved photocatalytic activity. CrystEngComm 2016. [DOI: 10.1039/c6ce00578k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
10
|
Huang L, Jia J, Liu H, Yuan Y, Zhao J, Chen S, Fan W, Waclawik ER, Zhu H, Zheng Z. Surface-mediated selective photocatalytic aerobic oxidation reactions on TiO2 nanofibres. RSC Adv 2015. [DOI: 10.1039/c5ra07518a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The interaction between photocatalyst surface and the reactants may outweigh its light absorption ability in photocatalytic activities.
Collapse
Affiliation(s)
- Lizhi Huang
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- China
| | - Jianfeng Jia
- The School of Chemical and Material Science
- Shanxi Normal University
- Linfen 041004
- China
| | - Hongwei Liu
- School of Chemistry
- Physics and Mechanical Engineering Queensland University of Technology
- Brisbane
- Australia
| | - Yong Yuan
- National Engineering Research Center of Clean Coal Combustion
- Xi'an Thermal Power Research Institute Co. Ltd
- Xi'an 710032
- P. R. China
| | - Jian Zhao
- School of Chemistry
- Physics and Mechanical Engineering Queensland University of Technology
- Brisbane
- Australia
| | - Shuai Chen
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- China
| | - Weibin Fan
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- China
| | - Eric R. Waclawik
- School of Chemistry
- Physics and Mechanical Engineering Queensland University of Technology
- Brisbane
- Australia
| | - Huaiyong Zhu
- School of Chemistry
- Physics and Mechanical Engineering Queensland University of Technology
- Brisbane
- Australia
| | - Zhanfeng Zheng
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- China
| |
Collapse
|
11
|
Wang J, Wang X, Cui Z, Liu B, Cao M. One-pot synthesis and Nb4N5 surface modification of Nb4+ self-doped KNbO3 nanorods for enhanced visible-light-driven hydrogen production. Phys Chem Chem Phys 2015; 17:14185-92. [DOI: 10.1039/c5cp01199j] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile method is developed to synthesize Nb4+ self doped KN nanorods modified with Nb4N5 nanoparticles, which exhibit enhanced visible-light photocatalytic activity for hydrogen production.
Collapse
Affiliation(s)
- Jianqiang Wang
- Key Laboratory of Cluster Science
- Ministry of Education of China
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- Department of Chemistry
- Beijing Institute of Technology
| | - Xia Wang
- Key Laboratory of Cluster Science
- Ministry of Education of China
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- Department of Chemistry
- Beijing Institute of Technology
| | - Zhentao Cui
- Key Laboratory of Cluster Science
- Ministry of Education of China
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- Department of Chemistry
- Beijing Institute of Technology
| | - Bing Liu
- Key Laboratory of Cluster Science
- Ministry of Education of China
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- Department of Chemistry
- Beijing Institute of Technology
| | - Minhua Cao
- Key Laboratory of Cluster Science
- Ministry of Education of China
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- Department of Chemistry
- Beijing Institute of Technology
| |
Collapse
|
12
|
Enhanced photocatalytic activity for H2 evolution under irradiation of UV-vis light by Au-modified nitrogen-doped TiO2. PLoS One 2014; 9:e103671. [PMID: 25090093 PMCID: PMC4121273 DOI: 10.1371/journal.pone.0103671] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 06/30/2014] [Indexed: 11/19/2022] Open
Abstract
Background Purpose Photocatalytic water splitting for hydrogen evolution is a potential way to solve many energy and environmental issues. Developing visible-light-active photocatalysts to efficiently utilize sunlight and finding proper ways to improve photocatalytic activity for H2 evolution have always been hot topics for research. This study attempts to expand the use of sunlight and to enhance the photocatalytic activity of TiO2 by N doping and Au loading. Methods Au/N-doped TiO2 photocatalysts were synthesized and successfully used for photocatalytic water splitting for H2 evolution under irradiation of UV and UV–vis light, respectively. The samples were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectroscopy (DRS), photoluminescence spectroscopy (PL), and photoelectrochemical characterizations. Results DRS displayed an extension of light absorption into the visible region by doping of N and depositing with Au, respectively. PL analysis indicated electron-hole recombination due to N doping and an efficient inhibition of electron-hole recombination due to the loaded Au particles. Under the irradiation of UV light, the photocatalytic hydrogen production rate of the as-synthesized samples followed the order Au/TiO2 > Au/N-doped TiO2 > TiO2 > N-doped TiO2. While under irradiation of UV–vis light, the N-TiO2 and Au/N-TiO2 samples show higher H2 evolution than their corresponding nitrogen-free samples (TiO2 and Au/TiO2). This inconsistent result could be attributed to the doping of N and the surface plasmonic resonance (SPR) effect of Au particles extending the visible light absorption. The photoelectrochemical characterizations further indicated the enhancement of the visible light response of Au/N-doped TiO2. Conclusion Comparative studies have shown that a combination of nitrogen doping and Au loading enhanced the visible light response of TiO2 and increased the utilization of solar energy, greatly boosting the photocatalytic activity for hydrogen production under UV–vis light.
Collapse
|
13
|
Visible-Light-Induced Selective Photocatalytic Oxidation of Benzylamine into Imine over Supported Ag/AgI Photocatalysts. ChemCatChem 2014. [DOI: 10.1002/cctc.201301030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Li J, Liu X, Pan L, Qin W, Chen T, Sun Z. MoS2–reduced graphene oxide composites synthesized via a microwave-assisted method for visible-light photocatalytic degradation of methylene blue. RSC Adv 2014. [DOI: 10.1039/c3ra46956e] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|