1
|
Suprun EV, Khmeleva SA, Duskaev IF, Ptitsyn KG, Kurbatov LK, Shershov VE, Kuznetsova VE, Lapa SA, Chudinov AV, Radko SP. Combining recombinase polymerase amplification with tyrosine modified 2'-deoxyuridine-5'-triphosphate for direct voltammetric detection of double-stranded DNA: Application to potato pathogen Dickeya solani. Talanta 2024; 273:125841. [PMID: 38460421 DOI: 10.1016/j.talanta.2024.125841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/11/2024]
Abstract
The approach based on a combination of isothermal recombinase polymerase amplification (RPA), 2'-deoxyuridine-5'-triphosphate modified with tyrosine aromatic group (dUTP-Y1), and direct voltammetric detection of RPA product carrying electroactive labels was successfully applied to the potato pathogen Dickeya solani. The artificial nucleotide dUTP-Y1 demonstrated a good compatibility with RPA, enabling by targeting a section of D. solani genome with a unique sequence to produce the full-size modified products at high levels of substitution of dTTP by dUTP-Y1 (up to 80-90 %) in the reaction mixture. The optimized procedure of square wave voltammetry allowed to reliably detect the product generated by RPA at 80 % substitution of dTTP by dUTP-Y1 (dsDNA-Y1) in microliter sample volumes on the surface of disposable carbon screen printed electrodes at the potential of about 0.6 V. The calibration curve for the amplicon detection was linear in coordinates 'Ip, A vs. Log (c, M)' within the 0.05-1 μM concentration range. The limit of detection for dsDNA-Y1 was estimated as 8 nM. The sensitivity of the established electrochemical approach allowed to detect amplicons generated in a single standard 50 μL RPA reaction after their purification with silica-coated magnetic beads. The overall detectability of D. solani with the suggested combination of RPA and voltammetric registration of dsDNA-Y1 can be as low as a few copies of bacterial genome per standard reaction. In total, amplification, purification, and electrochemical detection take about 120-150 min. Considering the potential of direct electrochemical analysis for miniaturization, as well as compliance with low-cost and low-power requirements, the findings provide grounds for future development of microfluidic devices integrating isothermal amplification, amplicon purification and detection based on the tyrosine modified nucleotide for the purpose of 'on-site' detection of various pathogens.
Collapse
Affiliation(s)
- Elena V Suprun
- Chemistry Faculty of M.V. Lomonosov Moscow State University, Lenin Hills, 1/3, Moscow, 119991, Russia; Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow, 119121, Russia.
| | - Svetlana A Khmeleva
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow, 119121, Russia
| | - Insaf F Duskaev
- Chemistry Faculty of M.V. Lomonosov Moscow State University, Lenin Hills, 1/3, Moscow, 119991, Russia; Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow, 119121, Russia
| | - Konstantin G Ptitsyn
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow, 119121, Russia
| | - Leonid K Kurbatov
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow, 119121, Russia
| | - Valeriy E Shershov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street, 32, Moscow, 119991, Russia
| | - Viktoriya E Kuznetsova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street, 32, Moscow, 119991, Russia
| | - Sergey A Lapa
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street, 32, Moscow, 119991, Russia
| | - Alexander V Chudinov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street, 32, Moscow, 119991, Russia
| | - Sergey P Radko
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow, 119121, Russia
| |
Collapse
|
2
|
Suprun EV, Khmeleva SA, Duskaev IF, Kurbatov LK, Kuznetsova VE, Shershov VE, Chudinov AV, Radko SP. Polymerase incorporation of 4-nitrophenyl modified 2'-deoxyuridine-5'-triphosphates into double-stranded DNA for direct electrochemical detection. J Pharm Biomed Anal 2024; 241:115977. [PMID: 38241909 DOI: 10.1016/j.jpba.2024.115977] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/23/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
Three novel 2'-deoxyuridine-5'-triphosphates modified with 4-nitrophenyl groups via various linkers (dUTP-N1, dUTP-N2, and dUTP-N3) were tested as bearers of reducible electroactive labels as well as substrates suitable for enzymes used in polymerase chain reaction (PCR) and recombinase polymerase amplification (RPA) with a potential application to direct electrochemical detection of double-stranded deoxyribonucleic acid (dsDNA). In cyclic and square wave voltammograms on carbon screen printed electrodes, the labeled dUTP have demonstrated distinct reduction peaks at potentials of -0.7 V to -0.9 V (phosphate buffer, pH 7.4). The reduction peak currents of dUTP-N derivatives were found to increase with their molar concentrations. The dUTP-N3 with a double bond in the linker had the lowest reduction potential (about 100 mV less negative) among the derivatives studied. Further, dUTP-N nucleotides were tested as substrates in PCR and RPA to incorporate the electroactive labels into 90, 210, or 206 base pair long dsDNA amplicons. However, only a dUTP-N1 derivative with a shorter linker without the double bond demonstrated satisfactory compatibility with both PCR and RPA, though with a low reaction output of modified dsDNA amplicons (at 100% substitution of dTTP). The dsDNA amplicons produced by PCR with 85% substitution of dTTP by the dUTP-N1 in the reaction mixture were successfully detected by square wave voltammetry at micromolar concentrations at high square wave frequency.
Collapse
Affiliation(s)
- Elena V Suprun
- Chemistry Faculty of M.V. Lomonosov Moscow State University, Lenin Hills, 1/3, Moscow 119991, Russia; Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow 119121, Russia.
| | - Svetlana A Khmeleva
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow 119121, Russia
| | - Insaf F Duskaev
- Chemistry Faculty of M.V. Lomonosov Moscow State University, Lenin Hills, 1/3, Moscow 119991, Russia; Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow 119121, Russia
| | - Leonid K Kurbatov
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow 119121, Russia
| | - Viktoriya E Kuznetsova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street, 32, Moscow 119991, Russia
| | - Valeriy E Shershov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street, 32, Moscow 119991, Russia
| | - Alexander V Chudinov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street, 32, Moscow 119991, Russia
| | - Sergey P Radko
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow 119121, Russia
| |
Collapse
|
3
|
Kotammagari TK, Saleh LY, Lönnberg T. Organometallic modification confers oligonucleotides new functionalities. Chem Commun (Camb) 2024; 60:3118-3128. [PMID: 38385213 DOI: 10.1039/d4cc00305e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
To improve their properties or to introduce entirely new functionalities, the intriguing scaffolds of nucleic acids have been decorated with various modifications, most recently also organometallic ones. While challenging to introduce, organometallic modifications offer the potential of expanding the field of application of metal-dependent functionalities to metal-deficient conditions, notably those of biological media. So far, organometallic moieties have been utilized as probes, labels and catalysts. This Feature Article summarizes recent efforts and predicts likely future developments in each of these lines of research.
Collapse
Affiliation(s)
- Tharun K Kotammagari
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland.
| | - Lange Yakubu Saleh
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland.
| | - Tuomas Lönnberg
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland.
| |
Collapse
|
4
|
Kodr D, Ortiz M, Sýkorová V, Yenice CP, Lesnikowski ZJ, O’Sullivan CK, Hocek M. Normalized Multipotential Redox Coding of DNA Bases for Determination of Total Nucleotide Composition. Anal Chem 2023; 95:12586-12589. [PMID: 37578459 PMCID: PMC10469368 DOI: 10.1021/acs.analchem.3c02023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
The previously reported approach of orthogonal multipotential redox coding of all four DNA bases allowed only analysis of the relative nucleotide composition of short DNA stretches. Here, we present two methods for normalization of the electrochemical readout to facilitate the determination of the total nucleotide composition. The first method is based on the presence or absence of an internal standard of 7-deaza-2'-deoxyguanosine in a DNA primer. The exact composition of the DNA was elucidated upon two parallel analyses and the subtraction of the electrochemical signal intensities. The second approach took advantage of a 5'-viologen modified primer, with this fifth orthogonal redox label acting as a reference for signal normalization, thus allowing accurate electrochemical sequence analysis in a single read. Both approaches were tested using various sequences, and the voltammetric signals obtained were normalized using either the internal standard or the reference label and demonstrated to be in perfect agreement with the actual nucleotide composition, highlighting the potential for targeted DNA sequence analysis.
Collapse
Affiliation(s)
- David Kodr
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo namesti 2, CZ-16000 Prague 6, Czech Republic
| | - Mayreli Ortiz
- Departament
d’Enginyeria Química, Universitat
Rovira i Virgili, 26 Països Catalans, 43007 Tarragona, Spain
| | - Veronika Sýkorová
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo namesti 2, CZ-16000 Prague 6, Czech Republic
| | - Cansu Pinar Yenice
- Departament
d’Enginyeria Química, Universitat
Rovira i Virgili, 26 Països Catalans, 43007 Tarragona, Spain
| | - Zbigniew J. Lesnikowski
- Laboratory
of Medicinal Chemistry, Institute of Medical
Biology PAS, Lodowa 106, 92-232 Łódź, Poland
| | - Ciara K. O’Sullivan
- Departament
d’Enginyeria Química, Universitat
Rovira i Virgili, 26 Països Catalans, 43007 Tarragona, Spain
- Institució
Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys, 23, 08010 Barcelona, Spain
| | - Michal Hocek
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo namesti 2, CZ-16000 Prague 6, Czech Republic
- Department
of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 CZ-12843, Czech Republic
| |
Collapse
|
5
|
Shaughnessy KH. Covalent Modification of Nucleobases using Water-Soluble Palladium Catalysts. CHEM REC 2022; 22:e202200190. [PMID: 36074958 DOI: 10.1002/tcr.202200190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/25/2022] [Indexed: 12/15/2022]
Abstract
Nucleosides represent one of the key building blocks of biochemistry. There is significant interest in the synthesis of nucleoside-derived materials for applications as probes, biochemical models, and pharmaceuticals. Palladium-catalyzed cross-coupling reactions are effective methods for making covalent modification of carbon and nitrogen sites on nucleobases under mild conditions. Water-soluble catalysts derived from palladium and hydrophilic ligands, such as tris(3-sulfonatophenyl)phosphine trisodium (TPPTS), are efficient catalysts for a range of coupling reactions of unprotected halonucleosides. Over the past two decades, these methods have been extended to direct functionalization of halonucleotides, as well as RNA and DNA oligonucleotides (ONs) containing halogenated bases. These methods can be run under biocompatible conditions, including examples of Suzuki coupling of modified DNA in whole cells and tissue samples. In this account, development of this methodology by our group and others is highlighted along with the extension of these catalyst systems to modification of nucleotides and ONs.
Collapse
Affiliation(s)
- Kevin H Shaughnessy
- Department of Chemistry & Biochemistry, The University of Alabama, Box 870336, Tuscaloosa, AL 35487-0336, USA
| |
Collapse
|
6
|
Medžiūnė J, Kapustina Ž, Žeimytė S, Jakubovska J, Sindikevičienė R, Čikotienė I, Lubys A. Advanced preparation of fragment libraries enabled by oligonucleotide-modified 2',3'-dideoxynucleotides. Commun Chem 2022; 5:34. [PMID: 36697673 PMCID: PMC9814608 DOI: 10.1038/s42004-022-00649-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/07/2022] [Indexed: 02/01/2023] Open
Abstract
The ever-growing demand for inexpensive, rapid, and accurate exploration of genomes calls for refinement of existing sequencing techniques. The development of next-generation sequencing (NGS) was a revolutionary milestone in genome analysis. While modified nucleotides already were inherent tools in sequencing and imaging, further modification of nucleotides enabled the expansion into even more diverse applications. Herein we describe the design and synthesis of oligonucleotide-tethered 2',3'-dideoxynucleotide (ddONNTP) terminators bearing universal priming sites attached to the nucleobase, as well as their enzymatic incorporation and performance in read-through assays. In the context of NGS library preparation, the incorporation of ddONNTP fulfills two requirements at once: the fragmentation step is integrated into the workflow and the obtained fragments are readily labeled by platform-specific adapters. DNA polymerases can incorporate ddONNTP nucleotides, as shown by primer extension assays. More importantly, reading through the unnatural linkage during DNA synthesis was demonstrated, with 25-30% efficiency in single-cycle extension.
Collapse
Affiliation(s)
- Justina Medžiūnė
- grid.420349.8Department of Research and Development, Thermo Fisher Scientific Baltics, Vilnius, LT-02241 Lithuania ,grid.6441.70000 0001 2243 2806Faculty of Chemistry and Geosciences, Vilnius University, Vilnius, LT-03225 Lithuania
| | - Žana Kapustina
- grid.420349.8Department of Research and Development, Thermo Fisher Scientific Baltics, Vilnius, LT-02241 Lithuania ,grid.6441.70000 0001 2243 2806Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, LT-10257 Lithuania
| | - Simona Žeimytė
- grid.420349.8Department of Research and Development, Thermo Fisher Scientific Baltics, Vilnius, LT-02241 Lithuania
| | - Jevgenija Jakubovska
- grid.420349.8Department of Research and Development, Thermo Fisher Scientific Baltics, Vilnius, LT-02241 Lithuania
| | - Rūta Sindikevičienė
- grid.420349.8Department of Research and Development, Thermo Fisher Scientific Baltics, Vilnius, LT-02241 Lithuania
| | - Inga Čikotienė
- grid.420349.8Department of Research and Development, Thermo Fisher Scientific Baltics, Vilnius, LT-02241 Lithuania ,grid.6441.70000 0001 2243 2806Faculty of Chemistry and Geosciences, Vilnius University, Vilnius, LT-03225 Lithuania
| | - Arvydas Lubys
- grid.420349.8Department of Research and Development, Thermo Fisher Scientific Baltics, Vilnius, LT-02241 Lithuania
| |
Collapse
|
7
|
Ortiz M, Jauset-Rubio M, Skouridou V, Machado D, Viveiros M, Clark TG, Simonova A, Kodr D, Hocek M, O’Sullivan CK. Electrochemical Detection of Single-Nucleotide Polymorphism Associated with Rifampicin Resistance in Mycobacterium tuberculosis Using Solid-Phase Primer Elongation with Ferrocene-Linked Redox-Labeled Nucleotides. ACS Sens 2021; 6:4398-4407. [PMID: 34797987 PMCID: PMC8715531 DOI: 10.1021/acssensors.1c01710] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Here, we report the
electrochemical detection of single-point mutations
using solid-phase isothermal primer elongation with redox-labeled
oligonucleotides. A single-base mutation associated with resistance
to rifampicin, an antibiotic commonly used for the treatment of Mycobacterium tuberculosis, was used as a model system
to demonstrate a proof-of-concept of the approach. Four 5′-thiolated
primers, designed to be complementary with the same fragment of the
target sequence and differing only in the last base, addressing the
polymorphic site, were self-assembled via chemisorption on individual
gold electrodes of an array. Following hybridization with single-stranded
DNA, Klenow (exo-) DNA polymerase-mediated primer extension with ferrocene-labeled
2′-deoxyribonucleoside triphosphates (dNFcTPs) was
only observed to proceed at the electrode where there was full complementarity
between the surface-tethered probe and the target DNA being interrogated.
We tested all four ferrocenylethynyl-linked dNTPs and optimized the
ratio of labeled/natural nucleotides to achieve maximum sensitivity.
Following a 20 min hybridization step, Klenow (exo-) DNA polymerase-mediated
primer elongation at 37 °C for 5 min was optimal for the enzymatic
incorporation of a ferrocene-labeled nucleotide, achieving unequivocal
electrochemical detection of a single-point mutation in 14 samples
of genomic DNA extracted from Mycobacterium tuberculosis strains. The approach is rapid, cost-effective, facile, and can
be extended to multiplexed electrochemical single-point mutation genotyping.
Collapse
Affiliation(s)
- Mayreli Ortiz
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain
| | - Miriam Jauset-Rubio
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain
| | - Vasso Skouridou
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain
| | - Diana Machado
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008 Lisbon, Portugal
| | - Miguel Viveiros
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008 Lisbon, Portugal
| | - Taane G. Clark
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008 Lisbon, Portugal
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, WC1E 7HT London, U.K
| | - Anna Simonova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam.2, 16610 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 12843 Prague 2, Czech Republic
| | - David Kodr
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam.2, 16610 Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam.2, 16610 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 12843 Prague 2, Czech Republic
| | - Ciara K. O’Sullivan
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Passeig Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
8
|
Kodr D, Yenice CP, Simonova A, Saftić DP, Pohl R, Sýkorová V, Ortiz M, Havran L, Fojta M, Lesnikowski ZJ, O'Sullivan CK, Hocek M. Carborane- or Metallacarborane-Linked Nucleotides for Redox Labeling. Orthogonal Multipotential Coding of all Four DNA Bases for Electrochemical Analysis and Sequencing. J Am Chem Soc 2021; 143:7124-7134. [PMID: 33929195 DOI: 10.1021/jacs.1c02222] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report a series of 2'-deoxyribonucleoside triphosphates bearing dicarba-nido-undecaborate ([C2B9H11]1-), [3,3'-iron-bis(1,2-dicarbollide)]- (FESAN, [Fe(C2B9H11)2]2-) or [3,3'-cobalt-bis(1,2-dicarbollide)]- (COSAN, [Co(C2B9H11)2]2-) groups prepared either through the Sonogashira cross-coupling or the CuAAC click reaction. The modified dNXTPs were substrates for KOD XL DNA polymerase in enzymatic synthesis of modified DNA through primer extension (PEX). The nido-carborane- and FESAN-modified nucleotides gave analytically useful oxidation signals in square-wave voltammetry and were used for redox labeling of DNA. The redox-modified DNA probes were prepared by PEX using tailed primers and were hybridized to electrode (gold or glassy carbon) containing capture oligonucleotides. The combination of nido-carborane- and FESAN-linked nucleotides with 7-ferrocenylethynyl-7-deaza-dATP and 7-deaza-dGTP allowed polymerase synthesis of DNA fully modified at all four nucleobases, and each of the redox labels gave four differentiable and ratiometric signals in voltammetry. Thus, the combination of these four redox labels constitutes the first fully orthogonal redox coding of all four canonical nucleobases, which can be used for determination of nucleobase composition of short DNA stretches in one simple PEX experiment with electrochemical readout.
Collapse
Affiliation(s)
- David Kodr
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, CZ-16610 Prague 6, Czech Republic
| | - Cansu Pinar Yenice
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, 26 Països Catalans, 43007 Tarragona, Spain
| | - Anna Simonova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, CZ-16610 Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2 12843, Czech Republic
| | - Dijana Pavlović Saftić
- Laboratory of Medicinal Chemistry, Institute of Medical Biology PAS, Lodowa 106, 92-232 Łódź, Poland
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, CZ-16610 Prague 6, Czech Republic
| | - Veronika Sýkorová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, CZ-16610 Prague 6, Czech Republic
| | - Mayreli Ortiz
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, 26 Països Catalans, 43007 Tarragona, Spain
| | - Ludĕk Havran
- Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Miroslav Fojta
- Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Zbigniew J Lesnikowski
- Laboratory of Medicinal Chemistry, Institute of Medical Biology PAS, Lodowa 106, 92-232 Łódź, Poland
| | - Ciara K O'Sullivan
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, 26 Països Catalans, 43007 Tarragona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys, 23, 08010, Barcelona, Spain
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, CZ-16610 Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2 12843, Czech Republic
| |
Collapse
|
9
|
Ondruš M, Sýkorová V, Bednárová L, Pohl R, Hocek M. Enzymatic synthesis of hypermodified DNA polymers for sequence-specific display of four different hydrophobic groups. Nucleic Acids Res 2020; 48:11982-11993. [PMID: 33152081 PMCID: PMC7708046 DOI: 10.1093/nar/gkaa999] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
A set of modified 2'-deoxyribonucleoside triphosphates (dNTPs) bearing a linear or branched alkane, indole or phenyl group linked through ethynyl or alkyl spacer were synthesized and used as substrates for polymerase synthesis of hypermodified DNA by primer extension (PEX). Using the alkyl-linked dNTPs, the polymerase synthesized up to 22-mer fully modified oligonucleotide (ON), whereas using the ethynyl-linked dNTPs, the enzyme was able to synthesize even long sequences of >100 modified nucleotides in a row. In PCR, the combinations of all four modified dNTPs showed only linear amplification. Asymmetric PCR or PEX with separation or digestion of the template strand can be used for synthesis of hypermodified single-stranded ONs, which are monodispersed polymers displaying four different substituents on DNA backbone in sequence-specific manner. The fully modified ONs hybridized with complementary strands and modified DNA duplexes were found to exist in B-type conformation (B- or C-DNA) according to CD spectral analysis. The modified DNA can be replicated with high fidelity to natural DNA through PCR and sequenced. Therefore, this approach has a promising potential in generation and selection of hypermodified aptamers and other functional polymers.
Collapse
Affiliation(s)
- Marek Ondruš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Veronika Sýkorová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Lucie Bednárová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| |
Collapse
|
10
|
Simonova A, Magriñá I, Sýkorová V, Pohl R, Ortiz M, Havran L, Fojta M, O'Sullivan CK, Hocek M. Tuning of Oxidation Potential of Ferrocene for Ratiometric Redox Labeling and Coding of Nucleotides and DNA. Chemistry 2020; 26:1286-1291. [PMID: 31725178 PMCID: PMC7384099 DOI: 10.1002/chem.201904700] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Indexed: 12/21/2022]
Abstract
Three sets of 7‐deazaadenine and cytosine nucleosides and nucleoside triphosphates bearing either unsubstituted ferrocene, octamethylferrocene and ferrocenecarboxamide linked through an alkyne tether to position 7 or 5, respectively, were designed and synthesized. The modified dNFcXTPs were good substrates for KOD XL DNA polymerase in primer extension and were used for enzymatic synthesis of redox‐labelled DNA probes. Square‐wave voltammetry showed that the octamethylferrocene oxidation potential was shifted to lower values, whilst the ferrocenecarboxamide was shifted to higher potentials, as compared to ferrocene. Tailed PEX products containing different ratios of Fc‐labelled A (dAFc) and FcPa‐labelled C (dCFcPa) were synthesized and hybridized with capture oligonucleotides immobilized on gold electrodes to study the electrochemistry of the redox‐labelled DNA. Clearly distinguishable, fully orthogonal and ratiometric peaks were observed for the dAFc and dCFcPa bases in DNA, demonstrating their potential for use in redox coding of nucleobases and for the direct electrochemical measurement of the relative ratio of nucleobases in an unknown sequence of DNA.
Collapse
Affiliation(s)
- Anna Simonova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2, 12843, Czech Republic
| | - Ivan Magriñá
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, 26 Països Catalans, 43007, Tarragona, Spain
| | - Veronika Sýkorová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610, Prague 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610, Prague 6, Czech Republic
| | - Mayreli Ortiz
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, 26 Països Catalans, 43007, Tarragona, Spain
| | - Luděk Havran
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic
| | - Miroslav Fojta
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic.,Central European Institute of Technology, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Ciara K O'Sullivan
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, 26 Països Catalans, 43007, Tarragona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys, 23, 08010, Barcelona, Spain
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2, 12843, Czech Republic
| |
Collapse
|
11
|
Magriñá I, Jauset-Rubio M, Ortiz M, Tomaso H, Simonova A, Hocek M, O’Sullivan CK. Duplex Electrochemical DNA Sensor to Detect Bacillus anthracis CAP and PAG DNA Targets Based on the Incorporation of Tailed Primers and Ferrocene-Labeled dATP. ACS OMEGA 2019; 4:21900-21908. [PMID: 31891068 PMCID: PMC6933787 DOI: 10.1021/acsomega.9b02890] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/21/2019] [Indexed: 05/08/2023]
Abstract
We report the duplex amplification of two plasmid DNA markers involved in the virulence of Bacillus anthracis, CAP and PAG, and the direct electrochemical detection of these amplicons. The method consists of the simultaneous amplification of the two targets in a single-pot reaction via polymerase chain reaction (PCR) using tailed primers and ferrocene-labeled dATP. Following amplification, the PCR products hybridize to probes immobilized on electrodes in a microfabricated electrode array chip. The incorporated ferrocene labeled dATP is then detected using square wave voltammetry. We evaluated the effect of electrolyte cations, anions, and concentration to condense, bend, and shrink double-stranded DNA and their effect on the intensity of the ferrocene signal. We obtained detection limits of 0.8 and 3.4 fM for CAP and PAG targets, respectively. We successfully developed a method to detect the presence of both targets in genomic DNA extracted from real samples.
Collapse
Affiliation(s)
- Ivan Magriñá
- INTERFIBIO
Consolidated Research Group, Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans
26, 43007 Tarragona, Spain
| | - Miriam Jauset-Rubio
- INTERFIBIO
Consolidated Research Group, Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans
26, 43007 Tarragona, Spain
| | - Mayreli Ortiz
- INTERFIBIO
Consolidated Research Group, Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans
26, 43007 Tarragona, Spain
| | - Herbert Tomaso
- Friedrich-Loeffler-Institut, Naumburger Str. 96a, 07743 Jena, Germany
| | - Anna Simonova
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nám. 2, CZ-16610 Prague, Czech Republic
- Department
of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Michal Hocek
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nám. 2, CZ-16610 Prague, Czech Republic
- Department
of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Ciara K. O’Sullivan
- INTERFIBIO
Consolidated Research Group, Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans
26, 43007 Tarragona, Spain
- Institució
Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys, 23, 08010 Barcelona, Spain
| |
Collapse
|
12
|
Baluchová S, Daňhel A, Dejmková H, Ostatná V, Fojta M, Schwarzová-Pecková K. Recent progress in the applications of boron doped diamond electrodes in electroanalysis of organic compounds and biomolecules – A review. Anal Chim Acta 2019; 1077:30-66. [DOI: 10.1016/j.aca.2019.05.041] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/01/2019] [Accepted: 05/18/2019] [Indexed: 02/08/2023]
|
13
|
Havranová-Vidláková P, Krömer M, Sýkorová V, Trefulka M, Fojta M, Havran L, Hocek M. Vicinal Diol-Tethered Nucleobases as Targets for DNA Redox Labeling with Osmate Complexes. Chembiochem 2019; 21:171-180. [PMID: 31206939 DOI: 10.1002/cbic.201900388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Indexed: 12/19/2022]
Abstract
Six-valent osmium (osmate) complexes with nitrogenous ligands have previously been used for the modification and redox labeling of biomolecules involving vicinal diol moieties (typically, saccharides or RNA). In this work, aliphatic (3,4-dihydroxybutyl and 3,4-dihydroxybut-1-ynyl) or cyclic (6-oxo-6-(cis-3,4-dihydroxypyrrolidin-1-yl)hex-2-yn-1-yl, PDI) vicinal diols are attached to nucleobases to functionalize DNA for subsequent redox labeling with osmium(VI) complexes. The diol-linked 2'-deoxyribonucleoside triphosphates were used for the polymerase synthesis of diol-linked DNA, which, upon treatment with K2 OsO3 and bidentate nitrogen ligands, gave the desired Os-labeled DNA, which were characterized by means of the gel-shift assay and ESI-MS. Through ex situ square-wave voltammetry at a basal plane pyrolytic graphite electrode, the efficiency of modification/labeling of individual diols was evaluated. The results show that the cyclic cis-diol (PDI) was a better target for osmylation than that of the flexible aliphatic ones (alkyl- or alkynyl-linked). The osmate adduct-specific voltammetric signal obtained for OsVI -treated DNA decorated with PDI showed good proportionality to the number of PDI per DNA molecule. The OsVI reagents (unlike OsO4 ) do not attack nucleobases; thus offering specificity of modification on the introduced glycol targets.
Collapse
Affiliation(s)
| | - Matouš Krömer
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2, 12843, Czech Republic
| | - Veronika Sýkorová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Mojmír Trefulka
- The Czech Academy of Sciences, Institute of Biophysics, Královopolská 135, 612 65, Brno, Czech Republic
| | - Miroslav Fojta
- The Czech Academy of Sciences, Institute of Biophysics, Královopolská 135, 612 65, Brno, Czech Republic.,Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Luděk Havran
- The Czech Academy of Sciences, Institute of Biophysics, Královopolská 135, 612 65, Brno, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2, 12843, Czech Republic
| |
Collapse
|
14
|
Hocek M. Enzymatic Synthesis of Base-Functionalized Nucleic Acids for Sensing, Cross-linking, and Modulation of Protein-DNA Binding and Transcription. Acc Chem Res 2019; 52:1730-1737. [PMID: 31181911 DOI: 10.1021/acs.accounts.9b00195] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein-DNA interactions are important in replication, transcription, repair, as well as epigenetic modifications of DNA, which involve methylation and demethylation of DNA resulting in regulation of gene expression. Understanding of these processes and chemical tools for studying and perhaps even modulating them could be of great relevance and importance not only in chemical biology but also in real diagnostics and treatment of diseases. In the past decade, we have been working on development of synthesis of base-modified 2'-deoxyribo- or ribonucleoside triphosphates (dNTPs or NTPs) and their use in enzymatic synthesis of modified nucleic acids using DNA or RNA polymerases. These synthetic and enzymatic methods are briefly summarized with focus on recent development and outlining of scope, limitations, and further challenges. The main focus of this Account is on applications of base-modified nucleic acids in sensing of protein-DNA interactions, in covalent cross-linking to DNA-binding proteins ,and in modulation of protein-DNA binding and transcription. Several environment-sensitive fluorescent nucleotides were incorporated to DNA probes which responded to protein binding by light-up, changing of color, or lifetime of fluorescence. Using a cyclodextrin-peptide transporter, fluorescent nucleotides can be transported through the cell membrane and incorporated to genomic DNA. Several dNTPs bearing reactive groups (i.e., vinylsulfonamide or chloroacetamide) were used for polymerase synthesis of DNA reactive probes which cross-link to Cys, His, or Lys in peptides or proteins. An attractive challenge is to use DNA modifications and bioorthogonal reactions in the major groove of DNA for modulation and switching of protein-DNA interactions. We have systematically explored the influence of major-groove modifications on recognition and cleavage of DNA by restriction endonucleases and constructed simple chemical switches of DNA cleavage. Systematic study of the influence of major-groove modifications on transcription with bacterial RNA polymerases revealed not only that some modified bases are tolerated, but also that the presence of 5-hydroxymethyluracil or -cytosine can even enhance the transcription (350 or 250% compared to native DNA). Based on these results, we have constructed the first chemical switch of transcription based on photocaging of hydroxymethylpyrimidines in DNA by 2-nitrobenzyl protection (transcription off), photochemical deprotection of the DNA (transcription on), and enzymatic phosphorylation (only for 5-hydroxymethyluracil, transcription off). Although it has been so far demonstrated only in vitro, it is the proof-of-principle first step toward chemical epigenetics.
Collapse
Affiliation(s)
- Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| |
Collapse
|
15
|
Magriñá I, Toldrà A, Campàs M, Ortiz M, Simonova A, Katakis I, Hocek M, O'Sullivan CK. Electrochemical genosensor for the direct detection of tailed PCR amplicons incorporating ferrocene labelled dATP. Biosens Bioelectron 2019; 134:76-82. [PMID: 30954929 DOI: 10.1016/j.bios.2019.03.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 01/09/2023]
Abstract
An electrochemical genosensor for the detection and quantification of Karlodinium armiger is presented. The genosensor exploits tailed primers and ferrocene labelled dATP analogue to produce PCR products that can be directly hybridised on a gold electrode array and quantitatively measured using square wave voltammetry. Tailed primers consist of a sequence specific for the target, followed by a carbon spacer and a sequence specifically designed not to bind to genomic DNA, resulting in a duplex flanked by single stranded binding primers. The incorporation of the 7-(ferrocenylethynyl)-7-deaza-2'-deoxyadenosine triphosphate was optimised in terms of a compromise between maximum PCR efficiency and the limit of detection and sensitivity attainable using electrochemical detection via hybridisation of the tailed, ferrocene labelled PCR product. A limit of detection of 277aM with a linear range from 315aM to 10 fM starting DNA concentration and a sensitivity of 122 nA decade-1 was achieved. The system was successfully applied to the detection of genomic DNA in real seawater samples.
Collapse
Affiliation(s)
- Ivan Magriñá
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, 26 Països Catalans, 43007, Tarragona, Spain
| | - Anna Toldrà
- IRTA, Ctra. Poble Nou, km 5.5, 43540 Sant Carles de la Ràpita, Tarragona, Spain
| | - Mònica Campàs
- IRTA, Ctra. Poble Nou, km 5.5, 43540 Sant Carles de la Ràpita, Tarragona, Spain
| | - Mayreli Ortiz
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, 26 Països Catalans, 43007, Tarragona, Spain
| | - Anna Simonova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-16610, Prague, Czech Republic; Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843, Prague 2, Czech Republic
| | - Ioanis Katakis
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, 26 Països Catalans, 43007, Tarragona, Spain
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-16610, Prague, Czech Republic; Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843, Prague 2, Czech Republic.
| | - Ciara K O'Sullivan
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, 26 Països Catalans, 43007, Tarragona, Spain; Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys, 23, 08010, Barcelona, Spain.
| |
Collapse
|
16
|
Dual redox labeling of DNA as a tool for electrochemical detection of p53 protein-DNA interactions. Anal Chim Acta 2019; 1050:123-131. [DOI: 10.1016/j.aca.2018.10.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/04/2018] [Accepted: 10/23/2018] [Indexed: 12/18/2022]
|
17
|
Gu R, Oweida T, Yingling YG, Chilkoti A, Zauscher S. Enzymatic Synthesis of Nucleobase-Modified Single-Stranded DNA Offers Tunable Resistance to Nuclease Degradation. Biomacromolecules 2018; 19:3525-3535. [PMID: 30011192 DOI: 10.1021/acs.biomac.8b00816] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We synthesized long, nucleobase-modified, single-stranded DNA (ssDNA) using terminal deoxynucleotidyl transferase (TdT) enzymatic polymerization. Specifically, we investigated the effect of unnatural nucleobase size and incorporation density on ssDNA resistance to exo- and endonuclease degradation. We discovered that increasing the size and density of unnatural nucleobases enhances ssDNA resistance to degradation in the presence of exonuclease I, DNase I, and human serum. We also studied the mechanism of this resistance enhancement using molecular dynamics simulations. Our results show that the presence of unnatural nucleobases in ssDNA decreases local chain flexibility and hampers nuclease access to the ssDNA backbone, which hinders nuclease binding to ssDNA and slows its degradation. Our discoveries suggest that incorporating nucleobase-modified nucleotides into ssDNA, using enzymatic polymerization, is an easy and efficient strategy to prolong and tune the half-life of DNA-based materials in nucleases-containing environments.
Collapse
Affiliation(s)
| | - Thomas Oweida
- Department of Materials Science and Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Yaroslava G Yingling
- Department of Materials Science and Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | | | | |
Collapse
|
18
|
Plucnara M, Eksin E, Erdem A, Fojta M. Electrochemical Detection of SNP in Human Mitochondrial DNA Using Cyclic Primer Extension with Biotinylated Nucletides and Enzymatic Labeling at Disposable Pencil Graphite Electrodes. ELECTROANAL 2018. [DOI: 10.1002/elan.201800314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Medard Plucnara
- Institute of Biophysics Academy of Sciences of the Czech Republic, v.v.i. Královopolská 135 612 65 Brno Czech Republic
| | - Ece Eksin
- Ege University, Faculty of Pharmacy Analytical Chemistry Department 35100 Bornova, Izmir Turkey
- Ege University, Graduate School of Natural and Applied Science Biotechnology Department 35100 Bornova, Izmir Turkey
| | - Arzum Erdem
- Ege University, Faculty of Pharmacy Analytical Chemistry Department 35100 Bornova, Izmir Turkey
- Ege University, Graduate School of Natural and Applied Science Biotechnology Department 35100 Bornova, Izmir Turkey
| | - Miroslav Fojta
- Institute of Biophysics Academy of Sciences of the Czech Republic, v.v.i. Královopolská 135 612 65 Brno Czech Republic
| |
Collapse
|
19
|
Vosáhlová J, Koláčná L, Daňhel A, Fischer J, Balintová J, Hocek M, Schwarzová-Pecková K, Fojta M. Voltammetric and adsorption study of 4-nitrophenyl-triazole-labeled 2′-deoxycytidine and 7-deazaadenosine nucleosides at boron-doped diamond electrode. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Simonova A, Havran L, Pohl R, Fojta M, Hocek M. Phenothiazine-linked nucleosides and nucleotides for redox labelling of DNA. Org Biomol Chem 2018; 15:6984-6996. [PMID: 28792547 DOI: 10.1039/c7ob01439b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nucleosides and 2'-deoxyribonucleoside triphosphates (dNTPs) bearing phenothiazine (PT) attached to a nucleobase (cytosine or 7-deazaadenine) either directly or through an acetylene linker were prepared through Suzuki or Sonogashira cross-coupling and triphosphorylation, and were studied as building blocks for polymerase construction of modified DNA. The directly PT-substituted dNTPs were better substrates for polymerases than the alkyne-linked dNTPs but all of them were used in enzymatic synthesis of DNA using primer extension, nicking enzyme amplification, PCR or 3'-tail labelling by terminal deoxynucleotidyl transferase. The phenothiazine served as an oxidizable redox label (giving two analytically useful signals of oxidation on electrode) for nucleosides and DNA and was also used in orthogonal combination with previously developed benzofurazane or nitrophenyl labels for redox coding of DNA bases. Therefore, the title PT-linked dNTPs are useful additions to the portfolio of nucleotides for enzymatic synthesis of redox-labelled DNA for electrochemical analysis.
Collapse
Affiliation(s)
- Anna Simonova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, CZ-16610 Prague 6, Czech Republic
| | | | | | | | | |
Collapse
|
21
|
Botha F, Slavíčková M, Pohl R, Hocek M. Copper-mediated arylsulfanylations and arylselanylations of pyrimidine or 7-deazapurine nucleosides and nucleotides. Org Biomol Chem 2018; 14:10018-10022. [PMID: 27722411 DOI: 10.1039/c6ob01917j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The syntheses of 5-arylsulfanyl- or 5-arylselanylpyrimidine and 7-arylsulfanyl- or 7-arylselanyl-7-deazapurine nucleosides and nucleotides were developed by the Cu-mediated sulfanylations or selanylations of the corresponding 5-iodopyrimidine or 7-iodo-7-deazapurine nucleosides or nucleotides with diaryldisulfides or -diselenides. The reactions were also applicable for direct modifications of 2'-deoxycytidine triphosphate and the resulting 5-arylsulfanyl or 5-arylselanyl-dCTP served as substrates for the polymerase synthesis of modified DNA bearing arylsulfanyl or arylselanyl groups in the major groove.
Collapse
Affiliation(s)
- Filip Botha
- Institute of Organic Chemistry and Biochemistry, Academy of Science Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6, Czech Republic.
| | - Michaela Slavíčková
- Institute of Organic Chemistry and Biochemistry, Academy of Science Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6, Czech Republic.
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Academy of Science Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6, Czech Republic.
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Academy of Science Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6, Czech Republic. and Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843 Prague 2, Czech Republic
| |
Collapse
|
22
|
Daňhel A, Trošanová Z, Balintová J, Simonová A, Pospíšil L, Cvačka J, Hocek M, Fojta M. Electrochemical reduction of azidophenyl-deoxynucleoside conjugates at mercury surface. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.10.128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
Havranová-Vidláková P, Špaček J, Vítová L, Hermanová M, Dadová J, Raindlová V, Hocek M, Fojta M, Havran L. Butylacrylate-nucleobase Conjugates as Targets for Two-step Redox Labeling of DNA with an Osmium Tetroxide Complex. ELECTROANAL 2017. [DOI: 10.1002/elan.201700702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Jan Špaček
- The Czech Academy of Sciences; Institute of Biophysics; Královopolská 135 612 65 Brno Czech Republic
| | - Lada Vítová
- The Czech Academy of Sciences; Institute of Biophysics; Královopolská 135 612 65 Brno Czech Republic
| | - Monika Hermanová
- The Czech Academy of Sciences; Institute of Biophysics; Královopolská 135 612 65 Brno Czech Republic
| | - Jitka Dadová
- The Czech Academy of Sciences; Institute of Organic Chemistry and Biochemistry; Flemingovo namesti 2 16610 Prague 6 Czech Republic
| | - Veronika Raindlová
- The Czech Academy of Sciences; Institute of Organic Chemistry and Biochemistry; Flemingovo namesti 2 16610 Prague 6 Czech Republic
| | - Michal Hocek
- The Czech Academy of Sciences; Institute of Organic Chemistry and Biochemistry; Flemingovo namesti 2 16610 Prague 6 Czech Republic
- Department of Organic Chemistry, Faculty of Science; Charles University in Prague; Hlavova 8, Prague- 2 12843 Czech Republic
| | - Miroslav Fojta
- The Czech Academy of Sciences; Institute of Biophysics; Královopolská 135 612 65 Brno Czech Republic
- Central European Institute of Technology; Masaryk University; Kamenice 753/5 625 00 Brno Czech Republic
| | - Luděk Havran
- The Czech Academy of Sciences; Institute of Biophysics; Královopolská 135 612 65 Brno Czech Republic
| |
Collapse
|
24
|
Balintová J, Simonova A, Białek-Pietras M, Olejniczak A, Lesnikowski ZJ, Hocek M. Carborane-linked 2'-deoxyuridine 5'-O-triphosphate as building block for polymerase synthesis of carborane-modified DNA. Bioorg Med Chem Lett 2017; 27:4786-4788. [PMID: 29017785 DOI: 10.1016/j.bmcl.2017.09.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/13/2017] [Accepted: 09/30/2017] [Indexed: 11/16/2022]
Abstract
5-[(p-Carborane-2-yl)ethynyl]-2'-deoxyuridine 5'-O-triphosphate was synthesized and used as a good substrate in enzymatic construction of carborane-modified DNA or oligonucleotides containing up to 21 carborane moieties in primer extension reactions by DNA polymerases.
Collapse
Affiliation(s)
- Jana Balintová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| | - Anna Simonova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| | - Magdalena Białek-Pietras
- Institute of Medical Biology, Polish Academy of Sciences, Laboratory of Molecular Virology and Biological Chemistry, 106 Lodowa St., Lodz 93-232, Poland
| | - Agnieszka Olejniczak
- Institute of Medical Biology, Polish Academy of Sciences, Laboratory of Molecular Virology and Biological Chemistry, 106 Lodowa St., Lodz 93-232, Poland
| | - Zbigniew J Lesnikowski
- Institute of Medical Biology, Polish Academy of Sciences, Laboratory of Molecular Virology and Biological Chemistry, 106 Lodowa St., Lodz 93-232, Poland.
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic; Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic.
| |
Collapse
|
25
|
Ortiz M, Debela AM, Svobodova M, Thorimbert S, Lesage D, Cole RB, Hasenknopf B, O'Sullivan CK. PCR Incorporation of Polyoxometalate Modified Deoxynucleotide Triphosphates and Their Application in Molecular Electrochemical Sensing of Yersinia pestis. Chemistry 2017; 23:10597-10603. [PMID: 28544266 DOI: 10.1002/chem.201701295] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Indexed: 12/22/2022]
Abstract
Redox-labeled nucleotides are of increasing interest for the fabrication of next generation molecular tools and should meet requirements of being thermally stable, sensitive, and compatible with polymerase-mediated incorporation while also being electrochemically discriminable. The synthesis and characterization of Keggin and Dawson polyoxometalate-deoxynucleotide (POM-dNTP) bioconjugates linked through 7-deaza-modified purines is described. The modified POM-dNTPs were used for polymerase-based amplification of a DNA sequence specific for Yersinia pestis and the amplified DNA detected using an electrochemical DNA sensor. This highlights the potential of polyoxometalates as thermally stable, sensitive and polymerase-compatible redox labels for exploitation in bioanalytical applications.
Collapse
Affiliation(s)
- Mayreli Ortiz
- Department d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007, Tarragona, Spain
| | - Ahmed M Debela
- Institut Parisien de Chimie Moléculaire UMR 8232, Sorbonne Universités, UPMC, Univ. Paris 06, 4 place Jussieu, 75005, Paris, France
| | - Marketa Svobodova
- Department d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007, Tarragona, Spain
| | - Serge Thorimbert
- Institut Parisien de Chimie Moléculaire UMR 8232, Sorbonne Universités, UPMC, Univ. Paris 06, 4 place Jussieu, 75005, Paris, France
| | - Denis Lesage
- Institut Parisien de Chimie Moléculaire UMR 8232, Sorbonne Universités, UPMC, Univ. Paris 06, 4 place Jussieu, 75005, Paris, France
| | - Richard B Cole
- Institut Parisien de Chimie Moléculaire UMR 8232, Sorbonne Universités, UPMC, Univ. Paris 06, 4 place Jussieu, 75005, Paris, France
| | - Bernold Hasenknopf
- Institut Parisien de Chimie Moléculaire UMR 8232, Sorbonne Universités, UPMC, Univ. Paris 06, 4 place Jussieu, 75005, Paris, France
| | - Ciara K O'Sullivan
- Department d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007, Tarragona, Spain.,ICREA, Passeig Lluis Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
26
|
Matyašovský J, Perlíková P, Malnuit V, Pohl R, Hocek M. 2-Substituted dATP Derivatives as Building Blocks for Polymerase-Catalyzed Synthesis of DNA Modified in the Minor Groove. Angew Chem Int Ed Engl 2016; 55:15856-15859. [PMID: 27879047 PMCID: PMC6680173 DOI: 10.1002/anie.201609007] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Indexed: 12/11/2022]
Abstract
2'-Deoxyadenosine triphosphate (dATP) derivatives bearing diverse substituents (Cl, NH2 , CH3 , vinyl, ethynyl, and phenyl) at position 2 were prepared and tested as substrates for DNA polymerases. The 2-phenyl-dATP was not a substrate for DNA polymerases, but the dATPs bearing smaller substituents were good substrates in primer-extension experiments, producing DNA substituted in the minor groove. The vinyl-modified DNA was applied in thiol-ene addition and the ethynyl-modified DNA was applied in a CuAAC click reaction to form DNA labelled with fluorescent dyes in the minor groove.
Collapse
Affiliation(s)
- Ján Matyašovský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Pavla Perlíková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Vincent Malnuit
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843, Prague 2, Czech Republic
| |
Collapse
|
27
|
Matyašovský J, Perlíková P, Malnuit V, Pohl R, Hocek M. 2-Substituted dATP Derivatives as Building Blocks for Polymerase-Catalyzed Synthesis of DNA Modified in the Minor Groove. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201609007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ján Matyašovský
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Pavla Perlíková
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Vincent Malnuit
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo nam. 2 16610 Prague 6 Czech Republic
- Department of Organic Chemistry, Faculty of Science; Charles University in Prague; Hlavova 8 12843 Prague 2 Czech Republic
| |
Collapse
|
28
|
Danhel A, Trosanova Z, Balintova J, Havran L, Hocek M, Barek J, Fojta M. Voltammetric analysis of 5-(4-Azidophenyl)-2′-deoxycytidine nucleoside and azidophenyl-labelled single- and double-stranded DNAs. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.08.096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Debela AM, Thorimbert S, Hasenknopf B, O'Sullivan CK, Ortiz M. Electrochemical primer extension for the detection of single nucleotide polymorphisms in the cardiomyopathy associated MYH7 gene. Chem Commun (Camb) 2016; 52:757-9. [PMID: 26567828 DOI: 10.1039/c5cc07762a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We report the labelling of dideoxy nucleotides (ddNTPs) for use in electrochemical array based primer extension for the detection of single nucleotide polymorphisms (SNPs). The results confirm the extension of the immobilised primers for each of the four ddNTPs, representing a significant advance in achieving a cost-effective platform for screening of disease-specific SNPs.
Collapse
Affiliation(s)
- A M Debela
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain. and Sorbonne Universités, UPMC Univ Paris 06 Institut Parisien de Chimie Moléculaire, UMR CNRS 8232, 4 place Jussieu, 75005 Paris, France
| | - S Thorimbert
- Sorbonne Universités, UPMC Univ Paris 06 Institut Parisien de Chimie Moléculaire, UMR CNRS 8232, 4 place Jussieu, 75005 Paris, France
| | - B Hasenknopf
- Sorbonne Universités, UPMC Univ Paris 06 Institut Parisien de Chimie Moléculaire, UMR CNRS 8232, 4 place Jussieu, 75005 Paris, France
| | - C K O'Sullivan
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain. and ICREA, Passeig Lluis Companys 23, 08010 Barcelona, Spain
| | - M Ortiz
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain.
| |
Collapse
|
30
|
Flexible double-headed cytosine-linked 2'-deoxycytidine nucleotides. Synthesis, polymerase incorporation to DNA and interaction with DNA methyltransferases. Bioorg Med Chem 2016; 24:1268-76. [PMID: 26899597 DOI: 10.1016/j.bmc.2016.01.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/25/2016] [Accepted: 01/29/2016] [Indexed: 12/31/2022]
Abstract
New types of double-headed 2'-deoxycytidine 5'-O-triphosphates (dC(XC)TPs) bearing another cytosine or 5-fluorocytosine linked through a flexible propargyl, homopropargyl or pent-1-ynyl linker to position 5 were prepared by the aqueous Sonogashira cross-coupling reactions of 5-iodo-dCTP with the corresponding (fluoro)cytosine-alkynes. The modified dC(XC)TPs were good substrates for DNA polymerases and were used for enzymatic synthesis of cytosine-functionalized DNA by primer extension or PCR. The cytosine- or fluorocytosine-linked DNA probes did not significantly inhibit DNA methyltransferases and did not cross-link to these proteins.
Collapse
|
31
|
Electrochemical behavior of 7-deazaguanine- and 7-deazaadenine-modified DNA at the hanging mercury drop electrode. MONATSHEFTE FUR CHEMIE 2016. [DOI: 10.1007/s00706-015-1584-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Dadová J, Cahová H, Hocek M. Polymerase Synthesis of Base-Modified DNA. MODIFIED NUCLEIC ACIDS 2016. [DOI: 10.1007/978-3-319-27111-8_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Güixens-Gallardo P, Hocek M, Perlíková P. Inhibition of non-templated nucleotide addition by DNA polymerases in primer extension using twisted intercalating nucleic acid modified templates. Bioorg Med Chem Lett 2015; 26:288-291. [PMID: 26707394 DOI: 10.1016/j.bmcl.2015.12.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 12/10/2015] [Indexed: 12/22/2022]
Abstract
A simple and elegant method for inhibition of non-templated nucleotide addition by DNA polymerases and for following DNA 3'-heterogeneity in enzymatic DNA synthesis by primer extension (PEX) is described. When template bearing ortho-twisted intercalating nucleic acid (ortho-TINA) at the 5'-end is used, non-templated nucleotide addition is reduced in both the A- and B-family DNA polymerases (KOD XL, KOD (exo-), Bst 2.0, Therminator, Deep Vent (exo-) and Taq). Formation of a single oligonucleotide product was observed with ortho-TINA modified template and KOD XL, KOD (exo-), Bst 2.0, Deep Vent (exo-) and Taq DNA polymerases. This approach can be applied to the synthesis of both unmodified and base-modified oligonucleotides.
Collapse
Affiliation(s)
- Pedro Güixens-Gallardo
- Institute of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic, Gilead & IOCB Research Center, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic, Gilead & IOCB Research Center, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic; Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Pavla Perlíková
- Institute of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic, Gilead & IOCB Research Center, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic.
| |
Collapse
|
34
|
Mačková M, Boháčová S, Perlíková P, Poštová Slavětínská L, Hocek M. Polymerase Synthesis and Restriction Enzyme Cleavage of DNA Containing 7-Substituted 7-Deazaguanine Nucleobases. Chembiochem 2015; 16:2225-36. [PMID: 26382079 DOI: 10.1002/cbic.201500315] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Indexed: 01/06/2023]
Abstract
Previous studies of polymerase synthesis of base-modified DNAs and their cleavage by restriction enzymes have mostly related only to 5-substituted pyrimidine and 7-substituted 7-deazaadenine nucleotides. Here we report the synthesis of a series of 7-substituted 7-deazaguanine 2'-deoxyribonucleoside 5'-O-triphosphates (dG(R) TPs), their use as substrates for polymerase synthesis of modified DNA and the influence of the modification on their cleavage by type II restriction endonucleases (REs). The dG(R) TPs were generally good substrates for polymerases but the PCR products could not be visualised on agarose gels by intercalator staining, due to fluorescence quenching. The presence of 7-substituted 7-deazaguanine residues in recognition sequences of REs in most cases completely blocked the cleavage.
Collapse
Affiliation(s)
- Michaela Mačková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Soňa Boháčová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Pavla Perlíková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Lenka Poštová Slavětínská
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nám. 2, 16610, Prague 6, Czech Republic. .,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843, Prague 2, Czech Republic.
| |
Collapse
|
35
|
Synthesis of 5-isoxazol-3-yl-pyrimidine nucleosides as potential antileishmanial agents. Bioorg Med Chem Lett 2015; 25:2617-20. [DOI: 10.1016/j.bmcl.2015.04.097] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 11/17/2022]
|
36
|
Shaughnessy KH. Palladium-catalyzed modification of unprotected nucleosides, nucleotides, and oligonucleotides. Molecules 2015; 20:9419-54. [PMID: 26007192 PMCID: PMC6272472 DOI: 10.3390/molecules20059419] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/15/2015] [Accepted: 05/19/2015] [Indexed: 11/30/2022] Open
Abstract
Synthetic modification of nucleoside structures provides access to molecules of interest as pharmaceuticals, biochemical probes, and models to study diseases. Covalent modification of the purine and pyrimidine bases is an important strategy for the synthesis of these adducts. Palladium-catalyzed cross-coupling is a powerful method to attach groups to the base heterocycles through the formation of new carbon-carbon and carbon-heteroatom bonds. In this review, approaches to palladium-catalyzed modification of unprotected nucleosides, nucleotides, and oligonucleotides are reviewed. Polar reaction media, such as water or polar aprotic solvents, allow reactions to be performed directly on the hydrophilic nucleosides and nucleotides without the need to use protecting groups. Homogeneous aqueous-phase coupling reactions catalyzed by palladium complexes of water-soluble ligands provide a general approach to the synthesis of modified nucleosides, nucleotides, and oligonucleotides.
Collapse
Affiliation(s)
- Kevin H Shaughnessy
- Department of Chemistry, The University of Alabama, Box 870336, Tuscaloosa, AL 35487-0336, USA.
| |
Collapse
|
37
|
Takada T, Takemura M, Kawano Y, Nakamura M, Yamana K. Photoresponsive DNA monolayer prepared by primer extension reaction on the electrode. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:3993-3998. [PMID: 25807074 DOI: 10.1021/la505013u] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We describe a simple and convenient method for the preparation of photoresponsive DNA-modified electrodes using primer extension (PEX) reactions. A naphthalimide derivative was used as the photosensitizer that was attached to the C5-position of 2'-deoxyuridine-5'-triphosphate (dUTP(NI)). It has been found that dUTP(NI) is a good substrate for the PEX reactions using KOD Dash and Vent (exo-) enzymes in solutions to incorporate naphthalimide (NI) moieties into the DNA sequences. On the electrode surface immobilized with the primer/template DNA, the PEX reactions to incorporate dUTP(NI) molecules into the DNA sequence were found to efficiently proceed. With this solid-phase method, the DNA monolayers capable of generating photocurrent due to the photoresponsive NI molecule can be constructed. It was shown that the photocurrent generation was significantly suppressed by a single-nucleotide mismatch included in the primer/template DNA, which is applicable for the design of photoelectrochemical sensors to discriminate single-nucleotide sequences.
Collapse
Affiliation(s)
- Tadao Takada
- Department of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Mai Takemura
- Department of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Yuta Kawano
- Department of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Mitsunobu Nakamura
- Department of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Kazushige Yamana
- Department of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| |
Collapse
|
38
|
Congur G, Plucnara M, Erdem A, Fojta M. Detection of p53 Gene by Using Genomagnetic Assay Combined with Carbon Nanotube Modified Disposable Sensor Technology. ELECTROANAL 2015. [DOI: 10.1002/elan.201400731] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
39
|
Electrochemical behavior of anthraquinone- and nitrophenyl-labeled deoxynucleoside triphosphates: a contribution to development of multipotential redox labeling of DNA. MONATSHEFTE FUR CHEMIE 2015. [DOI: 10.1007/s00706-015-1435-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Bowater RP, Cobb AM, Pivonkova H, Havran L, Fojta M. Biophysical and electrochemical studies of protein–nucleic acid interactions. MONATSHEFTE FUR CHEMIE 2015. [DOI: 10.1007/s00706-014-1405-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Hocek M. Synthesis of base-modified 2'-deoxyribonucleoside triphosphates and their use in enzymatic synthesis of modified DNA for applications in bioanalysis and chemical biology. J Org Chem 2014; 79:9914-21. [PMID: 25321948 DOI: 10.1021/jo5020799] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The synthesis of 2'-deoxyribonucleoside triphosphates (dNTPs) either by classical triphosphorylation of nucleosides or by aqueous cross-coupling reactions of halogenated dNTPs is discussed. Different enzymatic methods for synthesis of modified oligonucleotides and DNA by polymerase incorporation of modified nucleotides are summarized, and the applications in redox or fluorescent labeling, as well as in bioconjugations and modulation of interactions of DNA with proteins, are outlined.
Collapse
Affiliation(s)
- Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center , Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| |
Collapse
|
42
|
Balintová J, Špaček J, Pohl R, Brázdová M, Havran L, Fojta M, Hocek M. Azidophenyl as a click-transformable redox label of DNA suitable for electrochemical detection of DNA-protein interactions. Chem Sci 2014; 6:575-587. [PMID: 28970873 PMCID: PMC5618110 DOI: 10.1039/c4sc01906g] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/09/2014] [Indexed: 12/17/2022] Open
Abstract
A new azido-based DNA redox label which can be transformed into nitrophenyltriazole by a CuAAC click reaction was developed. It was used for the mapping of DNA–protein interactions with electrochemical detection.
New redox labelling of DNA by an azido group which can be chemically transformed to nitrophenyltriazole or silenced to phenyltriazole was developed and applied to the electrochemical detection of DNA–protein interactions. 5-(4-Azidophenyl)-2′-deoxycytidine and 7-(4-azidophenyl)-7-deaza-2′-deoxyadenosine nucleosides were prepared by aqueous-phase Suzuki cross-coupling and converted to nucleoside triphosphates (dNTPs) which served as substrates for incorporation into DNA by DNA polymerase. The azidophenyl-modified nucleotides and azidophenyl-modified DNA gave a strong signal in voltammetric studies, at –0.9 V, due to reduction of the azido function. The Cu-catalyzed click reaction of azidophenyl-modified nucleosides or azidophenyl-modified DNA with 4-nitrophenylacetylene gave nitrophenyl-substituted triazoles, exerting a reduction peak at –0.4 V under voltammetry, whereas the click reaction with phenylacetylene gave electrochemically silent phenyltriazoles. The transformation of the azidophenyl label to nitrophenyltriazole was used for electrochemical detection of DNA–protein interactions (p53 protein) since only those azidophenyl groups in the parts of the DNA not shielded by the bound p53 protein were transformed to nitrophenyltriazoles, whereas those covered by the protein were not.
Collapse
Affiliation(s)
- Jana Balintová
- Institute of Organic Chemistry and Biochemistry , Academy of Sciences of the Czech Republic , Gilead & IOCB Research Center , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic .
| | - Jan Špaček
- Institute of Biophysics , v.v.i. Academy of Sciences of the Czech Republic , Kralovopolska 135 , 61265 Brno , Czech Republic .
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry , Academy of Sciences of the Czech Republic , Gilead & IOCB Research Center , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic .
| | - Marie Brázdová
- Institute of Biophysics , v.v.i. Academy of Sciences of the Czech Republic , Kralovopolska 135 , 61265 Brno , Czech Republic .
| | - Luděk Havran
- Institute of Biophysics , v.v.i. Academy of Sciences of the Czech Republic , Kralovopolska 135 , 61265 Brno , Czech Republic . .,Central European Institute of Technology , Masaryk University , Kamenice 753/5 , CZ-625 00 Brno , Czech Republic
| | - Miroslav Fojta
- Institute of Biophysics , v.v.i. Academy of Sciences of the Czech Republic , Kralovopolska 135 , 61265 Brno , Czech Republic . .,Central European Institute of Technology , Masaryk University , Kamenice 753/5 , CZ-625 00 Brno , Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry , Academy of Sciences of the Czech Republic , Gilead & IOCB Research Center , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic . .,Department of Organic Chemistry , Faculty of Science , Charles University in Prague , Hlavova 8 , CZ-12843 Prague 2 , Czech Republic
| |
Collapse
|
43
|
Simonova A, Balintová J, Pohl R, Havran L, Fojta M, Hocek M. Methoxyphenol and Dihydrobenzofuran as Oxidizable Labels for Electrochemical Detection of DNA. Chempluschem 2014. [DOI: 10.1002/cplu.201402194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
Mačková M, Pohl R, Hocek M. Polymerase synthesis of DNAs bearing vinyl groups in the major groove and their cleavage by restriction endonucleases. Chembiochem 2014; 15:2306-12. [PMID: 25179889 DOI: 10.1002/cbic.201402319] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Indexed: 01/12/2023]
Abstract
DNA molecules containing 5-vinyluracil, 5-vinylcytosine, or 7-deaza-7-vinyladenine were prepared by polymerase incorporation of the corresponding vinyl-modified 2'-deoxyribonucleoside triphosphates, and the influence of the vinyl group in the major groove of DNA on the cleavage by diverse type II restriction endonucleases (REs) was studied. The presence of 5-vinyluracil was tolerated by most of the REs, whereas only some REs were able to cleave sequences containing 7-deaza-7-vinyladenine. The enzyme ScaI was found to cleave DNA containing 5-vinylcytosine efficiently but not DNA containing the related 5-ethynylcytosine. All other REs failed to cleave sequences containing any cytosine modifications.
Collapse
Affiliation(s)
- Michaela Mačková
- Institute of Organic Chemistry and Biochemistry, Academy of Science Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)
| | | | | |
Collapse
|
45
|
Kielkowski P, Fanfrlík J, Hocek M. 7-Aryl-7-deazaadenine 2′-Deoxyribonucleoside Triphosphates (dNTPs): Better Substrates for DNA Polymerases than dATP in Competitive Incorporations. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404742] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
46
|
Kielkowski P, Fanfrlík J, Hocek M. 7-Aryl-7-deazaadenine 2'-deoxyribonucleoside triphosphates (dNTPs): better substrates for DNA polymerases than dATP in competitive incorporations. Angew Chem Int Ed Engl 2014; 53:7552-5. [PMID: 24890276 DOI: 10.1002/anie.201404742] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Indexed: 01/31/2023]
Abstract
A series of 7-substituted 7-deazaadenine and 5-substituted cytosine 2'-deoxyribonucleoside triphosphates (dNTPs) were tested for their competitive incorporations (in the presence of dATP and dCTP) into DNA by several DNA polymerases by using analysis based on cleavage by restriction endonucleases. 7-Aryl-7-deazaadenine dNTPs were more efficient substrates than dATP because of their higher affinity for the active site of the enzyme, as proved by kinetic measurements and calculations.
Collapse
Affiliation(s)
- Pavel Kielkowski
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic) http://www.uochb.cas.cz/hocekgroup
| | | | | |
Collapse
|
47
|
Voltammetric Study of dsDNA Modified by Multi-redox Label Based on N-methyl-4-hydrazino-7-nitrobenzofurazan. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.02.137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Hervé G, Sartori G, Enderlin G, Mackenzie G, Len C. Palladium-catalyzed Suzuki reaction in aqueous solvents applied to unprotected nucleosides and nucleotides. RSC Adv 2014. [DOI: 10.1039/c3ra47911k] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nucleoside analogues have attracted much attention due to their potential biological activities.
Collapse
Affiliation(s)
- Gwénaëlle Hervé
- Transformations Intégrées de la Matière Renouvelable
- UTC-ESCOM
- Centre de Recherche Royallieu
- F-60200 Compiègne, France
| | - Guillaume Sartori
- Transformations Intégrées de la Matière Renouvelable
- UTC-ESCOM
- Centre de Recherche Royallieu
- F-60200 Compiègne, France
| | - Gérald Enderlin
- Transformations Intégrées de la Matière Renouvelable
- UTC-ESCOM
- Centre de Recherche Royallieu
- F-60200 Compiègne, France
| | | | - Christophe Len
- Transformations Intégrées de la Matière Renouvelable
- UTC-ESCOM
- Centre de Recherche Royallieu
- F-60200 Compiègne, France
| |
Collapse
|