1
|
Chen M, Liu FM, Zhao MY, Qian X, Liu L, Wan R, Yuan ZY, Li CS, Niu QY. Rational Synthesis of Spongy Fe 3N@N-Doped Carbon Nanorods with Controlled Topography and Porosity for Enhanced Energy Storage Anodes in Lithium-Ion Batteries. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39468400 DOI: 10.1021/acs.langmuir.4c03305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Iron nitrides with the merits of high theoretical capacities, cost-effectiveness, and good electronic/ionic conductivity have been recognized as attractive anode candidates for lithium-ion batteries (LIBs). Carbon compositing, pore engineering, and nanostructure construction have proved to be effective strategies to prepare high-performance metal nitride anodes for LIBs. Herein, we synthesized a series of Fe3N-embedded and N-doped carbon nanorods (Fe3N@NCNR) with a hierarchical porous system and controllable topography by metal-catalyzed graphitization-nitridization of the Fe(III)-triazole framework (Fe-MOF) and thermal evaporation of the triblock copolymer F127 template assembled in Fe-MOF via hydrogen bonding interaction, followed by the air oxidation and urea-assisted ammonolysis processes. The Fe3N@NCNR as anodes for LIBs display extraordinary lithium storage capabilities with a high reversible capacity of 830 mA h g-1 at 0.1 C, a good rate performance of 576 mAh g-1 at 5 C, and a long-term cycling stability of 742 mA h g-1 over 600 cycles at 1 C. Such outstanding performance benefits from the spongy carbon nanorods with rich macropores for rapid electronic/ionic transport and effective accommodation of electrode volume expansion, abundant N-doped meso-/microporous carbon for the additional storage of Li+ via capacitive effect, and the efficient utilization of Fe3N nanoparticles uniformly distributed through carbon nanorods. Importantly, this work introduces an effective strategy to construct superior performance nitride anodes from MOF surfactants based on hydrogen bonding-driven interface self-assembly and provides insight into the preparation of highly efficient nanoarchitectures for Li+ storage.
Collapse
Affiliation(s)
- Ming Chen
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Feng-Ming Liu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Ming-Yang Zhao
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Xing Qian
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Lei Liu
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Rong Wan
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Zhong-Yong Yuan
- School of Materials Science and Engineering, Nankai University, Tianjin 300071, China
| | - Chun-Sheng Li
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qing-Yuan Niu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
2
|
Zhang L, Wang R, Chai W, Ma M, Li L. Controllable Preparation of a N-Doped Hierarchical Porous Carbon Framework Derived from ZIF-8 for Highly Efficient Capacitive Deionization. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48800-48809. [PMID: 37788171 DOI: 10.1021/acsami.3c10043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Capacitive deionization (CDI) is a promising desalination technology, and metal-organic framework (MOF)-derived carbon as an electrode material has received more and more attention due to its designable structure. However, MOF-derived carbon materials with single-pore structures have been difficult to meet the technical needs of related fields. In this work, the ordered hierarchical porous carbon framework (OMCF) was prepared by the template method using zeolitic imidazolate frameworks-8 (ZIF-8) as a precursor. The pore structures, surface properties, electrochemical properties, and CDI performances of the OMCF were investigated and compared with the microporous carbon framework (MCF), also derived from ZIF-8. The results show that the hierarchical porous carbon OMCF possessed a higher specific surface area, better hydrophilic surface (with a contact angle of 13.45°), and higher specific capacitance and ion diffusion rate than those of the MCF, which made the OMCF exhibit excellent CDI performances. The adsorption capacity and salt adsorption rate of the OMCF in a 500 mg·L-1 NaCl solution at 1.2 V and a 20 mL·min-1 flow rate were 12.17 mg·g-1 and 3.34 mg·g-1·min-1, respectively, higher than those of the MCF. The deionization processes of the OMCF and MCF closely follow the pseudo-first-order kinetics, indicating the double-layer capacitance control. This work serves as a valuable reference for the CDI application of N-doped hierarchical porous carbon derived from MOFs.
Collapse
Affiliation(s)
- Longyu Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Rui Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Wencui Chai
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Henan Laboratory of Critical Metals, Zhengzhou University, Zhengzhou 450001, China
| | - Mengyao Ma
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Linke Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
3
|
Tang Y, Lu L, Zang X, Wang B, Ye X. Tailored Properties of Carbon for Supercapacitors by Blending Lignin and Cellulose to Mimic Biomass as Carbonaceous Precursor. CHEMSUSCHEM 2023; 16:e202300357. [PMID: 37150752 DOI: 10.1002/cssc.202300357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/09/2023]
Abstract
KOH-activated carbon materials prepared from biomass-derived carbon source, cellulose and lignin, were compared. Mixtures of different ratios of cellulose and lignin were used to partially mimic biomass as carbon source. This allows tailoring and optimizing of the KOH activated carbon materials by getting rid of the restriction of the intrinsic proportion of cellulose and lignin in specific biomass. The results indicate that cellulose use results in a more porous structure, whereas lignin use leads to more partially activated graphite structure. The activated carbon material (CL1) prepared from blend of cellulose with lignin in mass ratio of 1 : 1 exhibits a high specific surface area of 2000.39 m2 g-1 , and in TEABF4 /ACN (tetraethylammonium tetrafluoroborate dissolved in acetonitrile) electrolyte it showed a maximum specific capacitance of 136.10 F g-1 , a maximum energy density of 18.11 Wh kg-1 , and a capacitance retention of 85.04 % under current density as high as 15 A g-1 .
Collapse
Affiliation(s)
- Yinan Tang
- Key Laboratory of Advanced Catalysis Materials of Ministry of Education, College of Chemistry and Materials Sciences, Zhejiang Normal University, Zhejiang, 321004, China
| | - Lu Lu
- Key Laboratory of Advanced Catalysis Materials of Ministry of Education, College of Chemistry and Materials Sciences, Zhejiang Normal University, Zhejiang, 321004, China
| | - Xiaoxian Zang
- Zhejiang Baima Lake Laboratory Co., Ltd., Zhejiang, 310000, China
| | - Buhuan Wang
- Zhejiang Baima Lake Laboratory Co., Ltd., Zhejiang, 310000, China
| | - Xiangrong Ye
- Key Laboratory of Advanced Catalysis Materials of Ministry of Education, College of Chemistry and Materials Sciences, Zhejiang Normal University, Zhejiang, 321004, China
- Zhejiang Baima Lake Laboratory Co., Ltd., Zhejiang, 310000, China
| |
Collapse
|
4
|
Huang X, Lin J, Liang J, Kou E, Cai W, Zheng Y, Zhang H, Zhang X, Liu Y, Li W, Lei B. Pyridinic Nitrogen Doped Carbon Dots Supply Electrons to Improve Photosynthesis and Extracellular Electron Transfer of Chlorella pyrenoidosa. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2206222. [PMID: 36907994 DOI: 10.1002/smll.202206222] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Optimizing photosynthesis is imperative for providing energy and organics for all life on the earth. Here, carbon dots doped with pyridinic nitrogen (named lev-CDs) are synthesized by the one-pot hydrothermal method, and the structure-function relationship between functional groups on lev-CDs and photosynthesis of Chlorella pyrenoidosa (C. pyrenoidosa) is proposed. Pyridinic nitrogen plays a key role in the positive effect on photosynthesis caused by lev-CDs. In detail, lev-CDs act as electron donors to supply photo-induced electrons to P680+ and QA+ , causing electron transfer from lev-CDs to the photosynthetic electron transport chain in the photosystems. In return, the recombination efficiency of electron-hole pairs on lev-CDs decreases. As a result, the electron transfer rate in the electron transport chain, the activity of photosystem II, and the Calvin cycle are enhanced. Moreover, the electron transfer rate between C. pyrenoidosa and external circumstances enhanced by lev-CDs is about 50%, and electrons exported from C. pyrenoidosa can be used to reduce iron(III). This study is of great significance for engineering nanomaterials to improve photosynthesis.
Collapse
Affiliation(s)
- Xiaoman Huang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Junjie Lin
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Jiarong Liang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Erfeng Kou
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Wenxiao Cai
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Yinjian Zheng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Science, Chengdu, 610218, China
| | - Haoran Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, Guangdong, 525100, China
| | - Xuejie Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Yingliang Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Wei Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Bingfu Lei
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, Guangdong, 525100, China
| |
Collapse
|
5
|
Shrestha LK, Wei Z, Subramaniam G, Shrestha RG, Singh R, Sathish M, Ma R, Hill JP, Nakamura J, Ariga K. Nanoporous Hollow Carbon Spheres Derived from Fullerene Assembly as Electrode Materials for High-Performance Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13050946. [PMID: 36903824 PMCID: PMC10005309 DOI: 10.3390/nano13050946] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 05/20/2023]
Abstract
The energy storage performances of supercapacitors are expected to be enhanced by the use of nanostructured hierarchically micro/mesoporous hollow carbon materials based on their ultra-high specific surface areas and rapid diffusion of electrolyte ions through the interconnected channels of their mesoporous structures. In this work, we report the electrochemical supercapacitance properties of hollow carbon spheres prepared by high-temperature carbonization of self-assembled fullerene-ethylenediamine hollow spheres (FE-HS). FE-HS, having an average external diameter of 290 nm, an internal diameter of 65 nm, and a wall thickness of 225 nm, were prepared by using the dynamic liquid-liquid interfacial precipitation (DLLIP) method at ambient conditions of temperature and pressure. High temperature carbonization (at 700, 900, and 1100 °C) of the FE-HS yielded nanoporous (micro/mesoporous) hollow carbon spheres with large surface areas (612 to 1616 m2 g-1) and large pore volumes (0.925 to 1.346 cm3 g-1) dependent on the temperature applied. The sample obtained by carbonization of FE-HS at 900 °C (FE-HS_900) displayed optimum surface area and exhibited remarkable electrochemical electrical double-layer capacitance properties in aq. 1 M sulfuric acid due to its well-developed porosity, interconnected pore structure, and large surface area. For a three-electrode cell setup, a specific capacitance of 293 F g-1 at a 1 A g-1 current density, which is approximately 4 times greater than the specific capacitance of the starting material, FE-HS. The symmetric supercapacitor cell was assembled using FE-HS_900 and attained 164 F g-1 at 1 A g-1 with sustained 50% capacitance at 10 A g-1 accompanied by 96% cycle life and 98% coulombic efficiency after 10,000 consecutive charge/discharge cycles. The results demonstrate the excellent potential of these fullerene assemblies in the fabrication of nanoporous carbon materials with the extensive surface areas required for high-performance energy storage supercapacitor applications.
Collapse
Affiliation(s)
- Lok Kumar Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba 1-1-1, Tennodai, Tsukuba 305-8573, Ibaraki, Japan
- Correspondence: (L.K.S.); (K.A.)
| | - Zexuan Wei
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Chiba, Japan
| | - Gokulnath Subramaniam
- Electrochemical Power Sources Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630003, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Tamil Nadu, India
| | - Rekha Goswami Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | - Ravi Singh
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba 1-1-1, Tennodai, Tsukuba 305-8573, Ibaraki, Japan
| | - Marappan Sathish
- Electrochemical Power Sources Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630003, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Tamil Nadu, India
| | - Renzhi Ma
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | - Jonathan P. Hill
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | - Junji Nakamura
- Mitsui Chemicals, Inc., Carbon Neutral Research Center (MCI–CNRC), International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-shi 819-0395, Fukuoka, Japan
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Chiba, Japan
- Correspondence: (L.K.S.); (K.A.)
| |
Collapse
|
6
|
Kong W, Wang S, Zhang X, Fu X, Zhang W. Evaluation of Biological Pretreatment of Wormwood Rod Reies with White Rot Fungi for Preparation of Porous Carbon. J Fungi (Basel) 2022; 9:jof9010043. [PMID: 36675864 PMCID: PMC9866032 DOI: 10.3390/jof9010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/11/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
In this work, the wormwood rod residues are pretreated with white rot fungi as the precursor to preparing porous carbon following a simple carbonization and activation process (denoted herein as FWRA sample). The FWRA sample possesses abundant hierarchical pores structure with high specific surface area (1165.7 m2 g-1) and large pore volume (1.02 cm3 g-1). As an electrode for supercapacitors, the FWRA sample offers a high specific capacitance of 443.2 F g-1 at 0.5 A g-1 and superb rate ability holding a specific capacitance of 270 F g-1 at 100 A g-1 in 6 M KOH electrolyte. The corresponding symmetrical capacitor has a superb cyclic stability with a low specific capacitance decay rate of 0.4% after 20,000 cycles at 5 A g-1 in 1 M Na2SO4 electrolyte. Moreover, measurements revealed that when used as adsorbent, the FWRA sample is ideal for removing methyl orange (MO) from water, exhibiting a superior adsorption ability of 260.8 mg g-1. Therefore, this study is expected to provide a simple and environmentally friendly technique for the generation of value-added and functional porous carbon materials from Chinese medicinal herbal residues, thus offering promising candidates for broad application areas.
Collapse
|
7
|
Promotion role of B doping in N, B co-doped humic acids-based porous carbon for enhancing catalytic performance of oxidative dehydrogenation of propane using CO2. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02251-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
Yaqoob L, Noor T, Iqbal N. Conversion of Plastic Waste to Carbon-Based Compounds and Application in Energy Storage Devices. ACS OMEGA 2022; 7:13403-13435. [PMID: 35559169 PMCID: PMC9088909 DOI: 10.1021/acsomega.1c07291] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/24/2022] [Indexed: 06/02/2023]
Abstract
At present, plastic waste accumulation has been observed as one of the most alarming environmental challenges, affecting all forms of life, economy, and natural ecosystems, worldwide. The overproduction of plastic materials is mainly due to human population explosion as well as extraordinary proliferation in the global economy accompanied by global productivity. Under this threat, the development of benign and green alternative solutions instead of traditional disposal methods such as conversion of plastic waste materials into cherished carbonaceous nanomaterials such as carbon nanotubes (CNTs), carbon quantum dots (CQDs), graphene, activated carbon, and porous carbon is of utmost importance. This critical review thoroughly summarizes the different types of daily used plastics, their types, properties, ways of accumulation and their effect on the environment and human health, treatment of waste materials, conversion of waste materials into carbon-based compounds through different synthetic schemes, and their utilization in energy storage devices particularly in supercapacitors, as well as future perspectives. The main purpose of this review is to help the targeted audience to design their futuristic study in this desired field by providing information about the work done in the past few years.
Collapse
Affiliation(s)
- Lubna Yaqoob
- School
of Natural Sciences (SNS), National University
of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Tayyaba Noor
- School
of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Naseem Iqbal
- U.S.
-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), H-12 Campus, Islamabad 44000, Pakistan
| |
Collapse
|
9
|
Pallavolu MR, Gaddam N, Banerjee AN, Nallapureddy RR, Kumar YA, Joo SW. Facile construction and controllable design of CoTiO3@Co3O4/N CNO hybrid heterojunction nanocomposite electrode for high-performance supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139868] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Liu S, Han Q, Yang C, Li H, Xia H, Zhou J, Liu X. High mass load of oxygen-enriched microporous hollow carbon spheres as electrode for supercapacitor with solar charging station application. J Colloid Interface Sci 2022; 608:1514-1525. [PMID: 34742070 DOI: 10.1016/j.jcis.2021.10.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/26/2021] [Accepted: 10/12/2021] [Indexed: 01/24/2023]
Abstract
Carbon materials modified with pores and heteroatoms have been pursued as promising electrode for supercapacitors due to the synergic storage of electric double-layer capacitance (EDLC) and pseudocapacitance. A vital problem that the actual effect of pores and heteroatoms on energy storage varies with the carbon matrix used presents in numerous carbon electrodes, but is ignored greatly, which limits their sufficient utilization. Moreover, most of modified carbon electrodes still suffer from severe capacitance degeneration under high mass load caused by the blocked surface and inaccessible bulk phase. Here, we shape an interconnected hollow carbon sphere (HCS) as the matrix by regulating and selectively-etching low molecular weight component in the inhomogeneous precursors, accompanied with the decoration of rich oxygen groups (15.9at%) and micropores (centering at 0.6-1.4 nm). Finite-element calculation and energy storage kinetics reveal the modified HCS electrode exposes accessible dual active surface with highly-matched electrons and ions for pores and oxygen groups to improve both EDLC and pseudocapacitance. Under a commercial-level load of 11.2 mg cm-2, the HCS exhibits a high specific capacitance of 288.3 F g-1 at 0.5 A g-1, performing a retention of 91.8% relative to 314 F g-1 under 2.8 mg cm-2 load, applicable for solar charging station to efficiently drive portable electronics.
Collapse
Affiliation(s)
- Shaobo Liu
- School of Physics and Electronics, Central South University, Changsha 410083, PR China; Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, Changsha 410083, PR China
| | - Qiang Han
- School of Physics and Electronics, Central South University, Changsha 410083, PR China; Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, Changsha 410083, PR China
| | - Chenggang Yang
- School of Physics and Electronics, Central South University, Changsha 410083, PR China; Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, Changsha 410083, PR China
| | - Hongjian Li
- School of Physics and Electronics, Central South University, Changsha 410083, PR China
| | - Hui Xia
- School of Physics and Electronics, Central South University, Changsha 410083, PR China
| | - Jianfei Zhou
- School of Physics and Electronics, Central South University, Changsha 410083, PR China
| | - Xiaoliang Liu
- School of Physics and Electronics, Central South University, Changsha 410083, PR China; Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, Changsha 410083, PR China.
| |
Collapse
|
11
|
Wang R, Wang H, Zhou Y, Gao Z, Han Y, Jiang K, Zhang W, Wu D. Green Synthesis of N doped Porous carbon/Carbon dots Composite as Metal-Free Catalytic Electrode Materials for Iodide Mediated Quasi-solid Flexible Supercapacitor. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00017b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
P-nitroaniline is adopted as versatile precursor for preparation of N-doped porous carbon (PC) and carbon dots (CDs) with enriched N functionalities, and the CDs are further anchored onto PC to...
Collapse
|
12
|
Qu J, Chu TC, Meng XX, Zhang LY, Li ZX. Coordination Polymer Derived Porous Carbon Activated in Situ by the ZnCl 2 Dot: Capacitances Greatly Enhanced by Redox-Activity Additives in Electrolytes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14275-14283. [PMID: 34846900 DOI: 10.1021/acs.langmuir.1c01778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein, a 1D zinc coordination polymer [Zn(bibp)Cl2]∞ (CP-2-ZX) was assembled from the reaction of 4,4'-bis(imidazol-1-yl)-biphenyl (bibp) with ZnCl2. Through a calcination-thermolysis strategy, sponge-like highly porous carbon AC-Zn-CP was prepared by employing the coralloid sample of CP-2-ZX as the precursor. For comparisons, a series of activated carbon (AC-n) was obtained by the similar heating process on the mixture of bibp with ZnCl2 at different mass ratios. The results illustrate that the atomically dispersed ZnCl2 dot in the 1D chain of CP-2-ZX has an in situ activation effect on the generation of AC-Zn-CP, which can greatly promote the porosity and achieve high-efficiency utilization of ZnCl2. Therefore, the atomically dispersed activating agent provides a new method for environmentally friendly production of porous carbon materials. Significantly, the AC-Zn-CP electrode displays specific capacitance of 215 F g-1 in 3 M KOH solution, which will be largely promoted to 1419 F g-1 in the redox active electrolyte of K3[Fe(CN)6]/KOH. AC-Zn-CP also shows remarkable cycling stability (the capacity retention is 89.0% after 5000 cycles). Moreover, the fabricated symmetric supercapacitor owns a high energy density of 34.8 Wh kg-1 at 785.5 W kg-1. So, the AC-Zn-CP∩K3[Fe(CN)6] system has wide application prospects in supercapacitors.
Collapse
Affiliation(s)
- Jia Qu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry and Material Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Tian-Cheng Chu
- Institute of Materials Science and Devices, School of Material Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, P. R. China
| | - Xiao-Xue Meng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry and Material Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Li-Ying Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry and Material Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Zuo-Xi Li
- Institute of Materials Science and Devices, School of Material Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, P. R. China
| |
Collapse
|
13
|
Oseghe EO, Akpotu SO, Mombeshora ET, Oladipo AO, Ombaka LM, Maria BB, Idris AO, Mamba G, Ndlwana L, Ayanda OS, Ofomaja AE, Nyamori VO, Feleni U, Nkambule TT, Msagati TA, Mamba BB, Bahnemann DW. Multi-dimensional applications of graphitic carbon nitride nanomaterials – A review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117820] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Makgopa K, Ratsoma MS, Raju K, Mabena LF, Modibane KD. One-Step Hydrothermal Synthesis of Nitrogen-Doped Reduced Graphene Oxide/Hausmannite Manganese Oxide for Symmetric and Asymmetric Pseudocapacitors. ACS OMEGA 2021; 6:31421-31434. [PMID: 34869969 PMCID: PMC8637592 DOI: 10.1021/acsomega.1c02302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
In this paper, the pseudocapacitive performance of nitrogen-doped and undoped reduced graphene oxide/tetragonal hausmannite nanohybrids (N-rGO/Mn3O4 and rGO/Mn3O4) synthesized using a one-pot hydrothermal method is reported. The nanohybrid electrode materials displayed exceptional electrochemical performance relative to their respective individual precursors (i.e., reduced graphene oxide (rGO), nitrogen-doped reduced graphene oxide (N-rGO), and tetragonal hausmannite (Mn3O4)) for symmetric pseudocapacitors. Among the two nanohybrids, N-rGO/Mn3O4 displayed greater performance with a high specific capacitance of 345 F g-1 at a current density of 0.1 A g-1, excellent specific energy of 12.0 Wh kg-1 (0.1 A g-1), and a high power density of 22.5 kW kg-1 (10.0 A g-1), while rGO/Mn3O4 demonstrated a high specific capacitance of 264 F g-1 (0.1 A g-1) with specific energy and power densities of 9.2 Wh kg-1 (0.1 A g-1) and 23.6 kW kg-1 (10.0 A g-1), respectively. Furthermore, the N-rGO/Mn3O4 nanohybrid exhibited an impressive pseudocapacitive performance when fabricated in an asymmetric configuration, having a stable potential window of 2.0 V in 1.0 M Na2SO4 electrolyte. The nanohybrid showed excellent specific energy and power densities of 34.6 Wh kg-1 (0.1 A g-1) and 14.01 kW kg-1 (10.0 A g-1), respectively. These promising results provide a good substance for developing novel carbon-based metal oxide electrode materials in pseudocapacitor applications.
Collapse
Affiliation(s)
- Katlego Makgopa
- Department
of Chemistry, Faculty of Science, Tshwane
University of Technology (Arcadia Campus), Pretoria 0001, South Africa
| | - Mpho S. Ratsoma
- Department
of Chemistry, Faculty of Science, Tshwane
University of Technology (Arcadia Campus), Pretoria 0001, South Africa
| | - Kumar Raju
- Electrochemical
Energy Technologies (EET), Energy Centre,
Council for Scientific and Industrial Research (CSIR), Pretoria 0001, South Africa
| | - Letlhogonolo F. Mabena
- Department
of Chemistry, Faculty of Science, Tshwane
University of Technology (Arcadia Campus), Pretoria 0001, South Africa
| | - Kwena D. Modibane
- Department
of Chemistry, School of Physical and Mineral Sciences, University of Limpopo (Turfloop Campus), Sovenga, 0727 Polokwane, South Africa
| |
Collapse
|
15
|
Nitrogen self-doped activated carbons with narrow pore size distribution from bamboo shoot shells. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Chen Z, Mo Y, Lin D, Tuo Y, Feng X, Liu Y, Chen X, Chen D, Yang C. Engineering the efficient three-dimension hollow cubic carbon from vacuum residuum with enhanced mass transfer ability towards H2O2 production. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Template assisted synthesis of porous termite nest-like manganese cobalt phosphide as binder-free electrode for supercapacitors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Cong S, Yang Y, He F, Zhao J, Li K, Wang X, Xiong S, Wu Y, Zhou A. Synthesis of N‐Doped Porous Carbon/Carbon Micro‐Nanotubes/Ni
x
Co
y
O
z
Nanosheets as a High‐Capacity Electrode Material for Supercapacitors. ChemistrySelect 2021. [DOI: 10.1002/slct.202102400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shaoling Cong
- College of Chemistry & Chemical Engineering Xi'an University of Science& Technology Xi'an 710054 PR China
| | - Yufei Yang
- Department of Chemical Engineering and Power Engineering Shenmu Vocational & Technical College Shenmu 719300 PR China
| | - Fan He
- College of Chemistry & Chemical Engineering Xi'an University of Science& Technology Xi'an 710054 PR China
| | - Jie Zhao
- College of Chemistry & Chemical Engineering Xi'an University of Science& Technology Xi'an 710054 PR China
| | - Kanshe Li
- College of Chemistry & Chemical Engineering Xi'an University of Science& Technology Xi'an 710054 PR China
| | - Xiaoqin Wang
- College of Chemistry & Chemical Engineering Xi'an University of Science& Technology Xi'an 710054 PR China
- Key Laboratory of Coal Resources Exploration and Comprehensive Utilization Ministry of Natural Resources Xi'an 710021 PR China
| | - Shanxin Xiong
- College of Chemistry & Chemical Engineering Xi'an University of Science& Technology Xi'an 710054 PR China
- Key Laboratory of Coal Resources Exploration and Comprehensive Utilization Ministry of Natural Resources Xi'an 710021 PR China
| | - Yan Wu
- Key Laboratory of Coal Resources Exploration and Comprehensive Utilization Ministry of Natural Resources Xi'an 710021 PR China
| | - Anning Zhou
- College of Chemistry & Chemical Engineering Xi'an University of Science& Technology Xi'an 710054 PR China
- Key Laboratory of Coal Resources Exploration and Comprehensive Utilization Ministry of Natural Resources Xi'an 710021 PR China
| |
Collapse
|
19
|
Zhao Z, Xiao Z, Xi Y, Wang G, Zhang Y, Li J, Wei L. B,N-Codoped Porous C with Controllable N Species as an Electrode Material for Supercapacitors. Inorg Chem 2021; 60:13252-13261. [PMID: 34352170 DOI: 10.1021/acs.inorgchem.1c01617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Manufacturing heteroatom-doped porous C with controllable N species is an important issue for supercapacitors. Herein, we report a low-cost and simplified strategy for synthesizing B,N-codoped porous C (BNPC) by a freeze-drying chitosan-boric acid aerogel beads and subsequent carbonization treatment. The BNPC samples were studied using various characterization technologies. The introduction of boric acid to chitosan successfully induced the formation of B,N-codoped C with a well-developed 3D interconnected porous structure. The B doping had a significant impact on the distribution of N species in the samples. Moreover, the good wettability of the sample resulting from B doping is favorable for electrolyte diffusion and ion transport. As a consequence, the optimal BNPC sample showed an excellent specific capacitance of 240 F g-1 at 0.5 A g-1 and an outstanding capacitance retention of 95.1% after 10000 cycles at 5 A g-1. An assembled symmetrical supercapacitor displayed an energy density of 11.4 Wh kg-1 at a power density of 250 W kg-1. The proposed work provides a simple and effective method to obtain B,N-codoped C-based materials with high electrochemical performance.
Collapse
Affiliation(s)
- Zhenyu Zhao
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Zuoyi Xiao
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yaru Xi
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Guoxiang Wang
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Youchen Zhang
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jiajun Li
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Li Wei
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
20
|
Nitrogen-doped carbonaceous scaffold anchored with cobalt nanoparticles as sulfur host for efficient adsorption and catalytic conversion of polysulfides in lithium-sulfur batteries. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138371] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Cu2O-loaded heteroatom-doped worm-like hierarchical porous carbon flakes for high-performance energy storage devices. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Zhou X, Guo L, Wang Q, Wang J, Wang X, Yang J, Tang J. Nitrogen-doped porous graphitized carbon from antibiotic bacteria residues induced by sodium carbonate and application in Li-ion battery. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Zhu Y, Wang M, Zhang Y, Wang R, Zhang Y, Wang C. Nitrogen/oxygen dual-doped hierarchically porous carbon/graphene composite as high-performance anode for potassium storage. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Arkhipova EA, Ivanov AS, Maslakov KI, Chernyak SA, Savilov SV. Nitrogen Heterosubstitution in Graphene Nanoflakes: An Effective Approach to Improving Performance of Supercapacitors with Ionic Liquid Electrolyte. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s0036024421030031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
Nitrogen-doped graphene nanoflakes with a high nitrogen content (6.6 at %) and developed mesoporosity were synthesized via pyridine pyrolysis. They were tested in a supercapacitor with a non-aqueous electrolyte: a 1.2 M solution of ionic liquid Et4N+TFSI− in acetonitrile. It was found that incorporation of nitrogen into the graphene layers nearly tripled the specific capacitance of the electrode, compared to the undoped nanoflakes.
Collapse
|
25
|
The Effect of Modifications of Activated Carbon Materials on the Capacitive Performance: Surface, Microstructure, and Wettability. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5030066] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this review, the efforts done by different research groups to enhance the performance of the electric double-layer capacitors (EDLCs), regarding the effect of the modification of activated carbon structures on the electrochemical properties, are summarized. Activated carbon materials with various porous textures, surface chemistry, and microstructure have been synthesized using several different techniques by different researchers. Micro-, meso-, and macroporous textures can be obtained through the activation/carbonization process using various activating agents. The surface chemistry of activated carbon materials can be modified via: (i) the carbonization of heteroatom-enriched compounds, (ii) post-treatment of carbon materials with reactive heteroatom sources, and (iii) activated carbon combined both with metal oxide materials dan conducting polymers to obtain composites. Intending to improve the EDLCs performance, the introduction of heteroatoms into an activated carbon matrix and composited activated carbon with either metal oxide materials or conducting polymers introduced a pseudo-capacitance effect, which is an additional contribution to the dominant double-layer capacitance. Such tricks offer high capacitance due to the presence of both electrical double layer charge storage mechanism and faradic charge transfer. The surface modification by attaching suitable heteroatoms such as phosphorus species increases the cell operating voltage, thereby improving the cell performance. To establish a detailed understanding of how one can modify the activated carbon structure regarding its porous textures, the surface chemistry, the wettability, and microstructure enable to enhance the performance of the EDLCs is discussed here in detail. This review discusses the basic key parameters which are considered to evaluate the performance of EDLCs such as cell capacitance, operating voltage, equivalent series resistance, power density, and energy density, and how these are affected by the modification of the activated carbon framework.
Collapse
|
26
|
Manikandan R, Raj CJ, Moulton SE, Todorov TS, Yu KH, Kim BC. High Energy Density Heteroatom (O, N and S) Enriched Activated Carbon for Rational Design of Symmetric Supercapacitors. Chemistry 2021; 27:669-682. [PMID: 32700787 DOI: 10.1002/chem.202003253] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Indexed: 11/10/2022]
Abstract
Carbon-based symmetric supercapacitors (SCs) are known for their high power density and long cyclability, making them an ideal candidate for power sources in new-generation electronic devices. To boost their electrochemical performances, deriving activated carbon doped with heteroatoms such as N, O, and S are highly desirable for increasing the specific capacitance. In this regard, activated carbon (AC) self-doped with heteroatoms is directly derived from bio-waste (lima-bean shell) using different KOH activation processes. The heteroatom-enriched AC synthesized using a pretreated carbon-to-KOH ratio of 1:2 (ONS@AC-2) shows excellent surface morphology with a large surface area of 1508 m2 g-1 . As an SC electrode material, the presence of heteroatoms (N and S) reduces the interfacial charge-transfer resistance and increases the ion-accessible surface area, which inherently provides additional pseudocapacitance. The ONS@AC-2 electrode attains a maximum specific capacitance (Csp ) of 342 F g-1 at a specific current of 1 Ag-1 in 1 m NaClO4 electrolyte at the wide potential window of 1.8 V. Moreover, as symmetric SCs the ONS@AC-2 electrode delivers a maximum specific capacitance (Csc ) of 191 F g-1 with a maximum specific energy of 21.48 Wh kg-1 and high specific power of 14 000 W kg-1 and excellent retention of its initial capacitance (98 %) even after 10000 charge/discharge cycles. In addition, a flexible supercapacitor fabricated utilizing ONS@AC-2 electrodes and a LiCl/polyvinyl alcohol (PVA)-based polymer electrolyte shows a maximum Csc of 119 F g-1 with considerable specific energy and power.
Collapse
Affiliation(s)
- Ramu Manikandan
- Department of Printed Electronics Engineering, Sunchon National University, 255, Jungang-ro, Suncheon-si, Jellanamdo, 57922, Republic of Korea
| | - C Justin Raj
- Department of Chemistry, Dongguk University-Seoul, Jung-gu, Seoul, 04620, Republic of Korea
| | - Simon E Moulton
- ARC Centre of Excellence for Electromaterials Science, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia.,Biomedical Engineering Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Todor Stoilo Todorov
- Department of Theory of Mechanisms and Machines, Faculty of Industrial Technology, Technical University of Sofia, Sofia, 1797, Bulgaria
| | - Kook Hyun Yu
- Department of Chemistry, Dongguk University-Seoul, Jung-gu, Seoul, 04620, Republic of Korea
| | - Byung Chul Kim
- Department of Printed Electronics Engineering, Sunchon National University, 255, Jungang-ro, Suncheon-si, Jellanamdo, 57922, Republic of Korea
| |
Collapse
|
27
|
Luo M, Zhu Z, Yang K, Yang P, Miao Y, Chen M, Chen W, Zhou X. Sustainable biomass-based hierarchical porous carbon for energy storage: A novel route to maintain electrochemically attractive natural structure of precursor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 747:141923. [PMID: 33076210 DOI: 10.1016/j.scitotenv.2020.141923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/18/2020] [Accepted: 08/22/2020] [Indexed: 05/25/2023]
Abstract
The development of sustainable and renewable energy storage devices with low cost and environment friendly features is an extremely urgent issue that needs to be solved. Herein, low-cost and sustainable biomass chitin, possessing natural fibrous, O/N-enriched and porous structure, was employed as a porous carbon (PC) precursor. However, a huge challenge in PC preparation is to maintain the natural electrochemically attractive structure of chitin while obtaining highly porous structure. In this study, by utilizing the molten protecting effect and micropore-creating ability of CuCl2 2H2O, the obtained PCs maintain the natural structure, achieve high yield (46%), and simultaneously develop hierarchical pores with a specific surface area range of 1635-2381 m2 g-1, a tunable micropore volume ratio range of 63.5-96.8%, and high surface O/N contents (N: 3.1-9.0 wt% and O: 10.5-12.8 wt%). Benefiting from these excellent properties, optimized PC achieves a high specific capacitance of 286 F g-1 at 0.5 A g-1 and a remarkably high rate capability of 88% at 10 A g-1; moreover, it even exhibits a rate capability of 80% at an ultrahigh current density of 50 A g-1. The optimized PC-based supercapacitor assembled in Na2SO4 electrolyte shows a high energy density of 15.41 W h kg-1 at 0.19 kW kg-1 and achieves 76% energy density retention when the power density increased tenfold. Thus, this study presents a new way to fully utilize biomass, especially with electrochemically attractive natural structure, for developing advanced energy storage devices.
Collapse
Affiliation(s)
- Min Luo
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Ziqi Zhu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Kai Yang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Pei Yang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Yingchun Miao
- Electron Microscope Lab, Nanjing Forestry University, Nanjing 210037, China
| | - Minzhi Chen
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Weimin Chen
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China.
| | - Xiaoyan Zhou
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China.
| |
Collapse
|
28
|
Sun X, Kong Y, Liu Y, Zhou L, Nanjundan AK, Huang X, Yu C. Nitrogen-Doped Mesoporous Carbon Microspheres by Spray Drying-Vapor Deposition for High-Performance Supercapacitor. Front Chem 2020; 8:592904. [PMID: 33240851 PMCID: PMC7683435 DOI: 10.3389/fchem.2020.592904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/05/2020] [Indexed: 11/13/2022] Open
Abstract
Nitrogen-doped mesoporous carbon microspheres have been successfully synthesized via a spray drying-vapor deposition method for the first time, using commercial Ludox silica nanoparticles as hard templates. Compared to freeze-drying and air-drying methods, mesoporous carbon with a higher packing density can be achieved through the spray drying method. Vapor deposition of polypyrrole followed by carbonization and etching is beneficial for the generation of ultra-thin carbon network. The mesoporous carbon microspheres possess a mesopore-dominate (95%) high surface area of 1528 m2 g−1, a wall thickness of 1.8 nm, and a nitrogen content of 8 at% in the framework. Benefiting from the increased apparent density, high mesopore surface area, and considerable nitrogen doping, the resultant mesoporous carbon microspheres show superior gravimetric/volumetric capacitance of 533.6 F g−1 and 208.1 F cm−3, good rate performance and excellent cycling stability in electric double-layer capacitors.
Collapse
Affiliation(s)
- Xiaoran Sun
- Institute of Photovoltaics, Southwest Petroleum University, Chengdu, China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Yueqi Kong
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Yang Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Liang Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| | - Ashok Kumar Nanjundan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- Ashok Kumar Nanjundan
| | - Xiaodan Huang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- *Correspondence: Xiaodan Huang
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| |
Collapse
|
29
|
Dong D, Zhang Y, Xiao Y, Wang T, Wang J, Romero CE, Pan WP. High performance aqueous supercapacitor based on nitrogen-doped coal-based activated carbon electrode materials. J Colloid Interface Sci 2020; 580:77-87. [DOI: 10.1016/j.jcis.2020.07.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/28/2020] [Accepted: 07/05/2020] [Indexed: 11/29/2022]
|
30
|
Liu J, Su D, Liu L, Liu Z, Nie S, Zhang Y, Xia J, Deng H, Wang X. Boosting the charge transfer of Li 2TiSiO 5 using nitrogen-doped carbon nanofibers: towards high-rate, long-life lithium-ion batteries. NANOSCALE 2020; 12:19702-19710. [PMID: 32966509 DOI: 10.1039/d0nr04618c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Li2TiSiO5 (LTSO) has a theoretical specific capacity of up to 315 mA h g-1 with a suitable working potential (0.28 V vs. Li/Li+). However, the electronic structure of Li2TiSiO5 is firstly investigated by theoretical calculation based on the first-principles approach, and the results demonstrate that Li2TiSiO5 acts as the insulator for transferring electrons. Therefore, the framework with better conductivity is very essential for Li2TiSiO5 to enhance the charge transfer kinetics. Nitrogen-doped carbon encapsulated Li2TiSiO5 nanofibers (LTSO/NDC nanofibers) are obtained by using carbamide as a nitrogen source through an electrospinning technique. The nitrogen-doped carbon matrix with high electronic conductivity improves the electrochemical properties of LTSO significantly. The diffusion coefficient of lithium ions (DLi+) is greatly improved by manual calculation. The LTSO/NDC nanofiber electrode can deliver 371.7 mA h g-1 at 0.1 A g-1 and 361.1 mA h g-1 at 0.2 A g-1, and also shows a comparable cycle performance which could endure a long cycle over 800 cycles at 0.5 A g-1 almost without capacity decay. Hence, the LTSO/NDC nanofiber anode with a high rate and a long life provides a new direction for the realization of LTSO-based compounds in lithium ion batteries.
Collapse
Affiliation(s)
- Junfang Liu
- National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China.
| | - Die Su
- National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China.
| | - Li Liu
- National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China.
| | - Zhixiao Liu
- College of Materials Science and engineering, Hunan University, Changsha 410082, Peoples' Republic of China.
| | - Su Nie
- National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China.
| | - Yue Zhang
- National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China.
| | - Jing Xia
- National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China.
| | - Huiqiu Deng
- School of Physics and Electronics, Hunan University, Changsha 410082, Peoples' Republic of China
| | - Xianyou Wang
- National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China.
| |
Collapse
|
31
|
Kim HC, Huh S. Porous Carbon-Based Supercapacitors Directly Derived from Metal-Organic Frameworks. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4215. [PMID: 32972017 PMCID: PMC7560464 DOI: 10.3390/ma13184215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/04/2020] [Accepted: 09/21/2020] [Indexed: 01/13/2023]
Abstract
Numerously different porous carbons have been prepared and used in a wide range of practical applications. Porous carbons are also ideal electrode materials for efficient energy storage devices due to their large surface areas, capacious pore spaces, and superior chemical stability compared to other porous materials. Not only the electrical double-layer capacitance (EDLC)-based charge storage but also the pseudocapacitance driven by various dopants in the carbon matrix plays a significant role in enhancing the electrochemical supercapacitive performance of porous carbons. Since the electrochemical capacitive activities are primarily based on EDLC and further enhanced by pseudocapacitance, high-surface carbons are desirable for these applications. The porosity of carbons plays a crucial role in enhancing the performance as well. We have recently witnessed that metal-organic frameworks (MOFs) could be very effective self-sacrificing templates, or precursors, for new high-surface carbons for supercapacitors, or ultracapacitors. Many MOFs can be self-sacrificing precursors for carbonaceous porous materials in a simple yet effective direct carbonization to produce porous carbons. The constituent metal ions can be either completely removed during the carbonization or transformed into valuable redox-active centers for additional faradaic reactions to enhance the electrochemical performance of carbon electrodes. Some heteroatoms of the bridging ligands and solvate molecules can be easily incorporated into carbon matrices to generate heteroatom-doped carbons with pseudocapacitive behavior and good surface wettability. We categorized these MOF-derived porous carbons into three main types: (i) pure and heteroatom-doped carbons, (ii) metallic nanoparticle-containing carbons, and (iii) carbon-based composites with other carbon-based materials or redox-active metal species. Based on these cases summarized in this review, new MOF-derived porous carbons with much enhanced capacitive performance and stability will be envisioned.
Collapse
Affiliation(s)
| | - Seong Huh
- Department of Chemistry and Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies, Yongin 17035, Korea;
| |
Collapse
|
32
|
Chen J, Lin C, Zhang M, Jin T, Qian Y. Constructing Nitrogen, Selenium Co‐Doped Graphene Aerogel Electrode Materials for Synergistically Enhanced Capacitive Performance. ChemElectroChem 2020. [DOI: 10.1002/celc.202000635] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jianfa Chen
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices School of ChemistryBiologyand Materials ScienceEast China University of Technology Nanchang, Jiangxi 330013 China
| | - Chong Lin
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices School of ChemistryBiologyand Materials ScienceEast China University of Technology Nanchang, Jiangxi 330013 China
| | - Mengmeng Zhang
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices School of ChemistryBiologyand Materials ScienceEast China University of Technology Nanchang, Jiangxi 330013 China
| | - Tianxiang Jin
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices School of ChemistryBiologyand Materials ScienceEast China University of Technology Nanchang, Jiangxi 330013 China
| | - Yong Qian
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices School of ChemistryBiologyand Materials ScienceEast China University of Technology Nanchang, Jiangxi 330013 China
| |
Collapse
|
33
|
Sun R, Hou S, Luo C, Ji X, Wang L, Mai L, Wang C. A Covalent Organic Framework for Fast-Charge and Durable Rechargeable Mg Storage. NANO LETTERS 2020; 20:3880-3888. [PMID: 32319781 DOI: 10.1021/acs.nanolett.0c01040] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
High-safety, low-cost, and high-volumetric-capacity rechargeable magnesium batteries (RMBs) are promising alternatives to lithium ion batteries. However, lack of high-power, high-energy, and stable cathodes for RMBs hinders their commercialization. Herein, an environmentally benign, low-cost, and sustainable covalent organic framework (COF) cathode for Mg storage is reported for the first time. It delivers a high power density of 2.8 kW kg-1, a high specific energy density of 146 Wh kg-1, and an ultralong cycle life of 3000 cycles with a very slow capacity decay rate of 0.0196% per cycle, representing one of the best cathodes to date. The comprehensive electrochemical analysis proves that triazine ring sites in the COF are redox centers for reversible reaction with magnesium ions, and the ultrafast reaction kinetics are mainly attributed to pseudocapacitive behavior. The high-rate Mg storage of the COF offers new opportunities for the development of ultrastable and fast-charge RMBs.
Collapse
Affiliation(s)
- Ruimin Sun
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Singyuk Hou
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Chao Luo
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, Virginia 22030, United States
| | - Xiao Ji
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Luning Wang
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Chunsheng Wang
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
34
|
Li D, Li W, Zhang H, Zhang X, Zhuang J, Liu Y, Hu C, Lei B. Far-Red Carbon Dots as Efficient Light-Harvesting Agents for Enhanced Photosynthesis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21009-21019. [PMID: 32281782 DOI: 10.1021/acsami.9b21576] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sunlight utilization by plants via the photosynthesis process is limited to the visible spectral range. How to expand the utilization spectral range via construction of a hybrid photosynthetic system is a hot topic in this field. In this work, far-red carbon dots (FR-CDs) with excellent water solubility, good biocompatibility, high quantum yield (QY), and superior stability were prepared by a one-step microwave synthesis in 3 min. The as-prepared FR-CDs is an efficient converter transferring ultraviolet A (UV-A) light to 625-800 nm far-red emission, which can be directly absorbed and utilized by chloroplasts. Due to the broader spectral utilization of solar energy and Emerson effect, increased photosynthetic activity can be achieved both in vivo and in vitro when applied for Roman lettuce. The in vitro hybrid photosynthetic system via coating chloroplasts with FR-CDs presents higher electron transfer efficiency between PS II (photosystem II) to PS I (photosystem I), which consequently increases the ATP production. The in vivo experiment further confirms that FR-CDs-treated lettuce can induce a 28.00% higher electron transfer rate compared with the control group, which results in 51.14 and 24.60% enhancement of fresh and dry weights, respectively. This work is expected to provide a way for improving the conversion efficiency from solar energy to chemical energy. (PS II) to photosystem I (PS I), which consequently increases the ATP production. The in vivo experiment further confirms that FR-CDs-treated lettuce can induce a 28.00% higher electron transfer rate compared with the control group, which results in 51.14 and 24.60% enhancement of fresh and dry weights, respectively. This work is expected to provide a way for improving the conversion efficiency from solar energy to chemical energy.
Collapse
Affiliation(s)
- Dongna Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Wei Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Haoran Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Xuejie Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Jianle Zhuang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Yingliang Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Chaofan Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Bingfu Lei
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| |
Collapse
|
35
|
Chang HW, Fu JX, Huang YC, Lu YR, Kuo CH, Chen JL, Chen CL, Lee JF, Chen JM, Tsai YC, Ching Chou W, Dong CL. NiCo2O4/graphene quantum dots (GQDs) for use in efficient electrochemical energy devices: An electrochemical and X-ray absorption spectroscopic investigation. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Wang S, Xiao Z, Zhai S, Wang G, Niu W, Qin L, Li Z, An Q. Construction of Sn–Mo bimetallic oxide nanoparticle-encapsulated P-doped 3D hierarchical porous carbon through an in-situ reduction and competitive cross-linking strategy for efficient pseudocapacitive energy storage. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
37
|
Qiao Y, Li Q, Cheng XB, Liu F, Yang Y, Lu Z, Zhao J, Wu J, Liu H, Yang S, Liu Y. Three-Dimensional Superlithiophilic Interphase for Dendrite-Free Lithium Metal Anodes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5767-5774. [PMID: 31922385 DOI: 10.1021/acsami.9b18315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lithium metal is among the most promising anode candidates of high-energy-density batteries. However, the formed dendrites result in low Coulombic efficiency and serious security issues. Designing lithiophilic sites is one of the effective strategies to control Li deposition. Herein, we propose a three-dimensional lithiophilic N-rich carbon nanofiber with the decoration of ZnO granules as a protective layer for a dendrite-free lithium metal anode. Theoretical evaluation indicates the synergistic effects of lithiophilic ZnO and N-containing functional groups enhance lithium adsorption and trigger uniform deposition. With the lithiophilic interlayer, the lithium deposition overpotential is only ∼20, 50, and 74 mV at 1, 3, and 6 mA cm-2, respectively, which are much lower than those without the functional interlayer (∼55, 130, and 238 mV). The average Coulombic efficiency of lithium stripping and plating is up to ∼97.4% (94.0% for that without the interlayer) at 0.5 mA cm-2. Meanwhile, the Li|LiFePO4 full cell with the superlithiophilic interlayer demonstrates a high capacity retention rate of 99.6% (91.0% for that without the interlayer) over 200 cycles at 1 C. The introduction of the lithiophilic interphase could provide a convenient strategy and guidance to design the configuration for the practical application of Li metal batteries.
Collapse
Affiliation(s)
- Yun Qiao
- School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang 453007 , China
- National and Local Joint Engineering Laboratory of Motive Power and Key Materials , Xinxiang 453007 , China
| | - Qingling Li
- School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang 453007 , China
- National and Local Joint Engineering Laboratory of Motive Power and Key Materials , Xinxiang 453007 , China
| | - Xin-Bing Cheng
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , China
| | - Fuxia Liu
- College of Physics and Materials Science , Henan Normal University , Xinxiang 453007 , China
| | - Yange Yang
- School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang 453007 , China
- National and Local Joint Engineering Laboratory of Motive Power and Key Materials , Xinxiang 453007 , China
| | - Zhansheng Lu
- College of Physics and Materials Science , Henan Normal University , Xinxiang 453007 , China
| | - Jin Zhao
- School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang 453007 , China
- National and Local Joint Engineering Laboratory of Motive Power and Key Materials , Xinxiang 453007 , China
| | - Jiawei Wu
- School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang 453007 , China
- National and Local Joint Engineering Laboratory of Motive Power and Key Materials , Xinxiang 453007 , China
| | - He Liu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , China
| | - Shuting Yang
- School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang 453007 , China
- National and Local Joint Engineering Laboratory of Motive Power and Key Materials , Xinxiang 453007 , China
| | - Yang Liu
- School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang 453007 , China
| |
Collapse
|
38
|
Mohapatra D, Muhammad O, Sayed MS, Parida S, Shim JJ. In situ nitrogen-doped carbon nano-onions for ultrahigh-rate asymmetric supercapacitor. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135363] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Sulfur modification of carbon materials as well as the redox additive of Na2S for largely improving capacitive performance of supercapacitors. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113678] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Song X, Chen Q, Shen E, Liu H. N-Doped 3D hierarchical carbon from resorcinol–formaldehyde–melamine resin for high-performance supercapacitors. NEW J CHEM 2020. [DOI: 10.1039/c9nj06415j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
N-Doped hierarchical porous carbons were fabricated by foaming and carbonizing resorcinol–formaldehyde–melamine resin and used as electrodes for flexible solid-state supercapacitors.
Collapse
Affiliation(s)
- Xuehua Song
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering, East China University of Science and Technology
- Shanghai
- P. R. China
| | - Qibin Chen
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering, East China University of Science and Technology
- Shanghai
- P. R. China
| | - Enhui Shen
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering, East China University of Science and Technology
- Shanghai
- P. R. China
| | - Honglai Liu
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering, East China University of Science and Technology
- Shanghai
- P. R. China
| |
Collapse
|
41
|
Luo B, Yu D, Huo J. Co(II)-based 2D framework with sql topology: Adsorption of permanganate ions in water and energy storage performances. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
42
|
Dassanayake AC, Gonçalves AA, Fox J, Jaroniec M. One-pot synthesis of activated porous graphitic carbon spheres with cobalt nanoparticles. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Integrating surface functionalization and redox additives to improve surface reactivity for high performance supercapacitors. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134810] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Metallic Organic Framework-Derived Fe, N, S co-doped Carbon as a Robust Catalyst for the Oxygen Reduction Reaction in Microbial Fuel Cells. ENERGIES 2019. [DOI: 10.3390/en12203846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oxygen reduction reaction (ORR) provides a vital role for microbial fuel cells (MFCs) due to its slow reaction kinetics compared with the anodic oxidation reaction. How to develop new materials with low cost, high efficacy, and eco-friendliness which could replace platinum-based electrocatalysis is a challenge that we have to resolve. In this work, we accomplished this successfully by means of a facile strategy to synthesize a metallic organic framework-derived Fe, N, S co-doped carbon with FeS as the main phase. The Fe/S@N/C-0.5 catalyst demonstrated outstandingly enhanced ORR activity in neutral PBS and alkaline media, compared to that of commercial 20% Pt-C catalyst. Here, we started-up and operated two parallel single-chamber microbial fuel cells of an air cathode, and those cathode catalysts were Fe/S@N/C-0.5 and commercial Pt-C (20% Pt), respectively. Scanning electron microscopy (SEM) elaborated that the Fe/S@N/C-0.5 composite did not change the polyhedron morphology of ZIF-8. According to X-ray diffractometry(XRD) curves, the main crystal phase of the resulted Fe/S@N/C-0.5 was FeS. The chemical environment of N, S, and Fe which are anticipated to be the high-efficiency active sites of ORR for MFCs were investigated by X-ray photoelectron spectroscopic(XPS). Nitrogen adsorption/desorption techniques were used to calculate the pore diameter distribution. In brief, the obtained Fe/S@N/C-0.5 material exhibited a pronounced reduction potential at 0.861 V (versus Reversible Hydrogen Electrode(RHE)) in 0.1M KOH solution and –0.03 V (vs. SCE) in the PBS solution, which both outperform the benchmark platinum-based catalysts. Fe/S@N/C-0.5-MFC had a higher Open Circuit Voltage(OCV) (0.71 V), stronger maximum power density (1196 mW/m2), and larger output voltage (0.47 V) than the Pt/C-MFC under the same conditions.
Collapse
|
45
|
Zhao P, Yao M, Zhang Q, Wang N, Hu W, Komarneni S. Electrochemical behavior of representative electrode materials in artificial seawater for fabricating supercapacitors. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
46
|
Song SY, Liu KK, Wei JY, Lou Q, Shang Y, Shan CX. Deep-Ultraviolet Emissive Carbon Nanodots. NANO LETTERS 2019; 19:5553-5561. [PMID: 31276414 DOI: 10.1021/acs.nanolett.9b02093] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Deep-ultraviolet (DUV) emissive carbon nanodots (CNDs) have been designed theoretically and demonstrated experimentally based on the results of first-principles calculations using the density functional theory method. The emission of the CNDs is located in the range from 280 to 300 nm, which coincides well with the results of theoretical calculation results. The photoluminescence (PL) quantum yield (QY) of the CNDs is up to 31.6%, and the strong emission of the CNDs originates from core-state (π-π*) carriers' radiative recombination and surface passivation. Benefiting from the core-state emission and surface group passivation, the emission of the CNDs is independent of the excitation wavelength and ambient solvent. DUV light-emitting diodes (LEDs) have been fabricated based on the DUV emissive CNDs, and the LEDs can be used as the excitation source to excite blue, green, and red CNDs, indicating their potential application in DUV light sources. This work may provide a clue for the designing and realizing of DUV emissive CNDs, thus promising the potential application of CNDs in DUV light-emitting sources.
Collapse
Affiliation(s)
- Shi-Yu Song
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics , Zhengzhou University , Zhengzhou 450052 , China
| | - Kai-Kai Liu
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics , Zhengzhou University , Zhengzhou 450052 , China
| | - Jian-Yong Wei
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics , Zhengzhou University , Zhengzhou 450052 , China
| | - Qing Lou
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics , Zhengzhou University , Zhengzhou 450052 , China
| | - Yuan Shang
- Super Computer Center, Smart City Institute , Zhengzhou University , Zhengzhou 450001 , China
| | - Chong-Xin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics , Zhengzhou University , Zhengzhou 450052 , China
| |
Collapse
|
47
|
Zhu Y, Fang T, Hua J, Qiu S, Chu H, Zou Y, Xiang C, Huang P, Zhang K, Lin X, Yan E, Zhang H, Xu F, Sun L, Zeng J. Biomass‐Derived Porous Carbon Prepared from Egg White for High‐performance Supercapacitor Electrode Materials. ChemistrySelect 2019. [DOI: 10.1002/slct.201901632] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ying Zhu
- Guangxi Key Laboratory of Information MaterialsGuangxi Collaborative Innovation Centre of Structure and Property for New Energy Materials and School of Materials Science and EngineeringGuilin University of Electronic Technology Guilin 541004 P. R. China
| | - Tingting Fang
- Guangxi Key Laboratory of Information MaterialsGuangxi Collaborative Innovation Centre of Structure and Property for New Energy Materials and School of Materials Science and EngineeringGuilin University of Electronic Technology Guilin 541004 P. R. China
| | - Junqiang Hua
- Guangxi Key Laboratory of Information MaterialsGuangxi Collaborative Innovation Centre of Structure and Property for New Energy Materials and School of Materials Science and EngineeringGuilin University of Electronic Technology Guilin 541004 P. R. China
| | - Shujun Qiu
- Guangxi Key Laboratory of Information MaterialsGuangxi Collaborative Innovation Centre of Structure and Property for New Energy Materials and School of Materials Science and EngineeringGuilin University of Electronic Technology Guilin 541004 P. R. China
| | - Hailiang Chu
- Guangxi Key Laboratory of Information MaterialsGuangxi Collaborative Innovation Centre of Structure and Property for New Energy Materials and School of Materials Science and EngineeringGuilin University of Electronic Technology Guilin 541004 P. R. China
| | - Yongjin Zou
- Guangxi Key Laboratory of Information MaterialsGuangxi Collaborative Innovation Centre of Structure and Property for New Energy Materials and School of Materials Science and EngineeringGuilin University of Electronic Technology Guilin 541004 P. R. China
| | - Cuili Xiang
- Guangxi Key Laboratory of Information MaterialsGuangxi Collaborative Innovation Centre of Structure and Property for New Energy Materials and School of Materials Science and EngineeringGuilin University of Electronic Technology Guilin 541004 P. R. China
| | - Pengru Huang
- Guangxi Key Laboratory of Information MaterialsGuangxi Collaborative Innovation Centre of Structure and Property for New Energy Materials and School of Materials Science and EngineeringGuilin University of Electronic Technology Guilin 541004 P. R. China
| | - Kexiang Zhang
- Guangxi Key Laboratory of Information MaterialsGuangxi Collaborative Innovation Centre of Structure and Property for New Energy Materials and School of Materials Science and EngineeringGuilin University of Electronic Technology Guilin 541004 P. R. China
| | - Xiangcheng Lin
- Guangxi Key Laboratory of Information MaterialsGuangxi Collaborative Innovation Centre of Structure and Property for New Energy Materials and School of Materials Science and EngineeringGuilin University of Electronic Technology Guilin 541004 P. R. China
| | - Erhu Yan
- Guangxi Key Laboratory of Information MaterialsGuangxi Collaborative Innovation Centre of Structure and Property for New Energy Materials and School of Materials Science and EngineeringGuilin University of Electronic Technology Guilin 541004 P. R. China
| | - Huanzhi Zhang
- Guangxi Key Laboratory of Information MaterialsGuangxi Collaborative Innovation Centre of Structure and Property for New Energy Materials and School of Materials Science and EngineeringGuilin University of Electronic Technology Guilin 541004 P. R. China
| | - Fen Xu
- Guangxi Key Laboratory of Information MaterialsGuangxi Collaborative Innovation Centre of Structure and Property for New Energy Materials and School of Materials Science and EngineeringGuilin University of Electronic Technology Guilin 541004 P. R. China
| | - Lixian Sun
- Guangxi Key Laboratory of Information MaterialsGuangxi Collaborative Innovation Centre of Structure and Property for New Energy Materials and School of Materials Science and EngineeringGuilin University of Electronic Technology Guilin 541004 P. R. China
| | - Ju‐Lan Zeng
- School of Chemistry and Biological EngineeringChangsha University of Science and Technology Changsha 410114 P. R. China
| |
Collapse
|
48
|
Li K, Chen W, Yang H, Chen Y, Xia S, Xia M, Tu X, Chen H. Mechanism of biomass activation and ammonia modification for nitrogen-doped porous carbon materials. BIORESOURCE TECHNOLOGY 2019; 280:260-268. [PMID: 30776652 DOI: 10.1016/j.biortech.2019.02.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 06/09/2023]
Abstract
The effect of chemical activation and NH3 modification on activated carbons (ACs) was explored via two contrasting bamboo pyrolysis strategies involving either two steps (activation followed by nitrogen doping in NH3 atmosphere) or one step (activation in NH3 atmosphere) with several chemical activating reagents (KOH, K2CO3, and KOH + K2CO3). The ACs produced by the two-step method showed relatively smaller specific surface areas (∼90% micropores) and lower nitrogen contents. From the one-step method, the ACs had larger pore diameters with about 90% small mesopores (2-3.5 nm). Due to a promotion effect with the KOH + K2CO3 combination, the AC attained the greatest surface area (2417 m2 g-1) and highest nitrogen content (3.89 wt%), endowing the highest capacitance (175 F g-1). The balance between surface area and nitrogen content recommends KOH + K2CO3 activation via the one-step method as the best choice for achieving both greener production process and better pore structure.
Collapse
Affiliation(s)
- Kaixu Li
- State Key Laboratory of Coal Combustion, School of Power and Energy Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China.
| | - Wei Chen
- State Key Laboratory of Coal Combustion, School of Power and Energy Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Haiping Yang
- State Key Laboratory of Coal Combustion, School of Power and Energy Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China.
| | - Yingquan Chen
- State Key Laboratory of Coal Combustion, School of Power and Energy Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China.
| | - Sunwen Xia
- State Key Laboratory of Coal Combustion, School of Power and Energy Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China.
| | - Mingwei Xia
- State Key Laboratory of Coal Combustion, School of Power and Energy Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China.
| | - Xin Tu
- Department of Electrical Engineering and Electronics, University of Liverpool, L69 3GJ Liverpool, UK.
| | - Hanping Chen
- State Key Laboratory of Coal Combustion, School of Power and Energy Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China.
| |
Collapse
|
49
|
Zhou HY, Sui ZY, Liu S, Wang HY, Han BH. Nanostructured porous carbons derived from nitrogen-doped graphene nanoribbon aerogels for lithium–sulfur batteries. J Colloid Interface Sci 2019; 541:204-212. [DOI: 10.1016/j.jcis.2019.01.067] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/05/2019] [Accepted: 01/15/2019] [Indexed: 10/27/2022]
|
50
|
Huang M, Xi B, Feng Z, Wu F, Wei D, Liu J, Feng J, Qian Y, Xiong S. New Insights into the Electrochemistry Superiority of Liquid Na-K Alloy in Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804916. [PMID: 30740881 DOI: 10.1002/smll.201804916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/19/2019] [Indexed: 05/28/2023]
Abstract
The significant issues with alkali metal batteries arise from their poor electrochemical properties and safety problems, limiting their applications. Herein, TiO2 nanoparticles embedded into N-doped porous carbon truncated ocatahedra (TiO2 ⊂NPCTO) are engineered as a cathode material with different metal anodes, including solid Na or K and liquid Na-K alloy. Electrochemical performance and kinetics are systematically analyzed, with the aim to determine detailed electrochemistry. By using a galvanostatic intermittent titration technique, TiO2 ⊂NPCTO/NaK shows faster diffusion of metal ions in insertion and extraction processes than that of Na-ions and K-ions in solid Na and K. The lower reaction resistance of liquid Na-K alloy electrode is also examined. The higher b-value of TiO2 ⊂NPCTO/NaK confirms that the reaction kinetics are promoted by the surface-induced capacitive behavior, favorable for high rate performance. This superiority highly pertains to the distinct liquid-liquid junction between the electrolyte and electrode, and the prohibition of metal dendrite growth, substantiated by symmetric cell testing, which provides a robust and homogeneous interface more stable than the traditional solid-liquid one. Hence, the liquid Na-K alloy-based battery exhibits to better cyclablity with higher capacity, rate capability, and initial coulombic efficiency than solid Na and K batteries.
Collapse
Affiliation(s)
- Man Huang
- Key Laboratory of the Colloid and Interface Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Baojuan Xi
- Key Laboratory of the Colloid and Interface Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Zhenyu Feng
- Key Laboratory of the Colloid and Interface Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Fangfang Wu
- Key Laboratory of the Colloid and Interface Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Denghu Wei
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong, 252059, P. R. China
| | - Jing Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jinkui Feng
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Yitai Qian
- Key Laboratory of the Colloid and Interface Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Shenglin Xiong
- Key Laboratory of the Colloid and Interface Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
- State Key Lab of Crystal Material, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|