1
|
Yu HP, Zhu YJ. Guidelines derived from biomineralized tissues for design and construction of high-performance biomimetic materials: from weak to strong. Chem Soc Rev 2024; 53:4490-4606. [PMID: 38502087 DOI: 10.1039/d2cs00513a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Living organisms in nature have undergone continuous evolution over billions of years, resulting in the formation of high-performance fracture-resistant biomineralized tissues such as bones and teeth to fulfill mechanical and biological functions, despite the fact that most inorganic biominerals that constitute biomineralized tissues are weak and brittle. During the long-period evolution process, nature has evolved a number of highly effective and smart strategies to design chemical compositions and structures of biomineralized tissues to enable superior properties and to adapt to surrounding environments. Most biomineralized tissues have hierarchically ordered structures consisting of very small building blocks on the nanometer scale (nanoparticles, nanofibers or nanoflakes) to reduce the inherent weaknesses and brittleness of corresponding inorganic biominerals, to prevent crack initiation and propagation, and to allow high defect tolerance. The bioinspired principles derived from biomineralized tissues are indispensable for designing and constructing high-performance biomimetic materials. In recent years, a large number of high-performance biomimetic materials have been prepared based on these bioinspired principles with a large volume of literature covering this topic. Therefore, a timely and comprehensive review on this hot topic is highly important and contributes to the future development of this rapidly evolving research field. This review article aims to be comprehensive, authoritative, and critical with wide general interest to the science community, summarizing recent advances in revealing the formation processes, composition, and structures of biomineralized tissues, providing in-depth insights into guidelines derived from biomineralized tissues for the design and construction of high-performance biomimetic materials, and discussing recent progress, current research trends, key problems, future main research directions and challenges, and future perspectives in this exciting and rapidly evolving research field.
Collapse
Affiliation(s)
- Han-Ping Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
2
|
Zhang Y, Ma S, Nie J, Liu Z, Chen F, Li A, Pei D. Journey of Mineral Precursors in Bone Mineralization: Evolution and Inspiration for Biomimetic Design. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2207951. [PMID: 37621037 DOI: 10.1002/smll.202207951] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/27/2023] [Indexed: 08/26/2023]
Abstract
Bone mineralization is a ubiquitous process among vertebrates that involves a dynamic physical/chemical interplay between the organic and inorganic components of bone tissues. It is now well documented that carbonated apatite, an inorganic component of bone, is proceeded through transient amorphous mineral precursors that transforms into the crystalline mineral phase. Here, the evolution on mineral precursors from their sources to the terminus in the bone mineralization process is reviewed. How organisms tightly control each step of mineralization to drive the formation, stabilization, and phase transformation of amorphous mineral precursors in the right place, at the right time, and rate are highlighted. The paradigm shifts in biomineralization and biomaterial design strategies are intertwined, which promotes breakthroughs in biomineralization-inspired material. The design principles and implementation methods of mineral precursor-based biomaterials in bone graft materials such as implant coatings, bone cements, hydrogels, and nanoparticles are detailed in the present manuscript. The biologically controlled mineralization mechanisms will hold promise for overcoming the barriers to the application of biomineralization-inspired biomaterials.
Collapse
Affiliation(s)
- Yuchen Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shaoyang Ma
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiaming Nie
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhongbo Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Faming Chen
- School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Dandan Pei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
3
|
Sun M, Zhong Z, Wang Y, Yu B, Zhang L, Zhang W. Dual-functional lanthanide-MOF probe nanocomposite based on hydroxyapatite nanowires as fluorescent sensor for ascorbic acid. Mikrochim Acta 2023; 190:89. [PMID: 36781571 DOI: 10.1007/s00604-023-05667-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/18/2023] [Indexed: 02/15/2023]
Abstract
A dual-functional lanthanide-MOF nanocomposite probe was designed and constructed for the detection of ascorbic acid (AA). The magnetically functionalized hydroxyapatite nanowires are selected as the carriers and simultaneously loaded with ciprofloxacin (CIP) and terbium metal organic framework to form the internal reference fluorescence probe nanocomposite (Fe3O4-HAPNWs-Tb/MOF-CIP). This dual-functional lanthanide-MOF probe not only combines the respectively unique fluorescence properties of lanthanide MOFs and CIP, but also takes full advantage of the rapid separation properties of the magnetic component. Structural and spectroscopic characterization results have demonstrated the successful synthesis of probe material and the fluorescence mechanism. At a suitable excitation wavelength (295 nm), the probe can simultaneously emit characteristic fluorescence of CIP (445 nm) and Tb3+ (543 nm). In the presence of AA, the ratio of I543/I445 decreases rapidly with increasing of AA concentration. The linear range of determination is 0.3-40 μM with a detection limit of 20.4 nM. The contents of AA in vitamin C tablets and four fruit juice samples were detected by the composite probe. The spiked recoveries ranged from 82.6 to 104.2% with relative standard deviations (RSD) less than 2.1%, revealing the practical application value of the developed sensor in healthcare and food fields. A novel internal reference fluorescence sensor (Fe O -HAPNWs-Tb/MOF-CIP) was constructed for detecting ascorbic acid by solvothermal and self-assembly techniques, showing excellent selectivity and sensitivity based on the different responses of Tb/MOF and CIP to the target.
Collapse
Affiliation(s)
- Mengyao Sun
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Zhihua Zhong
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Yajie Wang
- Department of Pharmacy, Anhui Medical College, Hefei, 230601, People's Republic of China
| | - Bohao Yu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Lei Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Weibing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
4
|
Wysokowski M, Zaslansky P, Ehrlich H. Macrobiomineralogy: Insights and Enigmas in Giant Whale Bones and Perspectives for Bioinspired Materials Science. ACS Biomater Sci Eng 2020; 6:5357-5367. [PMID: 33320547 DOI: 10.1021/acsbiomaterials.0c00364] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The giant bones of whales (Cetacea) are the largest extant biomineral-based constructs known. The fact that such mammalian bones can grow up to 7 m long raises questions about differences and similarities to other smaller bones. Size and exposure to environmental stress are good reasons to suppose that an unexplored level of hierarchical organization may be present that is not needed in smaller bones. The existence of such a macroscopic naturally grown structure with poorly described mechanisms for biomineralization is an example of the many yet unexplored phenomena in living organisms. In this article, we describe key observations in macrobiomineralization and suggest that the large scale of biomineralization taking place in selected whale bones implies they may teach us fundamental principles of the chemistry, biology, and biomaterials science governing bone formation, from atomistic to the macrolevel. They are also associated with a very lipid rich environment on those bones. This has implications for bone development and damage sensing that has not yet been fully addressed. We propose that whale bone construction poses extreme requirements for inorganic material storage, mediated by biomacromolecules. Unlike extinct large mammals, cetaceans still live deep in large terrestrial water bodies following eons of adaptation. The nanocomposites from which the bones are made, comprising biomacromolecules and apatite nanocrystals, must therefore be well adapted to create the macroporous hierarchically structured architectures of the bones, with mechanical properties that match the loads imposed in vivo. This massive skeleton directly contributes to the survival of these largest mammals in the aquatic environments of Earth, with structural refinements being the result of 60 million years of evolution. We also believe that the concepts presented in this article highlight the beneficial uses of multidisciplinary and multiscale approaches to study the structural peculiarities of both organic and inorganic phases as well as mechanisms of biomineralization in highly specialized and evolutionarily conserved hard tissues.
Collapse
Affiliation(s)
- Marcin Wysokowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, Poznan 60965, Poland.,Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner Strasse 3, Freiberg 09599, Germany
| | - Paul Zaslansky
- Department for Restorative and Preventive Dentistry, Charité-Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Hermann Ehrlich
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner Strasse 3, Freiberg 09599, Germany
| |
Collapse
|
5
|
Qi C, Musetti S, Fu LH, Zhu YJ, Huang L. Biomolecule-assisted green synthesis of nanostructured calcium phosphates and their biomedical applications. Chem Soc Rev 2019; 48:2698-2737. [PMID: 31080987 DOI: 10.1039/c8cs00489g] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Calcium phosphates (CaPs) are ubiquitous in nature and vertebrate bones and teeth, and have high biocompatibility and promising applications in various biomedical fields. Nanostructured calcium phosphates (NCaPs) are recognized as promising nanocarriers for drug/gene/protein delivery owing to their high specific surface area, pH-responsive degradability, high drug/gene/protein loading capacity and sustained release performance. In order to control the structure and surface properties of NCaPs, various biomolecules with high biocompatibility such as nucleic acids, proteins, peptides, liposomes and phosphorus-containing biomolecules are used in the synthesis of NCaPs. Moreover, biomolecules play important roles in the synthesis processes, resulting in the formation of various NCaPs with different sizes and morphologies. At room temperature, biomolecules can play the following roles: (1) acting as a biocompatible organic phase to form biomolecule/CaP hybrid nanostructured materials; (2) serving as a biotemplate for the biomimetic mineralization of NCaPs; (3) acting as a biocompatible modifier to coat the surface of NCaPs, preventing their aggregation and increasing their colloidal stability. Under heating conditions, biomolecules can (1) control the crystallization process of NCaPs by forming biomolecule/CaP nanocomposites before heating; (2) prevent the rapid and disordered growth of NCaPs by chelating with Ca2+ ions to form precursors; (3) provide the phosphorus source for the controlled synthesis of NCaPs by using phosphorus-containing biomolecules. This review focuses on the important roles of biomolecules in the synthesis of NCaPs, which are expected to guide the design and controlled synthesis of NCaPs. Moreover, we will also summarize the biomedical applications of NCaPs in nanomedicine and tissue engineering, and discuss their current research trends and future prospects.
Collapse
Affiliation(s)
- Chao Qi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | | | | | | | | |
Collapse
|
6
|
Qi C, Lin J, Fu LH, Huang P. Calcium-based biomaterials for diagnosis, treatment, and theranostics. Chem Soc Rev 2018; 47:357-403. [PMID: 29261194 DOI: 10.1039/c6cs00746e] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Calcium-based (CaXs) biomaterials including calcium phosphates, calcium carbonates, calcium silicate and calcium fluoride have been widely utilized in the biomedical field owing to their excellent biocompatibility and biodegradability. In recent years, CaXs biomaterials have been strategically integrated with imaging contrast agents and therapeutic agents for various molecular imaging modalities including fluorescence imaging, magnetic resonance imaging, ultrasound imaging or multimodal imaging, as well as for various therapeutic approaches including chemotherapy, gene therapy, hyperthermia therapy, photodynamic therapy, radiation therapy, or combination therapy, even imaging-guided therapy. Compared with other inorganic biomaterials such as silica-, carbon-, and gold-based biomaterials, CaXs biomaterials can dissolve into nontoxic ions and participate in the normal metabolism of organisms. Thus, they offer safer clinical solutions for disease theranostics. This review focuses on the state-of-the-art progress in CaXs biomaterials, which covers from their categories, characteristics and preparation methods to their bioapplications including diagnosis, treatment, and theranostics. Moreover, the current trends and key problems as well as the future prospects and challenges of CaXs biomaterials are also discussed at the end.
Collapse
Affiliation(s)
- Chao Qi
- Guangdong Key Laboratory for Biomedical, Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | | | | | | |
Collapse
|
7
|
Huang S, Li C, Xiao Q. Yolk @ cage-Shell Hollow Mesoporous Monodispersion Nanospheres of Amorphous Calcium Phosphate for Drug Delivery with High Loading Capacity. NANOSCALE RESEARCH LETTERS 2017; 12:275. [PMID: 28410554 PMCID: PMC5391342 DOI: 10.1186/s11671-017-2051-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/06/2017] [Indexed: 06/07/2023]
Abstract
In this paper, yolk-shell hollow nanospheres of amorphous calcium phosphate (ACP) are prepared, and its loading capacity is investigated by comparing with that of solid-shell hollow structure ACP and cage-shell hollow structure ACP. Results show that the products are yolk @ cage-shell of ACP with large shell's pores size (15-40 nm) and large cavity volume. Adsorption results show that the loading capacity of yolk @ cage-shell hollow spherical ACP is very high, which is more than twice that of hollow ACP and 1.5 times of cage-like ACP. The main reasons are that the big shell's pore size contributes the large molecular doxorubicin hydrochloride (DOX · HCl) to enter the inner of hollow spheres easier, and the yolk-shell structure provides larger interior space and more adsorption sites for loading drugs.
Collapse
Affiliation(s)
- Suping Huang
- State Key Lab of Powder Metallurgy, Central South University, Changsha, 410083, Hunan, China.
| | - Chunxia Li
- State Key Lab of Powder Metallurgy, Central South University, Changsha, 410083, Hunan, China
| | - Qi Xiao
- School of Resources Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
| |
Collapse
|
8
|
Abstract
As one of the biominerals, hydroxyapatite (HAP) plays important roles in biology, and inspires researchers to investigate HAP-based materials for the applications in various biomedical fields. Among them, one-dimensional (1-D) micro-/nanostructured HAP materials have attracted great interest in the last decades. This review summarizes the preparation and applications of 1-D HAP materials, and discusses different aspects of 1-D HAP materials. Various synthetic methods have been developed to prepare 1-D HAP materials with different morphologies, sizes, surface properties and crystallinities. In addition, elements-substituted 1-D HAP materials and composites have also been prepared. Surfactants and additives are usually adopted to control the nucleation and growth of 1-D HAP materials, but the related mechanisms are not very clear yet. The applications of 1-D HAP materials have been widely investigated, and the biomedical applications show great prospect but still need further improvements. A new kind of highly flexible fire-resistant inorganic paper made of ultralong HAP nanowires has been developed and is a promising alternative of the traditional cellulose paper for valuable archives and important documents. Regardless of the advances, further studies should be made for preparing 1-D HAP materials with controlled structures, sizes and morphologies and for boosting their various applications.
Collapse
Affiliation(s)
- Bing-Qiang Lu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| |
Collapse
|
9
|
Sonochemical synthesis of fructose 1,6-bisphosphate dicalcium porous microspheres and their application in promotion of osteogenic differentiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:846-856. [DOI: 10.1016/j.msec.2017.03.297] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/28/2017] [Accepted: 03/31/2017] [Indexed: 01/01/2023]
|
10
|
Zhu YJ. Nanostructured Materials of Calcium Phosphates and Calcium Silicates: Synthesis, Properties and Applications. CHINESE J CHEM 2017. [DOI: 10.1002/cjoc.201600696] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics, Chinese Academy of Sciences; Shanghai 200050 China
| |
Collapse
|
11
|
Zhang YG, Zhu YJ, Chen F, Sun TW. A novel composite scaffold comprising ultralong hydroxyapatite microtubes and chitosan: preparation and application in drug delivery. J Mater Chem B 2017; 5:3898-3906. [DOI: 10.1039/c6tb02576e] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The composite scaffold comprising ultralong hydroxyapatite microtubes and chitosan with high drug loading capacity and sustained drug release properties has been successfully prepared.
Collapse
Affiliation(s)
- Yong-Gang Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Feng Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Tuan-Wei Sun
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| |
Collapse
|
12
|
Zhang YG, Zhu YJ, Chen F, Sun TW, Jiang YY. Ultralong hydroxyapatite microtubes: solvothermal synthesis and application in drug loading and sustained drug release. CrystEngComm 2017. [DOI: 10.1039/c6ce02394k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Ma X, Li Y, Wang C, Sun Y, Ma Y, Dong X, Qian J, Yuan Y, Liu C. Controlled synthesis and transformation of nano-hydroxyapatite with tailored morphologies for biomedical applications. J Mater Chem B 2017; 5:9148-9156. [DOI: 10.1039/c7tb02487h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Controllable nucleation, growth and transformation of nano-scaled hydroxyapatite from spherical to needle-like shapes with excellent dispersibility.
Collapse
Affiliation(s)
- Xiaoyu Ma
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- China
- Engineering Research Center for Biomedical Materials of Ministry of Education
- East China University of Science and Technology
| | - Yuanyuan Li
- The State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- China
| | - Chengwei Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- China
- Engineering Research Center for Biomedical Materials of Ministry of Education
- East China University of Science and Technology
| | - Yi Sun
- The State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- China
| | - Yifan Ma
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- China
- Engineering Research Center for Biomedical Materials of Ministry of Education
- East China University of Science and Technology
| | - Xiuling Dong
- The State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- China
| | - Jiangchao Qian
- The State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- China
| | - Yuan Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- China
- Engineering Research Center for Biomedical Materials of Ministry of Education
- East China University of Science and Technology
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- China
- Engineering Research Center for Biomedical Materials of Ministry of Education
- East China University of Science and Technology
| |
Collapse
|
14
|
Chen F, Zhu YJ. Large-Scale Automated Production of Highly Ordered Ultralong Hydroxyapatite Nanowires and Construction of Various Fire-Resistant Flexible Ordered Architectures. ACS NANO 2016; 10:11483-11495. [PMID: 28024360 DOI: 10.1021/acsnano.6b07239] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Practical applications of nanostructured materials have been largely limited by the difficulties in controllable and scaled-up synthesis, large-sized highly ordered self-assembly, and macroscopic processing of nanostructures. Hydroxyapatite (HAP), the major inorganic component of human bone and tooth, is an important biomaterial with high biocompatibility, bioactivity, and high thermal stability. Large-sized highly ordered HAP nanostructures are of great significance for applications in various fields and for understanding the formation mechanisms of bone and tooth. However, the synthesis of large-sized highly ordered HAP nanostructures remains a great challenge, especially for the preparation of large-sized highly ordered ultralong HAP nanowires because ultralong HAP nanowires are easily tangled and aggregated. Herein, we report our three main research findings: (1) the large-scale synthesis of highly flexible ultralong HAP nanowires with lengths up to >100 μm and aspect ratios up to >10000; (2) the demonstration of a strategy for the rapid automated production of highly flexible, fire-resistant, large-sized, self-assembled highly ordered ultralong HAP nanowires (SHOUHNs) at room temperature; and (3) the successful construction of various flexible fire-resistant HAP ordered architectures using the SHOUHNs, such as high-strength highly flexible nanostructured ropes (nanoropes), highly flexible textiles, and 3-D printed well-defined highly ordered patterns. The SHOUHNs are successively formed from the nanoscale to the microscale then to the macroscale, and the ordering direction of the ordered HAP structure is controllable. These ordered HAP architectures made from the SHOUHNs, such as highly flexible textiles, may be engineered into advanced functional products for applications in various fields, for example, fireproof clothing.
Collapse
Affiliation(s)
- Feng Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, P. R. China
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, P. R. China
| |
Collapse
|
15
|
Stojanović ZS, Ignjatović N, Wu V, Žunič V, Veselinović L, Škapin S, Miljković M, Uskoković V, Uskoković D. Hydrothermally processed 1D hydroxyapatite: Mechanism of formation and biocompatibility studies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:746-757. [PMID: 27524076 PMCID: PMC4987716 DOI: 10.1016/j.msec.2016.06.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/22/2016] [Accepted: 06/13/2016] [Indexed: 12/23/2022]
Abstract
Recent developments in bone tissue engineering have led to an increased interest in one-dimensional (1D) hydroxyapatite (HA) nano- and micro-structures such as wires, ribbons and tubes. They have been proposed for use as cell substrates, reinforcing phases in composites and carriers for biologically active substances. Here we demonstrate the synthesis of 1D HA structures using an optimized, urea-assisted, high-yield hydrothermal batch process. The one-pot process, yielding HA structures composed of bundles of ribbons and wires, was typified by the simultaneous occurrence of a multitude of intermediate reactions, failing to meet the uniformity criteria over particle morphology and size. To overcome these issues, the preparation procedure was divided to two stages: dicalcium phosphate platelets synthesized in the first step were used as a precursor for the synthesis of 1D HA in the second stage. Despite the elongated particle morphologies, both the precursor and the final product exhibited excellent biocompatibility and caused no reduction of viability when tested against osteoblastic MC3T3-E1 cells in 2D culture up to the concentration of 2.6mg/cm(2). X-ray powder diffraction combined with a range of electron microscopies and laser diffraction analyses was used to elucidate the formation mechanism and the microstructure of the final particles. The two-step synthesis involved a more direct transformation of DCP to 1D HA with the average diameter of 37nm and the aspect ratio exceeding 100:1. The comparison of crystalline domain sizes along different crystallographic directions showed no signs of significant anisotropy, while indicating that individual nanowires are ordered in bundles in the b crystallographic direction of the P63/m space group of HA. Intermediate processes, e.g., dehydration of dicalcium phosphate, are critical for the formation of 1D HA alongside other key aspects of this phase transformation, it must be investigated in more detail in the continuous design of smart HA micro- and nano-structures with advanced therapeutic potentials.
Collapse
Affiliation(s)
- Zoran S Stojanović
- Centre for Fine Particles Processing and Nanotechnologies, Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Knez Mihailova 35/4, 11000 Belgrade, Serbia
| | - Nenad Ignjatović
- Centre for Fine Particles Processing and Nanotechnologies, Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Knez Mihailova 35/4, 11000 Belgrade, Serbia
| | - Victoria Wu
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, 851 South Morgan Street, Chicago, IL 60607-7052, USA
| | - Vojka Žunič
- Advanced Materials Department, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Ljiljana Veselinović
- Centre for Fine Particles Processing and Nanotechnologies, Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Knez Mihailova 35/4, 11000 Belgrade, Serbia
| | - Srečo Škapin
- Advanced Materials Department, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Miroslav Miljković
- Laboratory for Electron Microscopy, Faculty of Medicine University of Niš, Dr. Zoran Đinđić Boulevard 81, 18 000 Niš, Serbia
| | - Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, 851 South Morgan Street, Chicago, IL 60607-7052, USA; Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, 9401 Jeronimo Road, Irvine, CA 92618-1908, USA
| | - Dragan Uskoković
- Centre for Fine Particles Processing and Nanotechnologies, Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Knez Mihailova 35/4, 11000 Belgrade, Serbia.
| |
Collapse
|
16
|
Qi C, Zhu YJ, Wu CT, Sun TW, Jiang YY, Zhang YG, Wu J, Chen F. Sonochemical synthesis of hydroxyapatite nanoflowers using creatine phosphate disodium salt as an organic phosphorus source and their application in protein adsorption. RSC Adv 2016. [DOI: 10.1039/c5ra26231c] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hydroxyapatite nanosheets-assembled nanoflowers are sonochemically synthesized using creatine phosphate, which have excellent cytocompatibility and relatively high protein adsorption ability.
Collapse
Affiliation(s)
- Chao Qi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Cheng-Tie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Tuan-Wei Sun
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Ying-Ying Jiang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Yong-Gang Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Jin Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Feng Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| |
Collapse
|
17
|
Ding GJ, Zhu YJ, Qi C, Sun TW, Wu J, Chen F. Yolk-Shell Porous Microspheres of Calcium Phosphate Prepared by Using Calcium L-Lactate and Adenosine 5'-Triphosphate Disodium Salt: Application in Protein/Drug Delivery. Chemistry 2015; 21:9868-76. [PMID: 25982303 DOI: 10.1002/chem.201406547] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Indexed: 11/07/2022]
Abstract
A facile and environmentally friendly approach has been developed to prepare yolk-shell porous microspheres of calcium phosphate by using calcium L-lactate pentahydrate (CL) as the calcium source and adenosine 5'-triphosphate disodium salt (ATP) as the phosphate source through the microwave-assisted hydrothermal method. The effects of the concentration of CL, the microwave hydrothermal temperature, and the time on the morphology and crystal phase of the product are investigated. The possible formation mechanism of yolk-shell porous microspheres of calcium phosphate is proposed. Hemoglobin from bovine red cells (Hb) and ibuprofen (IBU) are used to explore the application potential of yolk-shell porous microspheres of calcium phosphate in protein/drug loading and delivery. The experimental results indicate that the as-prepared yolk-shell porous microspheres of calcium phosphate have relatively high protein/drug loading capacity, sustained protein/drug release, favorable pH-responsive release behavior, and a high biocompatibility in the cytotoxicity test. Therefore, the yolk-shell porous microspheres of calcium phosphate have promising applications in various biomedical fields such as protein/drug delivery.
Collapse
Affiliation(s)
- Guan-Jun Ding
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (P.R. China), Fax: (+86) 21-52413122
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (P.R. China), Fax: (+86) 21-52413122.
| | - Chao Qi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (P.R. China), Fax: (+86) 21-52413122
| | - Tuan-Wei Sun
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (P.R. China), Fax: (+86) 21-52413122
| | - Jin Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (P.R. China), Fax: (+86) 21-52413122
| | - Feng Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (P.R. China), Fax: (+86) 21-52413122
| |
Collapse
|
18
|
Daniels Y, Lyczko N, Nzihou A, Alexandratos SD. Modification of Hydroxyapatite with Ion-Selective Complexants: 1-Hydroxyethane-1,1-diphosphonic Acid. Ind Eng Chem Res 2015; 54:585-596. [PMID: 25678741 PMCID: PMC4311946 DOI: 10.1021/ie504181z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/28/2014] [Accepted: 12/29/2014] [Indexed: 12/04/2022]
Abstract
Hydroxyapatite (HAP) was modified with 1-hydroxyethane-1,1-diphosphonic acid (HEDP), and its effect on divalent metal ion binding was determined. HAP was synthesized from calcium hydroxide and phosphoric acid. After calcination, it was modified with HEDP, and the influence of time and temperature on the modification was investigated. HEDP incorporation increased as its initial solution concentration increased from 0.01 to 0.50 M. Unmodified and modified HAP were characterized using Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, and specific surface area analysis. Ca/P ratios, acid capacities, and phosphorus elemental analyses gave the effect of modification on composition and surface characteristics. A high reaction temperature produced new phosphonate bands at 993, 1082, and 1144 cm-1 that indicated the presence of HEDP. HAP modification at a high temperature-long reaction time had the highest HEDP loading and gave the sharpest XRD peaks. The emergence of new HAP-HEDP strands was observed in SEM images for treated samples while EDS showed high phosphorus contents in these strands. Modified HAP had a high acid capacity from the additional P-OH groups in HEDP. The P(O)OH groups maintain their ability to bind metal ions within the HAP matrix: contacting the modified HAP with 10-4 N nitrate solutions of five transition metal ions gives an affinity sequence of Pb(II) > Cd(II) > Zn(II) > Ni(II) > Cu(II). This result is comparable to that of commercially available di(2-ethylhexyl)phosphoric acid, a common solvent extractant, and the trend is consistent with the Misono softness parameter of metal ion polarizabilities.
Collapse
Affiliation(s)
- Yasmine Daniels
- Department
of Chemistry, Graduate Center of the City
University of New York, 365 Fifth Avenue, New York, New York 10016, United
States
- Department
of Chemistry, Hunter College of the City
University of New York, 695 Park Avenue, New York, New York 10065, United
States
| | - Nathalie Lyczko
- Université
de Toulouse, Ecole des
Mines d’Albi, CNRS, Centre RAPSODEE, Campus Jarlard, F-81013 Albi cedex 09, France
| | - Ange Nzihou
- Université
de Toulouse, Ecole des
Mines d’Albi, CNRS, Centre RAPSODEE, Campus Jarlard, F-81013 Albi cedex 09, France
| | - Spiro D. Alexandratos
- Department
of Chemistry, Graduate Center of the City
University of New York, 365 Fifth Avenue, New York, New York 10016, United
States
- Department
of Chemistry, Hunter College of the City
University of New York, 695 Park Avenue, New York, New York 10065, United
States
| |
Collapse
|
19
|
In situ hydrothermal crystallization of hexagonal hydroxyapatite tubes from yttrium ion-doped hydroxyapatite by the Kirkendall effect. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 45:191-5. [DOI: 10.1016/j.msec.2014.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 08/31/2014] [Accepted: 09/11/2014] [Indexed: 10/24/2022]
|