1
|
Mu B, Ma T, Zhang Z, Hao X, Wang L, Wang J, Yan H, Tian W. Thermo-Induced Bathochromic Emission in Columnar Discotic Liquid Crystals Realized by Intramolecular Planarization. Chemistry 2023; 29:e202300320. [PMID: 36794471 DOI: 10.1002/chem.202300320] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/17/2023]
Abstract
Most organic thermochromic fluorescent materials exhibit thermo-induced hypsochromic emission due to the formation of excimers in ordered molecular solids; however, it is still a challenge to endow them with bathochromic emission despite its significance in making up the field of thermochromism. Here, a thermo-induced bathochromic emission in columnar discotic liquid crystals is reported realized by intramolecular planarization of the mesogenic fluorophores. A three-armed discotic molecule of dialkylamino-tricyanotristyrylbenzene was synthesized, which preferred to twist out of the core plane to accommodate ordered molecular stacking in hexagonal columnar mesophases, giving rise to bright green monomer emission. However, intramolecular planarization of the mesogenic fluorophores occurred in isotropic liquid increasing the conjugation length, and as a result led to thermo-induced bathochromic emission from green to yellow light. This work reports a new concept in the thermochromic field and provides a novel strategy to achieve fluorescence tuning from intramolecular actions.
Collapse
Affiliation(s)
- Bin Mu
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Tianshu Ma
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Zhelin Zhang
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xiangnan Hao
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Liang Wang
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jingxia Wang
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Hongxia Yan
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Wei Tian
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
2
|
Chen S, Ma T, Du X, Mo M, Wang Z, Cheng X. D-A-D hexacatenar LCs containing bulky N-trialkoxylbenzyl carbazole caps with RGB emissions for full color palette and white LED applications. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
3
|
Dhingra S, Siddiqui I, Gupta SP, Jayakumar J, Jou JH, Pal SK. Solution-processable organic light-emitting diodes utilizing electroluminescent perylene tetraester-based columnar liquid crystals. SOFT MATTER 2022; 18:8850-8855. [PMID: 36374203 DOI: 10.1039/d2sm01235a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein, we reveal a homologous series of liquid crystals involving perylene tetraesters as the core connected to the four trialkoxyphenyl units at the periphery using the triazole moiety as the linker. A thorough analysis using differential scanning calorimetry, polarized optical microscopy, and small- and wide-angle X-ray scattering studies confirm that all the mesogens 1a-c hold a stable enantiotropic columnar mesophase. Suitable molecular orbital levels and excellent material photophysical and thermal properties encouraged the study of their electroluminescent properties. Due to this, a well designed solution-processable organic light emitting diode device structure is configured as ITO (125 nm)/poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) (35 nm)/host: x wt% emitter (x = 0.5, 1.0, 3.0, 5.0) (20 nm)/2,2'2''-(1,3,5-benzinetriyl)tris(1-phenyl-1-H-benzimidazole) (TPBi) (40 nm)/lithium fluoride (LiF) (1 nm)/aluminium (Al) (200 nm) using compounds 1a-c as emitters. 4,4',4''-Tris[phenyl(m-tolyl)amino]triphenylamine (m-MTDATA) and 4,4'-bis(N-carbazolyl)-1,1'-biphenyl (CBP) were chosen as two different host materials. The current density-voltage-luminance and current efficacy-luminance-power efficacy plots suggest that m-MTDATA is a better host than CBP. Amongst, device based on 1 wt% emitter 1c doped in the m-MTDATA host matrix displayed the best performance, with a maximum power efficacy of 17.2 lm W-1, current efficacy of 18.5 cd A-1, and external quantum efficiency of 6.3%.
Collapse
Affiliation(s)
- Shallu Dhingra
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81, SAS Nagar, Knowledge City, Manauli, 140306, India.
| | - Iram Siddiqui
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| | | | - Jayachandran Jayakumar
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| | - Jwo-Huei Jou
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| | - Santanu Kumar Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81, SAS Nagar, Knowledge City, Manauli, 140306, India.
| |
Collapse
|
4
|
Xiao Y, Liu X, Li N, Pang Y, Zheng Z. Central condensed ring changes for manipulating the self-assembly and photophysical behaviors of cyanostilbene-based hexacatenars. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
5
|
Virat G, Gowd EB. Poly(l-lactide)s with tetraphenylethylene: role of polymer chain packing in aggregation-induced emission behavior of tetraphenylethylene. Polym Chem 2022. [DOI: 10.1039/d1py01539g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The AIE behavior of tetraphenylethylene in biocompatible poly(l-lactide)s is found to be sensitive to the polymer chain packing, polymer crystal structure, solvent, and temperature.
Collapse
Affiliation(s)
- G. Virat
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - E. Bhoje Gowd
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
6
|
Pang Y, Xiao Y, Liu X, Zuo R, Li N, Jiang Z. Synthesis and characterization of α-cyanostilbene-based bent-core hexacatenar mesogens with different central groups. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Liquid-crystalline 1,4-benzoquinone derivative: Self-assembling behavior and redox properties. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Guo H, Yu Q, Xiong Y, Yang F. Room-temperature AIE ionic liquid crystals based on diphenylacrylonitrile-imidazole salts. SOFT MATTER 2020; 16:10368-10376. [PMID: 33053002 DOI: 10.1039/d0sm01474e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Although various AIE liquid crystals have been studied, AIE ionic liquid crystals (ILCs) are almost unknown to date. In this work, a series of novel AIE ILCs based on diphenylacrylonitrile-imidazole salts bridged by soft spacers with different anions were prepared in yields of 63-80%. The mesomorphic, photophysical and electrochemical properties were investigated systematically to elucidate the relationship between structures and properties. The results implied that they were the first room-temperature AIE ILCs with wide ranges of mesomorphic temperature, good fluorescence emission in both the solid state and mesophase, and stable electrochemical behaviour. The samples with one alkyl chain possessed the SmA2 mesophase while the samples with two alkyl chains prefered the Colh mesophase. The larger anions resulted in the bigger layer spacing length for the SmA2 mesophase and smaller values of ncell in each slice of Colh mesophase. The fluorescence quantum yields in the mesophase maintained reasonable values (0.15-0.22), which decreased a little in comparison with that in solid films (0.18-0.26) due to the orderly molecular stacking in the mesophase. The cyclic voltammetry experiments confirmed that all of them possessed similar and stable electrochemical behaviour. This research not only presented the first room-temperature AIE ILCs with excellent mesomorphic, photophysical and electrochemical properties, but also elucidated the relationship between structures and properties to a certain degree, contributing to the further construction of novel AIE ILCs with excellent mesomorphic, photophysical and electrochemical properties.
Collapse
Affiliation(s)
- Hongyu Guo
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China.
| | | | | | | |
Collapse
|
9
|
|
10
|
Chen L, Chen C, Sun Y, Lu S, Huo H, Tan T, Li A, Li X, Ungar G, Liu F, Zhang M. Luminescent Metallacycle‐Cored Liquid Crystals Induced by Metal Coordination. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915055] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Long Chen
- State Key Laboratory for Mechanical Behavior of MaterialsShaanxi International Research Center for Soft MatterSchool of Materials Science and EngineeringXi'an Jiaotong University Xi'an 710049 P. R. China
| | - Changlong Chen
- State Key Laboratory for Mechanical Behavior of MaterialsShaanxi International Research Center for Soft MatterSchool of Materials Science and EngineeringXi'an Jiaotong University Xi'an 710049 P. R. China
| | - Yue Sun
- Hubei Key Laboratory of Catalysis and Materials ScienceCollege of Chemistry and Material SciencesSouth-Central University for Nationalities Wuhan 430074 P. R. China
| | - Shuai Lu
- Department of ChemistryUniversity of South Florida Tampa FL 33620 USA
- College of ChemistryZhengzhou University Zhengzhou Henan 450001 P. R. China
| | - Haohui Huo
- State Key Laboratory for Mechanical Behavior of MaterialsShaanxi International Research Center for Soft MatterSchool of Materials Science and EngineeringXi'an Jiaotong University Xi'an 710049 P. R. China
| | - Tianyi Tan
- State Key Laboratory for Mechanical Behavior of MaterialsShaanxi International Research Center for Soft MatterSchool of Materials Science and EngineeringXi'an Jiaotong University Xi'an 710049 P. R. China
| | - Anquan Li
- School of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Xiaopeng Li
- Department of ChemistryUniversity of South Florida Tampa FL 33620 USA
| | - Goran Ungar
- State Key Laboratory for Mechanical Behavior of MaterialsShaanxi International Research Center for Soft MatterSchool of Materials Science and EngineeringXi'an Jiaotong University Xi'an 710049 P. R. China
| | - Feng Liu
- State Key Laboratory for Mechanical Behavior of MaterialsShaanxi International Research Center for Soft MatterSchool of Materials Science and EngineeringXi'an Jiaotong University Xi'an 710049 P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of MaterialsShaanxi International Research Center for Soft MatterSchool of Materials Science and EngineeringXi'an Jiaotong University Xi'an 710049 P. R. China
| |
Collapse
|
11
|
Chen L, Chen C, Sun Y, Lu S, Huo H, Tan T, Li A, Li X, Ungar G, Liu F, Zhang M. Luminescent Metallacycle-Cored Liquid Crystals Induced by Metal Coordination. Angew Chem Int Ed Engl 2020; 59:10143-10150. [PMID: 32080962 DOI: 10.1002/anie.201915055] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/07/2020] [Indexed: 12/31/2022]
Abstract
Two rhomboidal metallacycles based on metal-coordination-driven self-assembly are presented. Because metal-coordination interactions restrict the rotation of phenyl groups on tetraphenylethene units, these metallacycles were emissive both in solution and in solid state, and their aggregation-induced emission properties were well-retained. Moreover, the rhomboidal metallacyclic structures offer a platform for intermolecular packing beneficial for the formation of liquid crystalline phases. Therefore, although neither of building blocks shows mesogenic properties, both thermotropic and lyotropic (in DMF) mesophases were observed in one of metallacycles, indicating that mesophases could be induced by metal-coordination interactions. This study not only reveals the mechanism for the formation of cavity-cored liquid crystals, but also provides a convenient approach to preparing supramolecular luminescent liquid crystals, which will serve as good candidates for chemo sensors and liquid crystal displays.
Collapse
Affiliation(s)
- Long Chen
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Changlong Chen
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yue Sun
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Shuai Lu
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA.,College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Haohui Huo
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Tianyi Tan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Anquan Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Goran Ungar
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Feng Liu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
12
|
Bicontinuous Cubic and Hexagonal Columnar Liquid Crystalline Ion-Conductors at Room Temperature in Ion-Doped Dendritic Amphiphiles. CRYSTALS 2020. [DOI: 10.3390/cryst10030193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A bicontinuous cubic (Cubbi) liquid crystalline (LC) phase consisting of three dimensional (3D) conducting networks is a promising structural platform for ion-conductors. For practical applications using this fascinating LC structure, it is necessary to suppress crystallization at room temperature (RT). Herein, we report the Cubbi structure at RT and the morphology–dependent conduction behavior in ionic samples of a non-crystallizable dendritic amphiphile. In the molecular design, branched alkyl chains were used as an ionophobic part instead of crystallizable linear alkyl chains. Two ionic samples with Cubbi and hexagonal columnar (Colhex) LC phases at RT were prepared by adding different amounts of lithium salt to the amphiphile. Impedance analysis demonstrated that the Cubbi phase contributed to the faster ion-conduction to a larger extent than the Colhex phase due to the 3D ionic networks of the Cubbi phase. In addition, the temperature–dependent impedance and electric modulus data provided information regarding the phase transition from microphase-separated phase to molecularly mixed liquid phase.
Collapse
|
13
|
AIE active TPE mesogens with p6mm columnar and Im3m cubic mesophases and white light emission property. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Guanosine-based thermotropic liquid crystals with tunable phase structures and ion-responsive properties. J Colloid Interface Sci 2019; 553:269-279. [DOI: 10.1016/j.jcis.2019.06.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 01/05/2023]
|
15
|
Knelles J, Beardsworth S, Bader K, Bruckner JR, Bühlmeyer A, Forschner R, Schweizer K, Frey W, Giesselmann F, Molard Y, Laschat S. Self‐Assembly and Fluorescence of Tetracationic Liquid Crystalline Tetraphenylethene. Chemphyschem 2019; 20:2210-2216. [DOI: 10.1002/cphc.201900569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/11/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Jakob Knelles
- Institut für Organische ChemieUniversität Stuttgart Germany
| | | | - Korinna Bader
- Institut für Organische ChemieUniversität Stuttgart Germany
| | | | | | | | | | - Wolfgang Frey
- Institut für Organische ChemieUniversität Stuttgart Germany
| | | | - Yann Molard
- University of Rennes, CNRS, ISCR, UMR 6226, ScanMAT – UMS 2001 Rennes France
| | - Sabine Laschat
- Institut für Organische ChemieUniversität Stuttgart Germany
| |
Collapse
|
16
|
Kang J, Yu J, Li A, Zhao D, Liu B, Guo L, Tang B. Amorphous Ag 2S Micro-rods-Enhanced Fluorescence on Liquid Crystals: Cation-π Interaction-Triggered Aggregation-Induced Emission Effect. iScience 2019; 15:119-126. [PMID: 31048146 PMCID: PMC6495463 DOI: 10.1016/j.isci.2019.04.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/14/2019] [Accepted: 03/26/2019] [Indexed: 11/30/2022] Open
Abstract
Aggregation-induced emission (AIE) system has long been regarded as a promising substitute to overcome the aggregation-caused quenching in traditional luminescent liquid crystals, which could further enhance its efficiency and application. However, due to the intrinsic weak interaction between hybrid components, heterogeneous inorganic materials-induced AIE process was rarely reported. In this study, trace amounts of amorphous Ag2S microrods and an AIE-active liquid crystalline compound tetraphenylethylene-propylbenzene (TPE-PPE) were proposed to construct additional intense interaction to trigger AIE effect. The enhanced concentration of unsaturated Ag ions and excess positive charge on Ag2S surface promote a cation-π interaction with TPE-PPE, leading to a 36-fold increase in fluorescence, which is predominately high in luminescent liquid crystal system. To the best of our knowledge, this is the first report of the AIE process activated by cation-π interaction. This novel approach would provide guidance to fabricate high-luminescence meso phases for future luminescent display device.
Collapse
Affiliation(s)
- Jianxin Kang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P.R. China
| | - Jian Yu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P.R. China
| | - Anran Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P.R. China
| | - Dongyu Zhao
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P.R. China.
| | - Bin Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P.R. China
| | - Lin Guo
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P.R. China.
| | - Benzhong Tang
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
17
|
Zhu JC, Han T, Guo Y, Wang P, Xie HL, Meng ZG, Yu ZQ, Tang BZ. Design and Synthesis of Luminescent Liquid Crystalline Polymers with “Jacketing” Effect and Luminescent Patterning Applications. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00221] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Ji-Chun Zhu
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - Ting Han
- School of Chemistry and Environmental Engineering, College of Materials Science and Engineering, Center for AIE Research, Shenzhen University, Shenzhen 518060, China
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yang Guo
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - Ping Wang
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - He-Lou Xie
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - Zhen-Gong Meng
- School of Chemistry and Environmental Engineering, College of Materials Science and Engineering, Center for AIE Research, Shenzhen University, Shenzhen 518060, China
| | - Zhen-Qiang Yu
- School of Chemistry and Environmental Engineering, College of Materials Science and Engineering, Center for AIE Research, Shenzhen University, Shenzhen 518060, China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
18
|
Liu Y, You LH, Lin FX, Fu K, Yuan WZ, Chen EQ, Yu ZQ, Tang BZ. Highly Efficient Luminescent Liquid Crystal with Aggregation-Induced Energy Transfer. ACS APPLIED MATERIALS & INTERFACES 2019; 11:3516-3523. [PMID: 30592413 DOI: 10.1021/acsami.8b14575] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A luminescent liquid crystal molecule (TPEMes) with efficient solid-state emission is rationally constructed via the chemical conjugation of blue-emitting tetraphenylethene cores and luminescent mesogenic tolane moieties, which are both featured with aggregation-induced emission properties. As for this fluorophore, aggregation-induced energy transfer from the emissive tolane mesogens to the lighting-up tetraphenylethene units endows the molecule pure blue emission in the suspension and bulk state. Combining differential scanning calorimetry, polarized optical microscope, and one-dimensional X-ray diffraction (1D XRD) experiments, the compound TPEMes is deduced to adapt thermodynamically more stable layered crystalline phase and can be "frozen" into a monotropic smectic mesophase due to kinetic reasons. As a result of more dense packing of TPEMes in the crystalline phase indicated by 1D XRD, the luminescence of TPEMes in crystalline phase blue-shifted by 17 nm relative to the metastable mesophase.
Collapse
Affiliation(s)
| | | | | | | | - Wang Zhang Yuan
- School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Er-Qiang Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry , Peking University , Beijing 100871 , China
| | | | - Ben Zhong Tang
- HKUST Shenzhen Research Institute , No. 9 Yuexing 1st Rd, South Area, Hitech Park Nanshan , Shenzhen 518057 , China
| |
Collapse
|
19
|
Trost BM, Tracy JS. Vanadium-Catalyzed Synthesis of Geometrically Defined Acyclic Tri- and Tetrasubstituted Olefins from Propargyl Alcohols. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04567] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Barry M. Trost
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305, United States
| | - Jacob S. Tracy
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305, United States
| |
Collapse
|
20
|
Yuan Y, He L, Li J, Zhang H. Synthesis, properties and photo-responsive behavior of luminescent side chain polymers containing D–π-A α-cyanostilbene units. Polym Chem 2019. [DOI: 10.1039/c9py00339h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A series of luminescent side chain polymers with aggregation-induced emission enhancement characteristics, high solid fluorescence quantum yield, and reversible fluorescence photo-responsive properties were prepared.
Collapse
Affiliation(s)
- Yongjie Yuan
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province
- Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
| | - Lifang He
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province
- Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
| | - Jindi Li
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province
- Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
| | - Hailiang Zhang
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province
- Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
| |
Collapse
|
21
|
Yang M, Liu Z, Yang B, Zhang H. Design, synthesis and properties of hemiphasmidic luminescent liquid crystal polymers with the AIEE effect. NEW J CHEM 2019. [DOI: 10.1039/c8nj06215c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel hemiphasmidic side-chain luminescent liquid crystal polymers with different self-assembly structures and fluorescence properties have been prepared and investigated.
Collapse
Affiliation(s)
- Ming Yang
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province
- Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
| | - Zui Liu
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province
- Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
| | - Bohao Yang
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province
- Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
| | - Hailiang Zhang
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province
- Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
| |
Collapse
|
22
|
Riebe S, Saccone M, Stelzer J, Sowa A, Wölper C, Soloviova K, Strassert CA, Giese M, Voskuhl J. Alkylated Aromatic Thioethers with Aggregation‐Induced Emission Properties—Assembly and Photophysics. Chem Asian J 2018; 14:814-820. [DOI: 10.1002/asia.201801564] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/07/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Steffen Riebe
- Institute of Organic Chemistry, University of Duisburg-Essen Universitätsstrasse 7 45117 Essen Germany
| | - Marco Saccone
- Institute of Organic Chemistry, University of Duisburg-Essen Universitätsstrasse 7 45117 Essen Germany
| | - Jacqueline Stelzer
- Institute of Organic Chemistry, University of Duisburg-Essen Universitätsstrasse 7 45117 Essen Germany
| | - Andrea Sowa
- Institute of Organic Chemistry, University of Duisburg-Essen Universitätsstrasse 7 45117 Essen Germany
| | - Christoph Wölper
- Faculty of Chemistry and Center for NanoIntegration (CENIDE)University of Duisburg-Essen Universitätsstrasse 5–7 45117 Essen Germany
| | - Kateryna Soloviova
- Institut für Anorganische und Analytische Chemie and CeNTechWestfälische Wilhelms-Universität Münster Heisenbergstrasse 11 48149 Münster Germany
| | - Cristian A. Strassert
- Institut für Anorganische und Analytische Chemie and CeNTechWestfälische Wilhelms-Universität Münster Heisenbergstrasse 11 48149 Münster Germany
| | - Michael Giese
- Institute of Organic Chemistry, University of Duisburg-Essen Universitätsstrasse 7 45117 Essen Germany
| | - Jens Voskuhl
- Institute of Organic Chemistry, University of Duisburg-Essen Universitätsstrasse 7 45117 Essen Germany
| |
Collapse
|
23
|
Park S, Uchida J, Urushibara K, Kagechika H, Kato T, Tanatani A. Self-assembly of Liquid-crystalline Squaramides. CHEM LETT 2018. [DOI: 10.1246/cl.171208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Soyoung Park
- Department of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Junya Uchida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ko Urushibara
- Department of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Hiroyuki Kagechika
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takashi Kato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Aya Tanatani
- Department of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| |
Collapse
|
24
|
Guo Y, Shi D, Luo ZW, Xu JR, Li ML, Yang LH, Yu ZQ, Chen EQ, Xie HL. High Efficiency Luminescent Liquid Crystalline Polymers Based on Aggregation-Induced Emission and “Jacketing” Effect: Design, Synthesis, Photophysical Property, and Phase Structure. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01605] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yang Guo
- Key
Laboratory of Advanced Functional Polymer Materials of Colleges and
Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, China
- Shenzhen
Key Laboratory of Functional Polymers, School of Chemistry and Environmental
Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dong Shi
- Key
Laboratory of Polymer Chemistry and Physics of Ministry of Education,
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhi-Wang Luo
- Key
Laboratory of Advanced Functional Polymer Materials of Colleges and
Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - Jia-Ru Xu
- Key
Laboratory of Polymer Chemistry and Physics of Ministry of Education,
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ming-Li Li
- Key
Laboratory of Advanced Functional Polymer Materials of Colleges and
Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - Long-Hu Yang
- Key
Laboratory of Advanced Functional Polymer Materials of Colleges and
Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - Zhen-Qiang Yu
- Shenzhen
Key Laboratory of Functional Polymers, School of Chemistry and Environmental
Engineering, Shenzhen University, Shenzhen 518060, China
| | - Er-Qiang Chen
- Key
Laboratory of Polymer Chemistry and Physics of Ministry of Education,
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - He-Lou Xie
- Key
Laboratory of Advanced Functional Polymer Materials of Colleges and
Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, China
| |
Collapse
|
25
|
|
26
|
Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ. Aggregation-Induced Emission: Together We Shine, United We Soar! Chem Rev 2015; 115:11718-940. [DOI: 10.1021/acs.chemrev.5b00263] [Citation(s) in RCA: 5139] [Impact Index Per Article: 571.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ju Mei
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Nelson L. C. Leung
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ryan T. K. Kwok
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jacky W. Y. Lam
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ben Zhong Tang
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Guangdong
Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State
Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
27
|
Wöhrle T, Wurzbach I, Kirres J, Kostidou A, Kapernaum N, Litterscheidt J, Haenle JC, Staffeld P, Baro A, Giesselmann F, Laschat S. Discotic Liquid Crystals. Chem Rev 2015; 116:1139-241. [PMID: 26483267 DOI: 10.1021/acs.chemrev.5b00190] [Citation(s) in RCA: 423] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tobias Wöhrle
- Institut für Organische Chemie, and ‡Institut für Physikalische Chemie, Universität Stuttgart , Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Iris Wurzbach
- Institut für Organische Chemie, and ‡Institut für Physikalische Chemie, Universität Stuttgart , Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Jochen Kirres
- Institut für Organische Chemie, and ‡Institut für Physikalische Chemie, Universität Stuttgart , Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Antonia Kostidou
- Institut für Organische Chemie, and ‡Institut für Physikalische Chemie, Universität Stuttgart , Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Nadia Kapernaum
- Institut für Organische Chemie, and ‡Institut für Physikalische Chemie, Universität Stuttgart , Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Juri Litterscheidt
- Institut für Organische Chemie, and ‡Institut für Physikalische Chemie, Universität Stuttgart , Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Johannes Christian Haenle
- Institut für Organische Chemie, and ‡Institut für Physikalische Chemie, Universität Stuttgart , Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Peter Staffeld
- Institut für Organische Chemie, and ‡Institut für Physikalische Chemie, Universität Stuttgart , Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Angelika Baro
- Institut für Organische Chemie, and ‡Institut für Physikalische Chemie, Universität Stuttgart , Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Frank Giesselmann
- Institut für Organische Chemie, and ‡Institut für Physikalische Chemie, Universität Stuttgart , Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Sabine Laschat
- Institut für Organische Chemie, and ‡Institut für Physikalische Chemie, Universität Stuttgart , Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
28
|
Supramolecular Columnar Liquid Crystals Formed by Hydrogen Bonding between a Clicked Star-Shapeds-Triazine and Benzoic Acids. Chemistry 2015; 21:8859-66. [DOI: 10.1002/chem.201500477] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Indexed: 12/19/2022]
|
29
|
Park S, Cho BK. Sequential phase transformation of propeller-like C3-symmetric liquid crystals from a helical to ordered to disordered hexagonal columnar structure. SOFT MATTER 2015; 11:94-101. [PMID: 25370808 DOI: 10.1039/c4sm02004a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this paper, we report thermally induced intercolumnar phase transitions of C3-symmetric liquid crystals (LCs) bearing a triazole-based propeller-like aromatic mesogen. Since the constituting aromatic rings are conjugated through rotatable single bonds, the mesogenic shape is tuneable depending on the degree of conformational motion. Molecule 1 with ninefold octyl peripheries shows a hexagonal columnar liquid crystalline phase transition from ordered mesogenic stacking to disordered mesogenic stacking upon heating. On the other hand, molecule 2 with sixfold octyl peripheries displays a helical hexagonal columnar phase with the P6/mmm space group at ambient temperature as well as the ordered and disordered hexagonal columnar phases at higher temperatures. The intracolumnar helical order can be understood by an interdigitated stacking of the propeller-like mesogens along the columnar axis and the optimized space-filling. Notably, all the intercolumnar phase transformations in this study are revealed as second-order transitions. The thermodynamic nature agrees well with the fact that the conformational motions of the C3-symmetric aromatic mesogen change abruptly with each columnar transition.
Collapse
Affiliation(s)
- Soyoung Park
- Department of Chemistry and Institute of Nanosensor and Biotechnology, Dankook University, Gyeonggi-Do 448-701, Korea.
| | | |
Collapse
|
30
|
Han K, Cho BK. Chain-dependent emission color codes of extended tetraphenylethylene derivatives: discrimination between water and methanol. RSC Adv 2015. [DOI: 10.1039/c4ra14233k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Despite the identical extended tetraphenylethylene chromophore, the degree of solubility between the peripheral chains and the solvent guides the aggregate morphology. The distinct emission color codes of the two luminogens can distinguish between water and methanol.
Collapse
Affiliation(s)
- Kyuwon Han
- Department of Chemistry and Institute of Nanosensor and Biotechnology
- Dankook University
- Gyeonggi-Do
- Korea
| | - Byoung-Ki Cho
- Department of Chemistry and Institute of Nanosensor and Biotechnology
- Dankook University
- Gyeonggi-Do
- Korea
| |
Collapse
|
31
|
Gao M, Wu Y, Chen B, He B, Nie H, Li T, Wu F, Zhou W, Zhou J, Zhao Z. Di(naphthalen-2-yl)-1,2-diphenylethene-based conjugated polymers: aggregation-enhanced emission and explosive detection. Polym Chem 2015. [DOI: 10.1039/c5py01458a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Conjugated polymers with rotatable naphthalen-2-yl pendants show aggregation-enhanced emission characteristics and explosive detection potential.
Collapse
|