1
|
Kashif M, Chandrabose K, Pandurangan AK. Plausible Action of N-(3,4-Dimethoxy-Phenyl)-6,7-Dimethoxyquinazoline-4-Amine (TKM01) as an Armor Against Alzheimer's Disease: In Silico and In Vivo Insights. J Biochem Mol Toxicol 2024; 38:e70048. [PMID: 39552492 DOI: 10.1002/jbt.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/24/2024] [Accepted: 10/18/2024] [Indexed: 11/19/2024]
Abstract
Alzheimer's disease (AD) affects millions of people and has limited treatment options, thus making it a global health concern. Amyloid β (Aβ), a disrupted cholinergic system with high acetylcholinesterase (AChE), oxidative stress (OS), reduced antioxidants, and neuroinflammation are key factors influencing AD progression. Prior research has shown that AChE can interact with Aβ and increase its accumulation and neurotoxicity, so targeting AChEs and Aβ could be a potential therapeutic approach for AD treatment. It has been known that nonsteroidal anti-inflammatory drugs (NSAIDs) can inhibit Aβ accumulation. Previously, TKM01, a derivative of 4-anilinoquinazoline, has demonstrated inhibitory effects against GSK-3β-a regulator in AD progression. The current research included molecular docking studies of NSAIDs and TKM01 with Aβ and AChEs as targets. TKM01 exhibited a higher binding affinity with Aβ among all tested compounds. Molecular dynamic (MD) simulations confirmed the stability of the protein-TKM01 complexes. TKM01 also exhibited favorable drug-likeness properties, and no hepatoxicity was visualized in comparison with other compounds. Further, in vitro assay showed an inhibitory action of TKM01 (50-1200 µg/mL) on AChEs. In the in vivo studies on zebrafish larvae brains, we found that TKM01 (120 and 240 µg/mL) reduced the levels of AChEs and lipid peroxidation (LPO) and increased antioxidant superoxide dismutase (SOD) and catalase (CAT) in AlCl3(80 µM)-induced AD-like model. Additionally, TKM01 treatment was found to decrease pro-inflammatory cytokines TNF-α, IL-1β, and IL-6. The current study demonstrates that TKM01 can be used to treat AD. Nonetheless, experimental validation is needed to reveal the cellular, sub-cellular, and molecular mechanisms and possible implications at a clinical stage.
Collapse
Affiliation(s)
- Mohd Kashif
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | - Karthikeyan Chandrabose
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India
| | - Ashok Kumar Pandurangan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| |
Collapse
|
2
|
Elloumi A, Mas-Normand L, Bride J, Reversat G, Bultel-Poncé V, Guy A, Oger C, Demion M, Le Guennec JY, Durand T, Vigor C, Sánchez-Illana Á, Galano JM. From MS/MS library implementation to molecular networks: Exploring oxylipin diversity with NEO-MSMS. Sci Data 2024; 11:193. [PMID: 38351090 PMCID: PMC10864323 DOI: 10.1038/s41597-024-03034-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
Oxylipins, small polar molecules derived from the peroxidation of polyunsaturated fatty acids (PUFAs), serve as biomarkers for many diseases and play crucial roles in human physiology and inflammation. Despite their significance, many non-enzymatic oxygenated metabolites of PUFAs (NEO-PUFAs) remain poorly reported, resulting in a lack of public datasets of experimental data and limiting their dereplication in further studies. To overcome this limitation, we constructed a high-resolution tandem mass spectrometry (MS/MS) dataset comprising pure NEO-PUFAs (both commercial and self-synthesized) and in vitro free radical-induced oxidation of diverse PUFAs. By employing molecular networking techniques with this dataset and the existent ones in public repositories, we successfully mapped a wide range of NEO-PUFAs, expanding the strategies for annotating oxylipins, and NEO-PUFAs and offering a novel workflow for profiling these molecules in biological samples.
Collapse
Affiliation(s)
- Anis Elloumi
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS, 34293, Montpellier, France
| | - Lindsay Mas-Normand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS, 34293, Montpellier, France
| | - Jamie Bride
- PhyMedExp, Université de Montpellier, Inserm U1046, UMR CNRS 9412, Montpellier, France
| | - Guillaume Reversat
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS, 34293, Montpellier, France
| | - Valérie Bultel-Poncé
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS, 34293, Montpellier, France
| | - Alexandre Guy
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS, 34293, Montpellier, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS, 34293, Montpellier, France
| | - Marie Demion
- PhyMedExp, Université de Montpellier, Inserm U1046, UMR CNRS 9412, Montpellier, France
| | - Jean-Yves Le Guennec
- PhyMedExp, Université de Montpellier, Inserm U1046, UMR CNRS 9412, Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS, 34293, Montpellier, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS, 34293, Montpellier, France
| | - Ángel Sánchez-Illana
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS, 34293, Montpellier, France.
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Spain.
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS, 34293, Montpellier, France.
| |
Collapse
|
3
|
Vigor C, Balas L, Guy A, Bultel-Poncé V, Reversat G, Galano JM, Durand T, Oger C. Isoprostanoids, Isofuranoids and Isoketals ‐ From Synthesis to Lipidomics. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Claire Vigor
- Institut des Biomolecules Max Mousseron Bioactive Lipid Synthesis Pôle Chimie Balard Recherche1919 route de Mende 34293 Montpellier FRANCE
| | - Laurence Balas
- Institut des Biomolecules Max Mousseron Bioactive Lipids Synthesis Pôle Chimie Balard Recherche1919 route de Mende 34293 Montpellier FRANCE
| | - Alexandre Guy
- Institut des Biomolecules Max Mousseron Bioactive Lipids Synthesis Pôle Chimie Balard Recherche1919 route de Mende 34293 Montpellier FRANCE
| | - Valérie Bultel-Poncé
- Institut des Biomolecules Max Mousseron Bioactive Lipids Synthesis Pôle Chimie Balard1919 route de Mende 34293 Montpellier FRENCH POLYNESIA
| | - Guillaume Reversat
- Institut des Biomolecules Max Mousseron Bioactive Lipids Synthesis Pôle Chimie Balard Recherche1919 route de Mende 34293 Montpellier FRANCE
| | - Jean-Marie Galano
- Institut des Biomolecules Max Mousseron Bioactive Lipids Synthesis Pôle Chimie Balard Recherche1919 route de Mende 34293 Montpellier FRANCE
| | - Thierry Durand
- Institut des Biomolecules Max Mousseron Bioactive Lipids Synthesis Pôle Chimie Balard Recherche1919 route de Mende 34293 Montpellier FRANCE
| | - Camille Oger
- Institut des Biomolecules Max Mousseron Bioactive Lipids Synthesis Pôle Chimie Balard Recherche1919 route de Mende 34293 Montpellier FRANCE
| |
Collapse
|
4
|
Peripancreatic Adipose Tissue Remodeling and Inflammation during High Fat Intake of Palm Oils or Lard in Rats. Nutrients 2021; 13:nu13041134. [PMID: 33808251 PMCID: PMC8065769 DOI: 10.3390/nu13041134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 12/25/2022] Open
Abstract
Excessive fat consumption leads to the development of ectopic adipose tissues, affecting the organs they surround. Peripancreatic adipose tissue is implicated in glucose homeostasis regulation and can be impaired in obesity. High palm oil consumption's effects on health are still debated. We hypothesised that crude and refined palm oil high-fat feeding may have contrasting effects on peripancreatic adipocyte hypertrophy, inflammation and lipid oxidation compound production in obese rats. In Wistar rats, morphological changes, inflammation and isoprostanoid production following oxidative stress were assessed in peripancreatic adipose tissue after 12 weeks of diets enriched in crude or refined palm oil or lard (56% energy from fat in each case) versus a standard chow diet (11% energy from fat). Epididymal white and periaortic brown adipose tissues were also included in the study. A refined palm oil diet disturbed glucose homeostasis and promoted lipid deposition in periaortic locations, as well as adipocyte hypertrophy, macrophage infiltration and isoprostanoid (5-F2c-isoprostane and 7(RS)-ST-Δ8-11-dihomo-isofuran) production in peripancreatic adipose tissue. Crude palm oil induced a lower impact on adipose deposits than its refined form and lard. Our results show that the antioxidant composition of crude palm oil may have a protective effect on ectopic adipose tissues under the condition of excessive fat intake.
Collapse
|
5
|
Analysis of Lipid Peroxidation by UPLC-MS/MS and Retinoprotective Effects of the Natural Polyphenol Pterostilbene. Antioxidants (Basel) 2021; 10:antiox10020168. [PMID: 33498744 PMCID: PMC7912566 DOI: 10.3390/antiox10020168] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022] Open
Abstract
The loss of redox homeostasis induced by hyperglycemia is an early sign and key factor in the development of diabetic retinopathy. Due to the high level of long-chain polyunsaturated fatty acids, diabetic retina is highly susceptible to lipid peroxidation, source of pathophysiological alterations in diabetic retinopathy. Previous studies have shown that pterostilbene, a natural antioxidant polyphenol, is an effective therapy against diabetic retinopathy development, although its protective effects on lipid peroxidation are not well known. Plasma, urine and retinas from diabetic rabbits, control and diabetic rabbits treated daily with pterostilbene were analyzed. Lipid peroxidation was evaluated through the determination of derivatives from arachidonic, adrenic and docosahexaenoic acids by ultra-performance liquid chromatography coupled with tandem mass spectrometry. Diabetes increased lipid peroxidation in retina, plasma and urine samples and pterostilbene treatment restored control values, showing its ability to prevent early and main alterations in the development of diabetic retinopathy. Through our study, we are able to propose the use of a derivative of adrenic acid, 17(RS)-10-epi-SC-Δ15-11-dihomo-IsoF, for the first time, as a suitable biomarker of diabetic retinopathy in plasmas or urine.
Collapse
|
6
|
Bilodeau JF, Gevariya N, Larose J, Robitaille K, Roy J, Oger C, Galano JM, Bergeron A, Durand T, Fradet Y, Julien P, Fradet V. Long chain omega-3 fatty acids and their oxidized metabolites are associated with reduced prostate tumor growth. Prostaglandins Leukot Essent Fatty Acids 2021; 164:102215. [PMID: 33276284 DOI: 10.1016/j.plefa.2020.102215] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 11/03/2020] [Accepted: 11/11/2020] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Cancer has been associated with increased oxidative stress and deregulation of bioactive oxylipins derived from long-chain polyunsaturated fatty acids (LC-PUFA) like arachidonic acid (AA). There is a debate whether ω-3 LC-PUFA could promote or prevent prostate tumor growth through immune modulation and reduction of oxidative stress. Our aim was to study the association between enzymatically or non-enzymatically produced oxidized-LC-PUFA metabolites and tumor growth in an immune-competent eugonadal and castrated C57BL/6 male mice injected with TRAMP-C2 prostate tumor cells, fed with ω-3 or ω-6 LC-PUFA-rich diets. MATERIALS AND METHODS Tumor fatty acids were profiled by gas chromatography and 26 metabolites derived from either AA, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were assessed by liquid chromatography-mass spectrometry. RESULTS The enriched ω-3 diet did not reduce oxidative stress overall in tumors but favored the formation of ω-3 rather than ω-6 derived isoprostanoids. We discovered that EPA and its oxidized-derivatives like F3-isoprostanes and prostaglandin (PG)F3α, were inversely correlated with tumor volume (spearman correlations and T-test, p<0.05). In contrast, F2-isoprostanes, adrenic acid, docosapentaenoic acid (DPAω-6) and PGE2 were positively correlated with tumor volume. Interestingly, F4-neuroprostanes, PGD2, PGF2α, and thromboxane were specifically increased in TRAMP-C2 tumors of castrated mice compared to those of eugonadal mice. DISCUSSION Decreasing tumor growth under ω-3 diet could be attributed in part to increased levels of EPA and its oxidized-derivatives, a reduced level of pro-angiogenic PGE2 and increased levels of F4-neuroprostanes and resolvins content in tumors, suspected of having anti-proliferative and anti-inflammatory effects.
Collapse
Affiliation(s)
- Jean-François Bilodeau
- Axe endocrinologie et néphrologie, Centre de recherche du CHU de Québec - Université Laval, Québec, QC, Canada; Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Nikunj Gevariya
- Laboratoire d'Uro-Oncologie Expérimentale, Centre de Recherche du CHU de Québec - Université Laval, site L'Hôtel-Dieu de Québec, Québec, QC, Canada
| | - Jessica Larose
- Axe endocrinologie et néphrologie, Centre de recherche du CHU de Québec - Université Laval, Québec, QC, Canada
| | - Karine Robitaille
- Laboratoire d'Uro-Oncologie Expérimentale, Centre de Recherche du CHU de Québec - Université Laval, site L'Hôtel-Dieu de Québec, Québec, QC, Canada
| | - Jérôme Roy
- Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Département de Nutrition, Université de Montréal, Montréal, QC, Canada
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), CNRS UMR 5247, Université de Montpellier, ENSCM, Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), CNRS UMR 5247, Université de Montpellier, ENSCM, Montpellier, France
| | - Alain Bergeron
- Laboratoire d'Uro-Oncologie Expérimentale, Centre de Recherche du CHU de Québec - Université Laval, site L'Hôtel-Dieu de Québec, Québec, QC, Canada; Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC, Canada; Centre de Recherche sur le cancer de l'Université Laval, Québec, QC, Canada
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), CNRS UMR 5247, Université de Montpellier, ENSCM, Montpellier, France
| | - Yves Fradet
- Laboratoire d'Uro-Oncologie Expérimentale, Centre de Recherche du CHU de Québec - Université Laval, site L'Hôtel-Dieu de Québec, Québec, QC, Canada; Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC, Canada; Centre de Recherche sur le cancer de l'Université Laval, Québec, QC, Canada
| | - Pierre Julien
- Axe endocrinologie et néphrologie, Centre de recherche du CHU de Québec - Université Laval, Québec, QC, Canada; Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC, Canada; Centre de Recherche sur le cancer de l'Université Laval, Québec, QC, Canada
| | - Vincent Fradet
- Laboratoire d'Uro-Oncologie Expérimentale, Centre de Recherche du CHU de Québec - Université Laval, site L'Hôtel-Dieu de Québec, Québec, QC, Canada; Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC, Canada; Centre de Recherche sur le cancer de l'Université Laval, Québec, QC, Canada; Centre Nutrition, santé et société (NUTRISS) et Institut sur la nutrition et les aliments fonctionnels (INAF), Québec, Canada.
| |
Collapse
|
7
|
Peña-Bautista C, Álvarez L, Durand T, Vigor C, Cuevas A, Baquero M, Vento M, Hervás D, Cháfer-Pericás C. Clinical Utility of Plasma Lipid Peroxidation Biomarkers in Alzheimer's Disease Differential Diagnosis. Antioxidants (Basel) 2020; 9:antiox9080649. [PMID: 32707935 PMCID: PMC7464465 DOI: 10.3390/antiox9080649] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Differential diagnosis of Alzheimer's disease (AD) is a complex task due to the clinical similarity among neurodegenerative diseases. Previous studies showed the role of lipid peroxidation in early AD development. However, the clinical validation of potential specific biomarkers in minimally invasive samples constitutes a great challenge in early AD diagnosis. METHODS Plasma samples from participants classified into AD (n = 138), non-AD (including MCI and other dementias not due to AD) (n = 70) and healthy (n = 50) were analysed. Lipid peroxidation compounds (isoprostanes, isofurans, neuroprostanes, neurofurans) were determined by ultra-performance liquid chromatography coupled with tandem mass spectrometry. Statistical analysis for biomarkers' clinical validation was based on Elastic Net. RESULTS A two-step diagnosis model was developed from plasma lipid peroxidation products to diagnose early AD specifically, and a bootstrap validated AUC of 0.74 was obtained. CONCLUSION A promising AD differential diagnosis model was developed. It was clinically validated as a screening test. However, further external validation is required before clinical application.
Collapse
Affiliation(s)
- Carmen Peña-Bautista
- Neonatal Research Unit, Health Research Institute La Fe, 46026 Valencia, Spain; (C.P.-B.); (M.V.)
| | - Lourdes Álvarez
- Neurology Unit, University and Polytechnic Hospital La Fe, 46026 Valencia, Spain; (L.A.); (A.C.); (M.B.)
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, IBMM, University of Montpellier, CNRS ENSCM, 34093 Montpellier, France; (T.D.); (C.V.)
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron, IBMM, University of Montpellier, CNRS ENSCM, 34093 Montpellier, France; (T.D.); (C.V.)
| | - Ana Cuevas
- Neurology Unit, University and Polytechnic Hospital La Fe, 46026 Valencia, Spain; (L.A.); (A.C.); (M.B.)
| | - Miguel Baquero
- Neurology Unit, University and Polytechnic Hospital La Fe, 46026 Valencia, Spain; (L.A.); (A.C.); (M.B.)
| | - Máximo Vento
- Neonatal Research Unit, Health Research Institute La Fe, 46026 Valencia, Spain; (C.P.-B.); (M.V.)
| | - David Hervás
- Biostatistical Unit, Health Research Institute La Fe, 46026 Valencia, Spain;
| | - Consuelo Cháfer-Pericás
- Neonatal Research Unit, Health Research Institute La Fe, 46026 Valencia, Spain; (C.P.-B.); (M.V.)
- Correspondence: ; Tel.: +34-961-246-721; Fax: +34-961-246-620
| |
Collapse
|
8
|
Leung HH, Leung KS, Durand T, Galano JM, Lee JCY. Measurement of Enzymatic and Nonenzymatic Polyunsaturated Fatty Acid Oxidation Products in Plasma and Urine of Macular Degeneration Using LC-QTOF-MS/MS. Lipids 2020; 55:693-706. [PMID: 32602621 DOI: 10.1002/lipd.12264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 11/09/2022]
Abstract
Oxidized polyunsaturated fatty acids (PUFA) are associated to pathogenesis of diseases including cardiovascular and neurodegeneration. The novel products are not only biomarkers but also lipid mediators in gene regulation and signaling pathways. Herein, simultaneous quantitation of 28 products derived from nonenzymatic and enzymatic oxidation of PUFA i.e. 5-, 15-F2t -isoprostanes, 7-, 17-F2t -dihomo-isoprostanes, 7-, 17-F2t -dihomo-isofurans, 5-, 8-, 18-F3t -isoprostanes, 4-, 10-, 13-, 14-, 20-F4t -neuroprostanes, 5-, 8-, 9-, 11-,12-, 15-, 20-HETE, 4-, 7-, 11-, 14-, 17-HDHA, RvE1, and NPD1 using LC-(ESI)-QTOF-MS/MS was developed. These products were measurable in a single sample and the analytical time was relative short (~15 min). Furthermore, we showed that the use of internal standards is a requisite to normalize matrix effects and preparation loss for the quantitation. Validation assays indicated the method to be robust for plasma and mid-stream urine sample analysis in particular from those of age-related macular degeneration subjects, where the accuracy of quantitation displayed good repeatability.
Collapse
Affiliation(s)
- Ho Hang Leung
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Pokfulam Road, Hong Kong, Hong Kong SAR
| | - Kin Sum Leung
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Pokfulam Road, Hong Kong, Hong Kong SAR
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, 5 Av. Charles Flahault, Montpellier, Cedex 05, F34093, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, 5 Av. Charles Flahault, Montpellier, Cedex 05, F34093, France
| | - Jetty Chung-Yung Lee
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Pokfulam Road, Hong Kong, Hong Kong SAR
| |
Collapse
|
9
|
Lee YY, Galano J, Leung HH, Balas L, Oger C, Durand T, Lee JC. Nonenzymatic oxygenated metabolite of docosahexaenoic acid, 4(RS)‐4‐F4t‐neuroprostane, acts as a bioactive lipid molecule in neuronal cells. FEBS Lett 2020; 594:1797-1808. [DOI: 10.1002/1873-3468.13774] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/30/2020] [Accepted: 03/17/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Yiu Yiu Lee
- School of Biological Sciences The University of Hong Kong Hong Kong
| | - Jean‐Marie Galano
- Institut des Biomolécules Max Mousseron IBMM Université de Montpellier CNRS ENSCM Faculté de Pharmacie Montpellier France
| | - Ho Hang Leung
- School of Biological Sciences The University of Hong Kong Hong Kong
| | - Laurence Balas
- Institut des Biomolécules Max Mousseron IBMM Université de Montpellier CNRS ENSCM Faculté de Pharmacie Montpellier France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron IBMM Université de Montpellier CNRS ENSCM Faculté de Pharmacie Montpellier France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron IBMM Université de Montpellier CNRS ENSCM Faculté de Pharmacie Montpellier France
| | | |
Collapse
|
10
|
Saliva as a non-invasive tool for monitoring oxidative stress in swimmers athletes performing a VO 2max cycle ergometer test. Talanta 2020; 216:120979. [PMID: 32456903 DOI: 10.1016/j.talanta.2020.120979] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 01/07/2023]
Abstract
Biomarkers of oxidative stress are generally measured in blood and its derivatives. However, the invasiveness of blood collection makes the monitoring of such chemicals during exercise not feasible. Saliva analysis is an interesting approach in sport medicine because the collection procedure is easy-to-use and does not require specially-trained personnel. These features guarantee the collection of multiple samples from the same subject in a short span of time, thus allowing the monitoring of the subject before, during and after physical tests, training or competitions. The aim of this work was to evaluate the possibility of following the changes in the concentration of some oxidative stress markers in saliva samples taken over time by athletes under exercise. To this purpose, ketones (i.e. acetone, 2-butanone and 2-pentanone), aldehydes (i.e. propanal, butanal, and hexanal), α,β-unsaturated aldehydes (i.e. acrolein and methacrolein) and di-carbonyls (i.e. glyoxal and methylglyoxal) were derivatized with 2,4-dinitrophenylhydrazine, and determined by ultra-high performance liquid chromatography coupled to diode array detector. Prostaglandin E2, F2/E2-isoprostanes, F2-dihomo-isoprostanes, F4-neuroprostanes, and F2-dihomo-isofuranes were also determined by a reliable analytical procedure that combines micro-extraction by packed sorbent and ultra-high performance liquid chromatography-electrospray ionization tandem mass spectrometry. Overall the validation process showed that the methods have limits of detection in the range of units of ppb for carbonyls and tens to hundreds of ppt for isoprostanes and prostanoids, very good quantitative recoveries (90-110%) and intra- and inter-day precision lower than 15%. The proof of applicability of the proposed analytical approach was investigated by monitoring the selected markers of oxidative stress in ten swimmers performing a VO2max cycle ergo meter test. The results highlighted a clear increase of salivary by-products of oxidative stress during exercise, whereas a sharp decrease, approaching baseline values, of these compounds was observed in the recovery phase. This study opens up a new approach in the evaluation of oxidative stress and its relation to aerobic activity.
Collapse
|
11
|
Fernandes RA, Gorve DA, Pathare RS. Emergence of 2,3,5-trisubstituted tetrahydrofuran natural products and their synthesis. Org Biomol Chem 2020; 18:7002-7025. [PMID: 32966508 DOI: 10.1039/d0ob01542c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The emergence of various 2,3,5-trisubstituted tetrahydrofuran natural products in the recent literature and their synthesis is the focus of this review. These molecules exhibit varied bioactivities and have garnered the interest of several synthetic chemists owing to their efficient synthesis. A few of them have been synthesized and their absolute stereo structure has been confirmed for the first time. These will be appealing candidates in future synthetic investigations along with the untouched molecules. Thus, this compilation will reveal these molecules for expansion of their diversity within the realm of both synthesis and bioactivity studies.
Collapse
Affiliation(s)
- Rodney A Fernandes
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India.
| | - Dnyaneshwar A Gorve
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India.
| | - Ramdas S Pathare
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India.
| |
Collapse
|
12
|
Leung HH, Ng AL, Durand T, Kawasaki R, Oger C, Balas L, Galano JM, Wong IY, Chung-Yung Lee J. Increase in omega-6 and decrease in omega-3 polyunsaturated fatty acid oxidation elevates the risk of exudative AMD development in adults with Chinese diet. Free Radic Biol Med 2019; 145:349-356. [PMID: 31605749 DOI: 10.1016/j.freeradbiomed.2019.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/05/2019] [Accepted: 10/09/2019] [Indexed: 12/19/2022]
Abstract
Appropriate diet is essential for the regulation of age-related macular degeneration (AMD). In particular the type of dietary polyunsaturated fatty acids (PUFA) and poor antioxidant status including carotenoid levels concomitantly contribute to AMD risk. Build-up of oxidative stress in AMD induces PUFA oxidation, and a mix of lipid oxidation products (LOPs) are generated. However, LOPs are not comprehensively evaluated in AMD. LOPs are considered biomarkers of oxidative stress but also contributes to inflammatory response. In this cross-sectional case-control study, plasma omega-6/omega-3 PUFA ratios and antioxidant status (glutathione, superoxide dismutase and catalase), and plasma and urinary LOPs (41 types) were determined to evaluate its odds-ratio in the risk of developing exudative AMD (n = 99) compared to age-gender-matched healthy controls (n = 198) in adults with Chinese diet. The odds ratio of developing exudative AMD increased with LOPs from omega-6 PUFA and decreased from those of omega-3 PUFA. These observations were associated with a high plasma omega-6/omega-3 PUFA ratio and low carotenoid levels. In short, poor PUFA and antioxidant status increased the production of omega-6 PUFA LOPs such as dihomo-isoprostane and dihomo-isofuran, and lowered omega-3 PUFA LOPs such as neuroprostanes due to the high omega-6/omega-3 PUFA ratios; they were also correlated to the risk of AMD development. These findings indicate the generation of specific LOPs is associated with the development of exudative AMD.
Collapse
Affiliation(s)
- Ho Hang Leung
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Alex Lk Ng
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Hong Kong Ophthalmic Associates, Hong Kong SAR, China
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Ryo Kawasaki
- Department of Vision Informatics, Osaka University, Japan
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Laurence Balas
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Ian Yh Wong
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Department of Ophthalmology, Hong Kong Sanatorium and Hospital, Hong Kong SAR, China
| | - Jetty Chung-Yung Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
13
|
Parra-Llorca A, Gormaz M, Sánchez-Illana Á, Piñeiro-Ramos JD, Collado MC, Serna E, Cernada M, Nuñez-Ramiro A, Ramón-Beltrán A, Oger C, Galano JM, Vigor C, Durand T, Kuligowski J, Vento M. Does Pasteurized Donor Human Milk Efficiently Protect Preterm Infants Against Oxidative Stress? Antioxid Redox Signal 2019; 31:791-799. [PMID: 31250657 DOI: 10.1089/ars.2019.7821] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pasteurized donor human milk (DHM) is the preferred alternative for infant nutrition when own mother's milk (OMM) is unavailable. Whether DHM is an efficient means for protecting preterm infants from oxidative stress remains unknown. We quantified a panel of oxidative stress biomarkers in urine samples from preterm infants (≤32 weeks of gestation and a birth weight ≤1500 g) receiving ≥80% of feeding volume as either DHM or OMM. The noninvasive in vivo assessment of oxidative stress showed no statistically significant difference between both groups at the time when full enteral nutrition (150 mL/kg body weight) was achieved and until hospital discharge. In addition, the changes of urinary biomarker levels with time were assessed. This is the first longitudinal study on oxidative stress levels in preterm infants fed with DHM in comparison with OMM. There is no statistically significant difference in urinary oxidative stress levels of preterm infants from both groups indicating that despite the effects of pasteurization, DHM is a valid alternative when OMM is not available. Based on the results, we raise the hypothesis that pasteurized DHM protects preterm infants from oxidative stress as good as OMM, and consequently, its use could prevent oxidative stress-related diseases. Antioxid. Redox Signal. 31, 791-799.
Collapse
Affiliation(s)
- Anna Parra-Llorca
- Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain
| | - María Gormaz
- Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | | | | | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Paterna, Spain
| | - Eva Serna
- Department of Physiology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - María Cernada
- Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Antonio Nuñez-Ramiro
- Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Amparo Ramón-Beltrán
- Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, Montpellier, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, Montpellier, France
| | - Julia Kuligowski
- Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain
| | - Máximo Vento
- Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain.,Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain
| |
Collapse
|
14
|
New screening approach for Alzheimer's disease risk assessment from urine lipid peroxidation compounds. Sci Rep 2019; 9:14244. [PMID: 31578419 PMCID: PMC6775072 DOI: 10.1038/s41598-019-50837-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 09/20/2019] [Indexed: 11/08/2022] Open
Abstract
Alzheimer Disease (AD) standard biological diagnosis is based on expensive or invasive procedures. Recent research has focused on some molecular mechanisms involved since early AD stages, such as lipid peroxidation. Therefore, a non-invasive screening approach based on new lipid peroxidation compounds determination would be very useful. Well-defined early AD patients and healthy participants were recruited. Lipid peroxidation compounds were determined in urine using a validated analytical method based on liquid chromatography coupled to tandem mass spectrometry. Statistical studies consisted of the evaluation of two different linear (Elastic Net) and non-linear (Random Forest) regression models to discriminate between groups of participants. The regression models fitted to the data from some lipid peroxidation biomarkers (isoprostanes, neuroprostanes, prostaglandines, dihomo-isoprostanes) in urine as potential predictors of early AD. These prediction models achieved fair validated area under the receiver operating characteristics (AUC-ROCs > 0.68) and their results corroborated each other since they are based on different analytical principles. A satisfactory early screening approach, using two complementary regression models, has been obtained from urine levels of some lipid peroxidation compounds, indicating the individual probability of suffering from early AD.
Collapse
|
15
|
Leung HH, Yau YF, Leung KS, Lee YY, Oger C, Durand T, Galano J, Loke WM, Lee JC. Garlic Supplementation Modified Enzymatic Omega‐6 Polyunsaturated Fatty Acid Oxidation in Mild Hypercholesterolemia. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201900069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ho Hang Leung
- School of Biological SciencesThe University of Hong KongHong Kong SAR
| | - Yu Fung Yau
- School of Biological SciencesThe University of Hong KongHong Kong SAR
| | - Kin Sum Leung
- School of Biological SciencesThe University of Hong KongHong Kong SAR
| | - Yiu Yiu Lee
- School of Biological SciencesThe University of Hong KongHong Kong SAR
| | - Camille Oger
- Institut des Biomolécules Max MousseronUniversité de MontpellierUMR 5247 CNRS, ENSCMFrance
| | - Thierry Durand
- Institut des Biomolécules Max MousseronUniversité de MontpellierUMR 5247 CNRS, ENSCMFrance
| | - Jean‐Marie Galano
- Institut des Biomolécules Max MousseronUniversité de MontpellierUMR 5247 CNRS, ENSCMFrance
| | - Wai Mun Loke
- School of Chemical and Life SciencesCentre for Functional Food & Human NutritionNanyang PolytechnicSingapore 569830Singapore
| | | |
Collapse
|
16
|
Formation of trans-epoxy fatty acids correlates with formation of isoprostanes and could serve as biomarker of oxidative stress. Prostaglandins Other Lipid Mediat 2019; 144:106334. [PMID: 31009766 DOI: 10.1016/j.prostaglandins.2019.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/05/2019] [Accepted: 04/16/2019] [Indexed: 12/15/2022]
Abstract
In mammals, epoxy-polyunsaturated fatty acids (epoxy-PUFA) are enzymatically formed from naturally occurring all-cis PUFA by cytochrome P450 monooxygenases leading to the generation of cis-epoxy-PUFA (mixture of R,S- and S,R-enantiomers). In addition, also non-enzymatic chemical peroxidation gives rise to epoxy-PUFA leading to both, cis- and trans-epoxy-PUFA (mixture of R,R- and S,S-enantiomers). Here, we investigated for the first time trans-epoxy-PUFA and the trans/cis-epoxy-PUFA ratio as potential new biomarker of lipid peroxidation. Their formation was analyzed in correlation with the formation of isoprostanes (IsoP), which are commonly used as biomarkers of oxidative stress. Five oxidative stress models were investigated including incubations of three human cell lines as well as the in vivo model Caenorhabditis elegans with tert-butyl hydroperoxide (t-BOOH) and analysis of murine kidney tissue after renal ischemia reperfusion injury (IRI). A comprehensive set of IsoP and epoxy-PUFA derived from biologically relevant PUFA (ARA, EPA and DHA) was simultaneously quantified by LC-ESI(-)-MS/MS. Following renal IRI only a moderate increase in the kidney levels of IsoP and no relevant change in the trans/cis-epoxy-PUFA ratio was observed. In all investigated cell lines (HCT-116, HepG2 and Caki-2) as well as C. elegans a dose dependent increase of both, IsoP and the trans/cis-epoxy-PUFA ratio in response to the applied t-BOOH was observed. The different cell lines showed a distinct time dependent pattern consistent for both classes of autoxidatively formed oxylipins. Clear and highly significant correlations of the trans/cis-epoxy-PUFA ratios with the IsoP levels were found in all investigated cell lines and C. elegans. Based on this, we suggest the trans/cis-epoxy-PUFA ratio as potential new biomarker of oxidative stress, which warrants further investigation.
Collapse
|
17
|
Peña-Bautista C, Baquero M, Vento M, Cháfer-Pericás C. Free radicals in Alzheimer's disease: Lipid peroxidation biomarkers. Clin Chim Acta 2019; 491:85-90. [DOI: 10.1016/j.cca.2019.01.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 01/09/2023]
|
18
|
Validated analytical method to determine new salivary lipid peroxidation compounds as potential neurodegenerative biomarkers. J Pharm Biomed Anal 2019; 164:742-749. [DOI: 10.1016/j.jpba.2018.11.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 01/23/2023]
|
19
|
Khoury S, Canlet C, Lacroix MZ, Berdeaux O, Jouhet J, Bertrand-Michel J. Quantification of Lipids: Model, Reality, and Compromise. Biomolecules 2018; 8:E174. [PMID: 30558107 PMCID: PMC6316828 DOI: 10.3390/biom8040174] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 12/30/2022] Open
Abstract
Lipids are key molecules in various biological processes, thus their quantification is a crucial point in a lot of studies and should be taken into account in lipidomics development. This family is complex and presents a very large diversity of structures, so analyzing and quantifying all this diversity is a real challenge. In this review, the different techniques to analyze lipids will be presented: from nuclear magnetic resonance (NMR) to mass spectrometry (with and without chromatography) including universal detectors. First of all, the state of the art of quantification, with the definitions of terms and protocol standardization, will be presented with quantitative lipidomics in mind, and then technical considerations and limitations of analytical chemistry's tools, such as NMR, mass spectrometry and universal detectors, will be discussed, particularly in terms of absolute quantification.
Collapse
Affiliation(s)
- Spiro Khoury
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France.
- French LipidomYstes Network, 31000 Toulouse, France.
| | - Cécile Canlet
- Toxalim, Research Centre in Food Toxicology, Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, F-31027 Toulouse, France.
- Axiom Platform, MetaToul-MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, F-31027 Toulouse, France.
| | - Marlène Z Lacroix
- INTHERES, Université de Toulouse, INRA, ENVT, 31432 Toulouse, France.
| | - Olivier Berdeaux
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France.
- French LipidomYstes Network, 31000 Toulouse, France.
| | - Juliette Jouhet
- French LipidomYstes Network, 31000 Toulouse, France.
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, INRA, CEA, 38000 Grenoble, France.
| | - Justine Bertrand-Michel
- French LipidomYstes Network, 31000 Toulouse, France.
- MetaToul-Lipidomic Core Facility, MetaboHUB, I2MC U1048, Inserm, 31432 Toulouse, France.
| |
Collapse
|
20
|
Lee JCY, AlGhawas DS, Poutanen K, Leung KS, Oger C, Galano JM, Durand T, El-Nezami H. Dietary Oat Bran Increases Some Proinflammatory Polyunsaturated Fatty-Acid Oxidation Products and Reduces Anti-Inflammatory Products in Apolipoprotein E−/−
Mice. Lipids 2018; 53:785-796. [DOI: 10.1002/lipd.12090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/16/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Jetty Chung-Yung Lee
- School of Biological Sciences; The University of Hong Kong; Pokfulam Road Hong Kong SAR
| | - Dalal Samir AlGhawas
- School of Biological Sciences; The University of Hong Kong; Pokfulam Road Hong Kong SAR
| | - Kaisa Poutanen
- Institute of Public Health and Clinical Nutrition; University of Eastern Finland; FI-70029 Finland
- Food and Health Research Centre; VTT Technical Research Center of Finland; FI-02044 Finland
| | - Kin Sum Leung
- School of Biological Sciences; The University of Hong Kong; Pokfulam Road Hong Kong SAR
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM; Université de Montpellier; F-34093 France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM; Université de Montpellier; F-34093 France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM; Université de Montpellier; F-34093 France
| | - Hani El-Nezami
- School of Biological Sciences; The University of Hong Kong; Pokfulam Road Hong Kong SAR
| |
Collapse
|
21
|
Peña-Bautista C, Vigor C, Galano JM, Oger C, Durand T, Ferrer I, Cuevas A, López-Cuevas R, Baquero M, López-Nogueroles M, Vento M, Hervás D, García-Blanco A, Cháfer-Pericás C. Plasma lipid peroxidation biomarkers for early and non-invasive Alzheimer Disease detection. Free Radic Biol Med 2018; 124:388-394. [PMID: 29969716 DOI: 10.1016/j.freeradbiomed.2018.06.038] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Alzheimer Disease (AD) standard diagnosis is based on evaluations and biomarkers that are non-specific, expensive, or requires invasive sampling. Therefore, an early, and non-invasive diagnosis is required. As regards molecular mechanisms, recent research has shown that lipid peroxidation plays an important role. METHODS Well-defined participants groups were recruited. Lipid peroxidation compounds were determined in plasma using a validated analytical method. Statistical studies consisted of an elastic-net-penalized logistic regression adjustment. RESULTS The regression model fitted to the data included six variables (lipid peroxidation biomarkers) as potential predictors of early AD. This model achieved an apparent area under the receiver operating characteristics (AUC-ROCs) of 0.883 and a bootstrap-validated AUC-ROC of 0.817. Calibration of the model showed very low deviations from real probabilities. CONCLUSION A satisfactory early diagnostic model has been obtained from plasma levels of 6 lipid peroxidation compounds, indicating the individual probability of suffering from early AD.
Collapse
Affiliation(s)
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron, IBMM, University of Montpellier, CNRS ENSCM, Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, IBMM, University of Montpellier, CNRS ENSCM, Montpellier, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, IBMM, University of Montpellier, CNRS ENSCM, Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, IBMM, University of Montpellier, CNRS ENSCM, Montpellier, France
| | - Inés Ferrer
- Neurology Unit, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Ana Cuevas
- Neurology Unit, University and Polytechnic Hospital La Fe, Valencia, Spain
| | | | - Miguel Baquero
- Neurology Unit, University and Polytechnic Hospital La Fe, Valencia, Spain
| | | | - Máximo Vento
- Neonatal Research Unit, Health Research Institute La Fe, Valencia, Spain
| | - David Hervás
- Biostatistical Unit, Health Research Institute La Fe, Valencia, Spain
| | - Ana García-Blanco
- Neonatal Research Unit, Health Research Institute La Fe, Valencia, Spain.
| | | |
Collapse
|
22
|
García-Blanco A, Peña-Bautista C, Oger C, Vigor C, Galano JM, Durand T, Martín-Ibáñez N, Baquero M, Vento M, Cháfer-Pericás C. Reliable determination of new lipid peroxidation compounds as potential early Alzheimer Disease biomarkers. Talanta 2018; 184:193-201. [DOI: 10.1016/j.talanta.2018.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 11/28/2022]
|
23
|
Domínguez-Perles R, Abellán Á, León D, Ferreres F, Guy A, Oger C, Galano JM, Durand T, Gil-Izquierdo Á. Sorting out the phytoprostane and phytofuran profile in vegetable oils. Food Res Int 2018; 107:619-628. [PMID: 29580528 DOI: 10.1016/j.foodres.2018.03.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/01/2018] [Accepted: 03/04/2018] [Indexed: 10/17/2022]
Abstract
Phytoprostanes (PhytoPs) and phytofurans (PhytoFs) are prostaglandin-like compounds, contributing to defense signaling and prevention of cellular damage. These plant oxylipins result from autoxidation of α-linolenic acid (ALA) and have been proposed as new bioactive compounds due to their structural analogies with isoprostanes (IsoPs) and prostanoids derived from arachidonic acid in mammals, which have demonstrated diverse biological activities. The present work assesses a wide range of vegetable oils - including extra virgin olive oils (n = 7) and flax, sesame, argan, safflower seed, grapeseed, and palm oils - for their content of PhytoPs and PhytoFs. Flax oil displayed the highest concentrations, being notable the presence of 9-epi-9-D1t-PhytoP, 9-D1t-PhytoP, 16-B1-PhytoP, and 9-L1-PhytoP (7.54, 28.09, 28.67, and 19.22 μg mL-1, respectively), which contributed to a total PhytoPs concentration of 119.15 μg mL-1, and of ent-16-(RS)-9-epi-ST-Δ14-10-PhytoF (21.46 μg mL-1). Palm and grapeseed oils appeared as the most appropriate negative controls, given the near absence of PhytoPs and PhytoFs (lower than 0.15 μg mL-1). These data inform on the chance to develop nutritional trials using flax and grapeseed oils as food matrices that would provide practical information to design further assays intended to determine the actual bioavailability/bioactivity in vivo.
Collapse
Affiliation(s)
- Raúl Domínguez-Perles
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, 30100, Espinardo, Murcia, Spain
| | - Ángel Abellán
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, 30100, Espinardo, Murcia, Spain
| | - Daniel León
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, 30100, Espinardo, Murcia, Spain
| | - Federico Ferreres
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, 30100, Espinardo, Murcia, Spain
| | - Alexander Guy
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Jean Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, 30100, Espinardo, Murcia, Spain.
| |
Collapse
|
24
|
Novel free-radical mediated lipid peroxidation biomarkers in newborn plasma. Anal Chim Acta 2017; 996:88-97. [DOI: 10.1016/j.aca.2017.09.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/15/2017] [Accepted: 09/21/2017] [Indexed: 12/14/2022]
|
25
|
Development of an LC-ESI(-)-MS/MS method for the simultaneous quantification of 35 isoprostanes and isofurans derived from the major n3- and n6-PUFAs. Anal Chim Acta 2017; 1037:63-74. [PMID: 30292316 DOI: 10.1016/j.aca.2017.11.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/18/2017] [Accepted: 11/01/2017] [Indexed: 12/15/2022]
Abstract
Misregulation of oxidative and antioxidative processes in the organism - oxidative stress - contributes to the pathogenesis of different diseases, e.g. inflammatory or neurodegenerative diseases. Oxidative stress leads to autoxidation of polyunsaturated fatty acids giving rise to prostaglandin-like isoprostanes (IsoP) and isofurans (IsoF). On the one hand they could serve as biomarker of oxidative stress and on the other hand may act as lipid mediators, similarly as the enzymatically formed oxylipins. In the present paper we describe the development of an LC-ESI(-)-MS/MS method allowing the parallel quantification of 27 IsoP and 8 IsoF derived from 6 different PUFA (ALA, ARA, EPA, AdA, n6-DPA, DHA) within 12 min. The chromatographic separation was carried out on an RP-C18 column (2.1 × 150 mm, 1.8 μm) yielding narrow peaks with an average width at half maximum of 3.3-4.2 s. Detection was carried out on a triple quadrupole mass spectrometer operating in selected reaction monitoring mode allowing the selective detection of regioisomers. The limit of detection ranged between 0.1 and 1 nM allowing in combination with solid phase extraction the detection of IsoP and IsoF at subnanomolar concentrations in biological samples. The method was validated for human plasma showing high accuracy and precision. Application of the approach on the investigation of oxidative stress in cultured cells indicated a distinct pattern of IsoP and IsoF in response to reactive oxygen species which warrants further investigation. The described method is not only the most comprehensive approach for the simultaneous quantification of IsoP and IsoF, but it was also integrated in a targeted metabolomics method (Ostermann et al. (2015) Anal Bioanal Chem) allowing the quantification of in total 164 oxylipins formed enzymatically and non-enzymatically within 30.5 min.
Collapse
|
26
|
Lai KP, Lee JCY, Wan HT, Li JW, Wong AYM, Chan TF, Oger C, Galano JM, Durand T, Leung KS, Leung CC, Li R, Wong CKC. Effects of in Utero PFOS Exposure on Transcriptome, Lipidome, and Function of Mouse Testis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:8782-8794. [PMID: 28654245 DOI: 10.1021/acs.est.7b02102] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Transcriptomic and LC-MS/MS-based targeted lipidomic analyses were conducted to identify the effects of in utero PFOS exposure on neonatal testes and its relation to testicular dysfunction in adult offspring. Pregnant mice were orally administered 0.3 and 3 μg PFOS/g body weight until term. Neonatal testes (P1) were collected for the detection of PFOS, and were subjected to omics study. Integrated pathway analyses using DAVID, KEGG, and IPA underlined the effects of PFOS exposure on lipid metabolism, oxidative stress and cell junction signaling in testes. LC-MS/MS analysis showed that the levels of adrenic acid and docosahexaenoic acid (DHA) in testes were significantly reduced in the PFOS treatment groups. A significant linear decreasing trend in eicosapentaenoic acid and DHA with PFOS concentrations was observed. Moreover, LOX-mediated 5-hydroxyeicosatetraenoic acids (HETE) and 15-HETE from arachidonic acid in the testes were significantly elevated and a linear increasing trend of 15-HETE concentrations was detected with doses of PFOS. The perturbations of lipid mediators suggested that PFOS has potential negative impacts on testicular functions. Postnatal analysis of male offspring at P63 showed significant reductions in serum testosterone and epididymal sperm count. This study sheds light into the as yet unrevealed action of PFOS on lipid mediators in affecting testicular functions.
Collapse
Affiliation(s)
- Keng Po Lai
- Department of Biology and Chemistry, City University of Hong Kong , Hong Kong
| | | | - Hin Ting Wan
- Partner State Key Laboratory of Environmental and Biological Analysis, Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University , Hong Kong
| | - Jing Woei Li
- School of Life Sciences, The Chinese University of Hong Kong , Hong Kong
| | - Aman Yi-Man Wong
- Partner State Key Laboratory of Environmental and Biological Analysis, Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University , Hong Kong
| | - Ting Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong , Hong Kong
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier , Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier , Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier , Montpellier, France
| | - Kin Sum Leung
- School of Biological Sciences, The University of Hong Kong , Hong Kong
| | - Cherry C Leung
- Partner State Key Laboratory of Environmental and Biological Analysis, Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University , Hong Kong
| | - Rong Li
- Partner State Key Laboratory of Environmental and Biological Analysis, Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University , Hong Kong
| | - Chris Kong-Chu Wong
- Partner State Key Laboratory of Environmental and Biological Analysis, Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University , Hong Kong
| |
Collapse
|
27
|
Cuyamendous C, Leung KS, Bultel-Poncé V, Guy A, Durand T, Galano JM, Lee JCY, Oger C. Total Synthesis and in Vivo Quantitation of Phytofurans Derived from α-Linolenic Acid. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700270] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Claire Cuyamendous
- Institut des Biomolécules Max Mousseron (IBMM); UMR CNRS 5247; Université de Montpellier; ENSCM; Faculté de Pharmacie; 15 Av. Charles Flahault, BP 14491 34093 Montpellier CEDEX 05 France
| | - Kin Sum Leung
- School of Biological Sciences; The University of Hong Kong; Pokfulam Road Hong Kong SAR China
| | - Valérie Bultel-Poncé
- Institut des Biomolécules Max Mousseron (IBMM); UMR CNRS 5247; Université de Montpellier; ENSCM; Faculté de Pharmacie; 15 Av. Charles Flahault, BP 14491 34093 Montpellier CEDEX 05 France
| | - Alexandre Guy
- Institut des Biomolécules Max Mousseron (IBMM); UMR CNRS 5247; Université de Montpellier; ENSCM; Faculté de Pharmacie; 15 Av. Charles Flahault, BP 14491 34093 Montpellier CEDEX 05 France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM); UMR CNRS 5247; Université de Montpellier; ENSCM; Faculté de Pharmacie; 15 Av. Charles Flahault, BP 14491 34093 Montpellier CEDEX 05 France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM); UMR CNRS 5247; Université de Montpellier; ENSCM; Faculté de Pharmacie; 15 Av. Charles Flahault, BP 14491 34093 Montpellier CEDEX 05 France
| | - Jetty Chung-Yung Lee
- School of Biological Sciences; The University of Hong Kong; Pokfulam Road Hong Kong SAR China
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM); UMR CNRS 5247; Université de Montpellier; ENSCM; Faculté de Pharmacie; 15 Av. Charles Flahault, BP 14491 34093 Montpellier CEDEX 05 France
| |
Collapse
|
28
|
Rodriguez AR, Spur BW. First total synthesis of pro-resolving and tissue-regenerative resolvin sulfido-conjugates. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.03.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Cuyamendous C, de la Torre A, Lee YY, Leung KS, Guy A, Bultel-Poncé V, Galano JM, Lee JCY, Oger C, Durand T. The novelty of phytofurans, isofurans, dihomo-isofurans and neurofurans: Discovery, synthesis and potential application. Biochimie 2016; 130:49-62. [PMID: 27519299 DOI: 10.1016/j.biochi.2016.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/07/2016] [Indexed: 01/15/2023]
Abstract
Polyunsaturated fatty acids (PUFA) are oxidized in vivo under oxidative stress through free radical pathway and release cyclic oxygenated metabolites, which are commonly classified as isoprostanes and isofurans. The discovery of isoprostanes goes back twenty-five years compared to fifteen years for isofurans, and great many are discovered. The biosynthesis, the nomenclature, the chemical synthesis of furanoids from α-linolenic acid (ALA, C18:3 n-3), arachidonic acid (AA, C20:4 n-6), adrenic acid (AdA, 22:4 n-6) and docosahexaenoic acid (DHA, 22:6 n-3) as well as their identification and implication in biological systems are highlighted in this review.
Collapse
Affiliation(s)
- Claire Cuyamendous
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, Université de Montpellier, ENSCM, Faculté de Pharmacie de Montpellier, 15 Avenue Charles Flahault, Bâtiment D, 34093, Montpellier Cedex 05, France
| | - Aurélien de la Torre
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, Université de Montpellier, ENSCM, Faculté de Pharmacie de Montpellier, 15 Avenue Charles Flahault, Bâtiment D, 34093, Montpellier Cedex 05, France
| | - Yiu Yiu Lee
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Kin Sum Leung
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Alexandre Guy
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, Université de Montpellier, ENSCM, Faculté de Pharmacie de Montpellier, 15 Avenue Charles Flahault, Bâtiment D, 34093, Montpellier Cedex 05, France
| | - Valérie Bultel-Poncé
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, Université de Montpellier, ENSCM, Faculté de Pharmacie de Montpellier, 15 Avenue Charles Flahault, Bâtiment D, 34093, Montpellier Cedex 05, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, Université de Montpellier, ENSCM, Faculté de Pharmacie de Montpellier, 15 Avenue Charles Flahault, Bâtiment D, 34093, Montpellier Cedex 05, France
| | - Jetty Chung-Yung Lee
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, Université de Montpellier, ENSCM, Faculté de Pharmacie de Montpellier, 15 Avenue Charles Flahault, Bâtiment D, 34093, Montpellier Cedex 05, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, Université de Montpellier, ENSCM, Faculté de Pharmacie de Montpellier, 15 Avenue Charles Flahault, Bâtiment D, 34093, Montpellier Cedex 05, France.
| |
Collapse
|
30
|
de la Torre A, Cuyamendous C, Bultel-Poncé V, Durand T, Galano JM, Oger C. Recent advances in the synthesis of tetrahydrofurans and applications in total synthesis. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.06.076] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Dupuy A, Le Faouder P, Vigor C, Oger C, Galano JM, Dray C, Lee JCY, Valet P, Gladine C, Durand T, Bertrand-Michel J. Simultaneous quantitative profiling of 20 isoprostanoids from omega-3 and omega-6 polyunsaturated fatty acids by LC-MS/MS in various biological samples. Anal Chim Acta 2016; 921:46-58. [PMID: 27126789 DOI: 10.1016/j.aca.2016.03.024] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/10/2016] [Accepted: 03/16/2016] [Indexed: 10/22/2022]
Abstract
Isoprostanoids are a group of non-enzymatic oxygenated metabolites of polyunsaturated fatty acids. It belongs to oxylipins group, which are important lipid mediators in biological processes, such as tissue repair, blood clotting, blood vessel permeability, inflammation and immunity regulation. Recently, isoprostanoids from eicosapentaenoic, docosahexaenoic, adrenic and α-linolenic namely F3-isoprostanes, F4-neuroprostanes, F2-dihomo-isoprostanes and F1-phytoprostanes, respectively have attracted attention because of their putative contribution to health. Since isoprostanoids are derived from different substrate of PUFAs and can have similar or opposing biological consequences, a total isoprostanoids profile is essential to understand the overall effect in the testing model. However, the concentration of most isoprostanoids range from picogram to nanogram, therefore a sensitive method to quantify 20 isoprostanoids simultaneously was formulated and measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The lipid portion from various biological samples was extracted prior to LC-MS/MS evaluation. For all the isoprostanoids LOD and LOQ, and the method was validated on plasma samples for matrix effect, yield of extraction and reproducibility were determined. The methodology was further tested for the isoprostanoids profiles in brain and liver of LDLR(-/-) mice with and without docosahexaenoic acid (DHA) supplementation. Our analysis showed similar levels of total F2-isoprostanes and F4-neuroprostanes in the liver and brain of non-supplemented LDLR(-/-) mice. The distribution of different F2-isoprostane isomers varied between tissues but not for F4-neuroprostanes which were predominated by the 4(RS)-4-F4t-neuroprostane isomer. DHA supplementation to LDLR(-/-) mice concomitantly increased total F4-neuroprostanes levels compared to F2-isoprostanes but this effect was more pronounced in the liver than brain.
Collapse
Affiliation(s)
- Aude Dupuy
- MetaToul-Lipidomic Core Facility, MetaboHUB, Inserm U1048, Toulouse, France; Institut des Maladies Métaboliques et Cardiovasculaires, Inserm U1048, Toulouse, France
| | - Pauline Le Faouder
- MetaToul-Lipidomic Core Facility, MetaboHUB, Inserm U1048, Toulouse, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron IBMM, UMR 5247 CNRS, Université de Montpellier, ENSCM, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron IBMM, UMR 5247 CNRS, Université de Montpellier, ENSCM, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron IBMM, UMR 5247 CNRS, Université de Montpellier, ENSCM, France
| | - Cédric Dray
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm U1048, Toulouse, France
| | | | - Philippe Valet
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm U1048, Toulouse, France
| | - Cécile Gladine
- INRA, UMR1019, UNH, CRNH Auvergne, Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron IBMM, UMR 5247 CNRS, Université de Montpellier, ENSCM, France
| | | |
Collapse
|
32
|
Roy J, Oger C, Thireau J, Roussel J, Mercier-Touzet O, Faure D, Pinot E, Farah C, Taber DF, Cristol JP, Lee JCY, Lacampagne A, Galano JM, Durand T, Le Guennec JY. Nonenzymatic lipid mediators, neuroprostanes, exert the antiarrhythmic properties of docosahexaenoic acid. Free Radic Biol Med 2015; 86:269-78. [PMID: 25911196 DOI: 10.1016/j.freeradbiomed.2015.04.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/18/2015] [Accepted: 04/11/2015] [Indexed: 12/21/2022]
Abstract
Neuroprostanes are lipid mediators produced by nonenzymatic free radical peroxidation of docosahexaenoic acid (DHA). DHA is associated with a lower atherosclerosis risk, suggesting a beneficial role in cardiovascular diseases. The aim of this study was to investigate the influence of DHA peroxidation on its potentially antiarrhythmic properties (AAP) in isolated ventricular cardiomyocytes and in vivo in post-myocardial infarcted mice. Calcium imaging and biochemical experiments indicate that cardiac arrhythmias induced by isoproterenol are associated with Ca(2+) leak from the sarcoplasmic reticulum after oxidation and phosphorylation of the type 2 ryanodine receptor (RyR2) leading to dissociation of the FKBP12.6/RyR2 complex. Both oxidized DHA and 4(RS)-4-F4t-NeuroP prevented cellular arrhythmias and posttranslational modifications of the RyR2 leading to a stabilized FKBP12.6/RyR2 complex. DHA per se did not have AAP. The AAP of 4(RS)-4-F4t-NeuroP was also observed in vivo. In this study, we challenged the paradigm that spontaneously formed oxygenated metabolites of lipids are undesirable as they are unconditionally toxic. This study reveals that the lipid mediator 4(RS)-4-F4t-neuroprostane derived from nonenzymatic peroxidation of docosahexaenoic acid can counteract such deleterious effects through cardiac antiarrhythmic properties. Our findings demonstrate 4(RS)-4-F4t-NeuroP as a mediator of the cardioprotective AAP of DHA. This discovery opens new perspectives for products of nonenzymatic oxidized ω3 polyunsaturated fatty acids as potent mediators in diseases that involve ryanodine complex destabilization such as ischemic events.
Collapse
Affiliation(s)
- Jérôme Roy
- INSERM U1046-UMR 9214, Centre National de la Recherche Scientifique, Physiologie et Médecine Expérimentale du Coeur et des Muscles, Université de Montpellier, 34295 Montpellier Cedex 5, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, UMR 5247, Centre National de la Recherche Scientifique, Université de Montpellier, ENSCM, Montpellier, France
| | - Jérôme Thireau
- Institut des Biomolécules Max Mousseron, UMR 5247, Centre National de la Recherche Scientifique, Université de Montpellier, ENSCM, Montpellier, France
| | - Julien Roussel
- INSERM U1046-UMR 9214, Centre National de la Recherche Scientifique, Physiologie et Médecine Expérimentale du Coeur et des Muscles, Université de Montpellier, 34295 Montpellier Cedex 5, France
| | - Olivia Mercier-Touzet
- INSERM U1046-UMR 9214, Centre National de la Recherche Scientifique, Physiologie et Médecine Expérimentale du Coeur et des Muscles, Université de Montpellier, 34295 Montpellier Cedex 5, France
| | - Delinger Faure
- INSERM U1046-UMR 9214, Centre National de la Recherche Scientifique, Physiologie et Médecine Expérimentale du Coeur et des Muscles, Université de Montpellier, 34295 Montpellier Cedex 5, France; Institut des Biomolécules Max Mousseron, UMR 5247, Centre National de la Recherche Scientifique, Université de Montpellier, ENSCM, Montpellier, France
| | - Edith Pinot
- Institut des Biomolécules Max Mousseron, UMR 5247, Centre National de la Recherche Scientifique, Université de Montpellier, ENSCM, Montpellier, France
| | - Charlotte Farah
- INSERM U1046-UMR 9214, Centre National de la Recherche Scientifique, Physiologie et Médecine Expérimentale du Coeur et des Muscles, Université de Montpellier, 34295 Montpellier Cedex 5, France
| | - Douglass F Taber
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Jean-Paul Cristol
- INSERM U1046-UMR 9214, Centre National de la Recherche Scientifique, Physiologie et Médecine Expérimentale du Coeur et des Muscles, Université de Montpellier, 34295 Montpellier Cedex 5, France
| | - Jetty C Y Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR
| | - Alain Lacampagne
- INSERM U1046-UMR 9214, Centre National de la Recherche Scientifique, Physiologie et Médecine Expérimentale du Coeur et des Muscles, Université de Montpellier, 34295 Montpellier Cedex 5, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, UMR 5247, Centre National de la Recherche Scientifique, Université de Montpellier, ENSCM, Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, UMR 5247, Centre National de la Recherche Scientifique, Université de Montpellier, ENSCM, Montpellier, France
| | - Jean-Yves Le Guennec
- INSERM U1046-UMR 9214, Centre National de la Recherche Scientifique, Physiologie et Médecine Expérimentale du Coeur et des Muscles, Université de Montpellier, 34295 Montpellier Cedex 5, France.
| |
Collapse
|
33
|
Lee YY, Wong CKC, Oger C, Durand T, Galano JM, Lee JCY. Prenatal exposure to the contaminant perfluorooctane sulfonate elevates lipid peroxidation during mouse fetal development but not in the pregnant dam. Free Radic Res 2015; 49:1015-25. [DOI: 10.3109/10715762.2015.1027199] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Y. Y. Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR
| | - C. K. C. Wong
- Partner State Key Laboratory of Environmental and Biological Analysis, Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Hong Kong SAR
| | - C. Oger
- Institut des Biomolécules Max Mousseron, Université de Montpellier, France
| | - T. Durand
- Institut des Biomolécules Max Mousseron, Université de Montpellier, France
| | - J.-M. Galano
- Institut des Biomolécules Max Mousseron, Université de Montpellier, France
| | - J. C.-Y. Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR
| |
Collapse
|
34
|
Chung MLS, Galano JM, Oger C, Durand T, Lee JCY. Hyperoxia elevates adrenic acid peroxidation in marine fish and is associated with reproductive pheromone mediators. Mar Drugs 2015; 13:2215-32. [PMID: 25874920 PMCID: PMC4413208 DOI: 10.3390/md13042215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/25/2015] [Accepted: 04/01/2015] [Indexed: 12/14/2022] Open
Abstract
The development of oxidative stress in the marine ecosystem is a concurring concern in fish reproductive behavior. Marine fish being rich in polyunsaturated fatty acids (PUFA) are precursors of prostaglandin pheromone mediators but also vulnerable to lipid peroxidation. It is yet to be determined if hypoxia or hyperoxia environment, a cumulative effect in the marine ecosystem affect pheromone mediators in fish, and to understand if this is associated with the generation of oxidized lipid products of PUFA. Novel oxidized lipid metabolites, isoprostanoids (15-F2t-isoprostane, 7(RS)-7-F2t-dihomo-isoprostane, 17(RS)-17-F2t-dihomo-isoprostane, 8-F3t-isoprostane, 4(RS)-4-F4t-neuroprostane, 10-F4t-neuroprostane), isofuranoids (isofurans, 10-epi-17(RS)-SC-Δ15-11-dihomo-isofuran and neurofurans), hydroxyeicosatetraenoic acids and resolvins, PUFA (arachidonic, adrenic, eicosapentaenoic and docosahexaenoic acids) and prostaglandin pheromone mediators in fish muscle were determined in marine male and female fish muscles before and after interaction in a hypoxia or hyperoxia environment. Reproductive behaviors were also assessed. Our study showed oxidized lipid metabolites of arachidonic, eicosapentaenoic, and docosahexaenoic acids were not influenced by hypoxia and hyperoxia exposure in the fishes and no gender differences were found. However, adrenic acid and its oxidized products, 17(RS)-17-F2t-dihomo-isoprostane and 10-epi-17(RS)-SC-Δ15-11-dihomo-isofuran showed strong correspondence with male fish pheromone mediators and reproductive behavior when under oxidative stress especially, hyperoxia. The occurrence of hypoxia and hyperoxia in the marine ecosystem may not be detrimental to marine fish and instead presents as being beneficial in reproductive behavior.
Collapse
Affiliation(s)
| | - Jean-Marie Galano
- Institute of Biomolecules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, University of Montpellier, F-34093 Montpellier cedex 05, France.
| | - Camille Oger
- Institute of Biomolecules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, University of Montpellier, F-34093 Montpellier cedex 05, France.
| | - Thierry Durand
- Institute of Biomolecules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, University of Montpellier, F-34093 Montpellier cedex 05, France.
| | - Jetty Chung-Yung Lee
- School of Biological Sciences, the University of Hong Kong, Pokfulam Road, Hong Kong.
| |
Collapse
|
35
|
Cuyamendous C, Leung KS, Durand T, Lee JCY, Oger C, Galano JM. Synthesis and discovery of phytofurans: metabolites of α-linolenic acid peroxidation. Chem Commun (Camb) 2015; 51:15696-9. [DOI: 10.1039/c5cc05736a] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Novel phytofurans, metabolites of α-linolenic acid preoxidation are synthesized and used to identified and quantified them in seeds and nuts for the first time.
Collapse
Affiliation(s)
- C. Cuyamendous
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR CNRS 5247 - Université de Montpellier – ENSCM Faculté de Pharmacie
- 34093 Montpellier cedex 05
- France
| | - K. S. Leung
- School of Biological Sciences
- The University of Hong-Kong
- Hong Kong SAR
- China
| | - T. Durand
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR CNRS 5247 - Université de Montpellier – ENSCM Faculté de Pharmacie
- 34093 Montpellier cedex 05
- France
| | - J. C.-Y. Lee
- School of Biological Sciences
- The University of Hong-Kong
- Hong Kong SAR
- China
| | - C. Oger
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR CNRS 5247 - Université de Montpellier – ENSCM Faculté de Pharmacie
- 34093 Montpellier cedex 05
- France
| | - J.-M. Galano
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR CNRS 5247 - Université de Montpellier – ENSCM Faculté de Pharmacie
- 34093 Montpellier cedex 05
- France
| |
Collapse
|