1
|
Li D, Kirberger M, Qiao J, Gui Z, Xue S, Pu F, Jiang J, Xu Y, Tan S, Salarian M, Ibhagui O, Hekmatyar K, Yang JJ. Protein MRI Contrast Agents as an Effective Approach for Precision Molecular Imaging. Invest Radiol 2024; 59:170-186. [PMID: 38180819 DOI: 10.1097/rli.0000000000001057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
ABSTRACT Cancer and other acute and chronic diseases are results of perturbations of common molecular determinants in key biological and signaling processes. Imaging is critical for characterizing dynamic changes in tumors and metastases, the tumor microenvironment, tumor-stroma interactions, and drug targets, at multiscale levels. Magnetic resonance imaging (MRI) has emerged to be a primary imaging modality for both clinical and preclinical applications due to its advantages over other modalities, including sensitivity to soft tissues, nondepth limitations, and the use of nonionizing radiation. However, extending the application of MRI to achieve both qualitative and quantitative precise molecular imaging with the capability to quantify molecular biomarkers for early detection, staging, and monitoring therapeutic treatment requires the capacity to overcome several major challenges including the trade-off between metal-binding affinity and relaxivity, which is an issue frequently associated with small chelator contrast agents. In this review, we will introduce the criteria of ideal contrast agents for precision molecular imaging and discuss the relaxivity of current contrast agents with defined first shell coordination water molecules. We will then report our advances in creating a new class of protein-targeted MRI contrast agents (ProCAs) with contributions to relaxivity largely derived from the secondary sphere and correlation time. We will summarize our rationale, design strategy, and approaches to the development and optimization of our pioneering ProCAs with desired high relaxivity, metal stability, and molecular biomarker-targeting capability, for precision MRI. From first generation (ProCA1) to third generation (ProCA32), we have achieved dual high r1 and r2 values that are 6- to 10-fold higher than clinically approved contrast agents at magnetic fields of 1.5 T, and their relaxivity values at high field are also significantly higher, which enables high resolution during small animal imaging. Further engineering of multiple targeting moieties enables ProCA32 agents that have strong biomarker-binding affinity and specificity for an array of key molecular biomarkers associated with various chronic diseases, while maintaining relaxation and exceptional metal-binding and selectivity, serum stability, and resistance to transmetallation, which are critical in mitigating risks associated with metal toxicity. Our leading product ProCA32.collagen has enabled the first early detection of liver metastasis from multiple cancers at early stages by mapping the tumor environment and early stage of fibrosis from liver and lung in vivo, with strong translational potential to extend to precision MRI for preclinical and clinical applications for precision diagnosis and treatment.
Collapse
Affiliation(s)
- Dongjun Li
- From the Center for Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Department of Chemistry, Georgia State University, Atlanta, GA (D.L., M.K., J.Q., Z.G., S.X., P.F., J.J., S.T., M.S., O.I., K.H., J.J.Y.); and InLighta BioSciences, LLC, Marietta, GA (Y.X., J.J.Y)
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Laczovics A, Csige I, Szabó S, Tóth A, Kálmán FK, Tóth I, Fülöp Z, Berényi E, Braun M. Relationship between gadolinium-based MRI contrast agent consumption and anthropogenic gadolinium in the influent of a wastewater treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162844. [PMID: 36924971 DOI: 10.1016/j.scitotenv.2023.162844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/04/2023] [Accepted: 03/09/2023] [Indexed: 05/06/2023]
Abstract
Gadolinium-based contrast agents (GBCAs) used in magnetic resonance imaging (MRI) are highly resistant in the environment. They pass through wastewater treatment plants (WWTPs) unhindered escaping degradation. Although GBCAs are subjects of intensive research, we recognized that a quantitative approach to the mass balance of gadolinium, based on known input and output data, is missing. The administered amount of Gd as GBCAs, the number of out- and inpatients and the concentration of rare earth elements (REEs) in wastewater were monitored for 45 days in a medium sized city (ca. 203,000 inhabitants) with two MRI centres. An advection-dispersion type model was established to describe the transport of Gd in the wastewater system. The model calculates with patient locality, excretion kinetics of Gd and the yield of wastewater. The estimated and measured daily amount of anthropogenic gadolinium released to the WWTP were compared. GBCAs (Omniscan and Dotarem) were administered to 1008 patients representing a total of 700 ± 1 g Gd. The amount of total Gd entering the WWTP was 531 ± 2 g, of which the anthropogenic contribution (i.e. GBCAs) was 261 ± 6 g (49 ± 1 % of the total Gd) during the sampling campaign. Local residents and inpatients should fully release Gd in the city, but outpatients only partially. Overall, 37 ± 1 % of the total administered Gd was recovered in the wastewater, so the remaining 63 ± 1 % of administered Gd is expected to be dispensed outside of the sewer system. Our approach enables to better understand the dispersion of GBCAs originated Gd in an urban environment.
Collapse
Affiliation(s)
- Attila Laczovics
- Department of Medical Imaging, Division of Radiology and Imaging Science, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Nagyerdei krt 98, Hungary; Doctoral School of Neuroscience, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Nagyerdei krt 98, Hungary
| | - István Csige
- Isotope Climatology and Environmental Research Centre, Institute for Nuclear Research, Hungarian Academy of Sciences, H-4026 Debrecen, Bem tér 18/C, Hungary
| | - Sándor Szabó
- Department of Biology, University of Nyíregyháza, H-4401 Nyíregyháza, PO Box 166, Hungary
| | - Albert Tóth
- Isotope Climatology and Environmental Research Centre, Institute for Nuclear Research, Hungarian Academy of Sciences, H-4026 Debrecen, Bem tér 18/C, Hungary
| | - Ferenc Krisztián Kálmán
- Department of Physical Chemistry, University of Debrecen, H-4032 Debrecen, Egyetem tér 1, Hungary
| | - Imre Tóth
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Egyetem tér 1, Hungary
| | - Zoltán Fülöp
- Debrecen Waterworks Ltd., H-4025 Debrecen, Hatvan u. 12-14, Hungary
| | - Ervin Berényi
- Department of Medical Imaging, Division of Radiology and Imaging Science, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Nagyerdei krt 98, Hungary; Doctoral School of Neuroscience, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Nagyerdei krt 98, Hungary
| | - Mihály Braun
- Isotope Climatology and Environmental Research Centre, Institute for Nuclear Research, Hungarian Academy of Sciences, H-4026 Debrecen, Bem tér 18/C, Hungary.
| |
Collapse
|
3
|
Islam MK, Baek AR, Yang BW, Kim S, Hwang DW, Nam SW, Lee GH, Chang Y. Manganese (II) Complex of 1,4,7-Triazacyclononane-1,4,7-Triacetic Acid (NOTA) as a Hepatobiliary MRI Contrast Agent. Pharmaceuticals (Basel) 2023; 16:ph16040602. [PMID: 37111359 PMCID: PMC10141232 DOI: 10.3390/ph16040602] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Magnetic resonance imaging (MRI) is increasingly used to diagnose focal and diffuse liver disorders. Despite their enhanced efficacy, liver-targeted gadolinium-based contrast agents (GBCAs) raise safety concerns owing to the release of toxic Gd3+ ions. A π-conjugated macrocyclic chelate, Mn-NOTA-NP, was designed and synthesized as a non-gadolinium alternative for liver-specific MRI. Mn-NOTA-NP exhibits an r1 relaxivity of 3.57 mM-1 s-1 in water and 9.01 mM-1 s-1 in saline containing human serum albumin at 3 T, which is significantly greater than the clinically utilized Mn2+-based hepatobiliary drug, Mn-DPDP (1.50 mM-1 s-1), and comparable with that of GBCAs. Furthermore, the in vivo biodistribution and MRI enhancement patterns of Mn-NOTA-NP were similar to those of the Gd3+-based hepatobiliary agent, Gd-DTPA-EOB. Additionally, a 0.05 mmol/kg dose of Mn-NOTA-NP facilitated high-sensitivity tumor detection with tumor signal enhancement in a liver tumor model. Ligand-docking simulations further indicated that Mn-NOTA-NP differed from other hepatobiliary agents in their interactions with several transporter systems. Collectively, we demonstrated that Mn-NOTA-NP could be a new liver-specific MRI contrast agent.
Collapse
Affiliation(s)
- Md Kamrul Islam
- Institute of Biomedical Engineering Research, Kyungpook National University, Daegu 41405, Republic of Korea
| | - Ah-Rum Baek
- Institute of Biomedical Engineering Research, Kyungpook National University, Daegu 41405, Republic of Korea
| | - Byeong-Woo Yang
- Department of Medical and Biological Engineering, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Soyeon Kim
- Division of RI-Convergence Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Dong Wook Hwang
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Sung-Wook Nam
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Gang-Ho Lee
- Department of Chemistry, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Yongmin Chang
- Department of Medical and Biological Engineering, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Radiology, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| |
Collapse
|
4
|
MRI Contrast Agents in Glycobiology. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238297. [PMID: 36500389 PMCID: PMC9735696 DOI: 10.3390/molecules27238297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022]
Abstract
Molecular recognition involving glycoprotein-mediated interactions is ubiquitous in both normal and pathological natural processes. Therefore, visualization of these interactions and the extent of expression of the sugars is a challenge in medical diagnosis, monitoring of therapy, and drug design. Here, we review the literature on the development and validation of probes for magnetic resonance imaging using carbohydrates either as targeting vectors or as a target. Lectins are important targeting vectors for carbohydrate end groups, whereas selectins, the asialoglycoprotein receptor, sialic acid end groups, hyaluronic acid, and glycated serum and hemoglobin are interesting carbohydrate targets.
Collapse
|
5
|
Im J, Lee J, Lee JH. Surface Accessibility of an Intrinsically Disordered Protein Probed by 2D Time-Resolved Laser-Assisted NMR Spectroscopy. J Am Chem Soc 2022; 144:17010-17021. [PMID: 36083135 DOI: 10.1021/jacs.2c06309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Probing the protein surface accessibility of different residues is a powerful way of characterizing the overall conformation of intrinsically disordered proteins (IDPs). We present a two-dimensional (2D) time-resolved photo-CIDNP (TR-CIDNP) experiment suitable for IDP analysis. Pulse stretching of high-power laser pulses, band-selective decoupling of 13Cα, and simultaneous application of radiofrequency and laser pulses were implemented to quantitatively analyze the IDP surface at ultrahigh resolution. Comparative analysis with other methods that measure protein surface accessibility validated the newly developed method and emphasized the importance of dye charge in photo-CIDNP. Using the neutral riboflavin dye, surface accessibilities were measured to be nearly identical for the four Tyr residues of α-synuclein (α-Syn), whose 1Hα-13Cα correlations were well-resolved in the 2D TR-CIDNP spectrum. Having confirmed the similarity between the time-resolved and steady-state photo-CIDNP results for α-Syn, we used the more sensitive latter method to show that divalent cations induce compaction of the C-terminal region and release of the N-terminal region of α-Syn. The photo-CIDNP method presented herein can be used as an orthogonal and independent method for investigating important biological processes associated with changes in the overall IDP conformation.
Collapse
Affiliation(s)
- Jonghyuk Im
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jongchan Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jung Ho Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea.,Advanced Institutes of Convergence Technology, Suwon, Gyeonggi-do 16229, Korea
| |
Collapse
|
6
|
Uzal-Varela R, Rodríguez-Rodríguez A, Wang H, Esteban-Gómez D, Brandariz I, Gale EM, Caravan P, Platas-Iglesias C. Prediction of Gd(III) complex thermodynamic stability. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Lucio-Martínez F, Garda Z, Váradi B, Kálmán FK, Esteban-Gómez D, Tóth É, Tircsó G, Platas-Iglesias C. Rigidified Derivative of the Non-macrocyclic Ligand H 4OCTAPA for Stable Lanthanide(III) Complexation. Inorg Chem 2022; 61:5157-5171. [PMID: 35275621 PMCID: PMC8965877 DOI: 10.1021/acs.inorgchem.2c00501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
The stability constants
of lanthanide complexes with the potentially
octadentate ligand CHXOCTAPA4–,
which contains a rigid 1,2-diaminocyclohexane scaffold functionalized
with two acetate and two picolinate pendant arms, reveal the formation
of stable complexes [log KLaL = 17.82(1)
and log KYbL = 19.65(1)]. Luminescence
studies on the Eu3+ and Tb3+ analogues evidenced
rather high emission quantum yields of 3.4 and 11%, respectively.
The emission lifetimes recorded in H2O and D2O solutions indicate the presence of a water molecule coordinated
to the metal ion. 1H nuclear magnetic relaxation dispersion
profiles and 17O NMR chemical shift and relaxation measurements
point to a rather low water exchange rate of the coordinated water
molecule (kex298 = 1.58 ×
106 s–1) and relatively high relaxivities
of 5.6 and 4.5 mM–1 s–1 at 20
MHz and 25 and 37 °C, respectively. Density functional theory
calculations and analysis of the paramagnetic shifts induced by Yb3+ indicate that the complexes adopt an unprecedented cis geometry
with the two picolinate groups situated on the same side of the coordination
sphere. Dissociation kinetics experiments were conducted by investigating
the exchange reactions of LuL occurring with Cu2+. The
results confirmed the beneficial effect of the rigid cyclohexyl group
on the inertness of the Lu3+ complex. Complex dissociation
occurs following proton- and metal-assisted pathways. The latter is
relatively efficient at neutral pH, thanks to the formation of a heterodinuclear
hydroxo complex. A
non-macrocyclic ligand containing a rigid cyclohexyl spacer
forms thermodynamically stable complexes with the lanthanide(III)
ions in aqueous solution. The complexes also show remarkable kinetic
inertness, though a structural change facilitates dissociation through
the metal-assisted mechanism for the small lanthanides. The Gd(III)
complex displays a relatively high relaxivity due to the presence
of a water molecule coordinated to the metal ion, while the Eu(III)
and Tb(III) analogues display strong metal-centered luminescence.
Collapse
Affiliation(s)
- Fátima Lucio-Martínez
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Galicia, Spain
| | - Zoltán Garda
- Department of Physical Chemistry, University of Debrecen, Egyetem tér 1, H-4010 Debrecen, Hungary
| | - Balázs Váradi
- Department of Physical Chemistry, University of Debrecen, Egyetem tér 1, H-4010 Debrecen, Hungary.,Doctoral School of Chemistry, University of Debrecen, Egyetem tér 1, H-4010 Debrecen, Hungary
| | - Ferenc Krisztián Kálmán
- Department of Physical Chemistry, University of Debrecen, Egyetem tér 1, H-4010 Debrecen, Hungary
| | - David Esteban-Gómez
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Galicia, Spain
| | - Éva Tóth
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071 Orléans, Cedex 2, France
| | - Gyula Tircsó
- Department of Physical Chemistry, University of Debrecen, Egyetem tér 1, H-4010 Debrecen, Hungary
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Galicia, Spain
| |
Collapse
|
8
|
Pérez-Lourido P, Madarasi E, Antal F, Esteban-Gómez D, Wang G, Angelovski G, Platas-Iglesias C, Tircsó G, Valencia L. Stable and inert macrocyclic cobalt(II) and nickel(II) complexes with paraCEST response. Dalton Trans 2022; 51:1580-1593. [PMID: 34991150 DOI: 10.1039/d1dt03217h] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report the synthesis of the macrocyclic ligands 3,9-PC2AMH (2,2'-(3,6,9-triaza-1(2,6)-pyridinacyclodecaphane-3,9-diyl)diacetamide) and 3,9-PC2AMtBu (2,2'-(3,6,9-triaza-1(2,6)-pyridinacyclodecaphane-3,9-diyl)bis(N-tert-butyl)acetamide) which contain a pyclen platform functionalized with acetamide or tert-butylacetamide pendant arms at positions 3 and 9 of the macrocyclic unit. The corresponding Co(II) and Ni(II) complexes were prepared, isolated and characterised as potential paramagnetic chemical exchange saturation transfer (paraCEST) agents. The X-ray structures of the Ni(II) complexes reveal six-coordination of the ligands to the metal ion. The Co(II) complex with 3,9-PC2AMtBu shows a similar six-coordinate structure in the solid state, while the Co(II) complex with 3,9-PC2AMH contains a seven-coordinate metal ion, seventh coordination being completed by the presence of an inner-sphere water molecule. The structure of the Co(II) complexes was investigated using 1H NMR spectroscopy and computational methods. The complexes present a seven-coordinate structure in solution, as demonstrated by the analysis of the paramagnetic shifts using density functional theory. Ligand protonation constants and stability constants of the complexes with 3,9-PC2AMH were determined using potentiometric titrations (I = 0,15 M NaCl). The Co(II) complex was found to be more stable than the Ni(II) analogue (log KCoL = 14.46(5) and log KNiL = 13.15(3)). However, the Ni(II) and Co(II) complexes display similar rate constants characterizing the proton-assisted dissociation mechanism. The presence of highly shifted 1H NMR signals due to the amide protons in slow exchange with bulk water results in sizeable CEST signals, which are observed at +67 and +15 ppm for the Co(II) complex with 3,9-PC2AMH and +42 and +7 ppm for the Ni(II) analogue at 25 °C.
Collapse
Affiliation(s)
- Paulo Pérez-Lourido
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidade de Vigo, As Lagoas, Marcosende, 36310 Pontevedra, Spain.
| | - Enikő Madarasi
- Doctoral School of Chemistry, Faculty of Science and Technology, University of Debrecen, H-4010, Debrecen, Egyetem tér 1, Hungary
| | - Fanni Antal
- Doctoral School of Chemistry, Faculty of Science and Technology, University of Debrecen, H-4010, Debrecen, Egyetem tér 1, Hungary
| | - David Esteban-Gómez
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain.
| | - Gaoji Wang
- MR Neuroimaging Agents, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - Goran Angelovski
- MR Neuroimaging Agents, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany.,Laboratory of Molecular and Cellular Neuroimaging, International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences (CAS), 20031 Shanghai, PR China
| | - Carlos Platas-Iglesias
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain.
| | - Gyula Tircsó
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, H-4010, Debrecen, Egyetem tér 1, Hungary
| | - Laura Valencia
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidade de Vigo, As Lagoas, Marcosende, 36310 Pontevedra, Spain.
| |
Collapse
|
9
|
Botár R, Molnár E, Garda Z, Madarasi E, Trencsényi G, Kiss J, Kálmán FK, Tircsó G. Synthesis and characterization of a stable and inert MnII-based ZnII responsive MRI probe for molecular imaging of glucose stimulated zinc secretion (GSZS). Inorg Chem Front 2022. [DOI: 10.1039/d1qi00501d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A ZnII responsive MnII-based MRI contrast agent, [Mn(PC2A-DPA)], has been synthesized, investigated and applied in imaging studies. It shows high stability and excellent inertness and can be used to visualize glucose triggered ZnII release by MRI.
Collapse
Affiliation(s)
- Richárd Botár
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Egyetem tér 1, Hungary
- Doctoral School of Chemistry, University of Debrecen, H-4032 Debrecen, Egyetem tér 1, Hungary
| | - Enikő Molnár
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Egyetem tér 1, Hungary
| | - Zoltán Garda
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Egyetem tér 1, Hungary
| | - Enikő Madarasi
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Egyetem tér 1, Hungary
- Doctoral School of Chemistry, University of Debrecen, H-4032 Debrecen, Egyetem tér 1, Hungary
| | - György Trencsényi
- Department of Medical Imaging, Division of Nuclear Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Egyetem tér 1, Hungary
| | - János Kiss
- Department of Medical Imaging, Division of Nuclear Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Egyetem tér 1, Hungary
| | - Ferenc K. Kálmán
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Egyetem tér 1, Hungary
| | - Gyula Tircsó
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Egyetem tér 1, Hungary
| |
Collapse
|
10
|
Do QN, Lenkinski RE, Tircso G, Kovacs Z. How the Chemical Properties of GBCAs Influence Their Safety Profiles In Vivo. Molecules 2021; 27:58. [PMID: 35011290 PMCID: PMC8746842 DOI: 10.3390/molecules27010058] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 01/21/2023] Open
Abstract
The extracellular class of gadolinium-based contrast agents (GBCAs) is an essential tool for clinical diagnosis and disease management. In order to better understand the issues associated with GBCA administration and gadolinium retention and deposition in the human brain, the chemical properties of GBCAs such as relative thermodynamic and kinetic stabilities and their likelihood of forming gadolinium deposits in vivo will be reviewed. The chemical form of gadolinium causing the hyperintensity is an open question. On the basis of estimates of total gadolinium concentration present, it is highly unlikely that the intact chelate is causing the T1 hyperintensities observed in the human brain. Although it is possible that there is a water-soluble form of gadolinium that has high relaxitvity present, our experience indicates that the insoluble gadolinium-based agents/salts could have high relaxivities on the surface of the solid due to higher water access. This review assesses the safety of GBCAs from a chemical point of view based on their thermodynamic and kinetic properties, discusses how these properties influence in vivo behavior, and highlights some clinical implications regarding the development of future imaging agents.
Collapse
Affiliation(s)
- Quyen N. Do
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; (Q.N.D.); (R.E.L.)
| | - Robert E. Lenkinski
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; (Q.N.D.); (R.E.L.)
| | - Gyula Tircso
- Department of Physical Chemistry Debrecen, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary;
| | - Zoltan Kovacs
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|
11
|
Geraldes CF, Castro MMC, Peters JA. Mn(III) porphyrins as potential MRI contrast agents for diagnosis and MRI-guided therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Wang J, Salzillo T, Jiang Y, Mackeyev Y, David Fuller C, Chung C, Choi S, Hughes N, Ding Y, Yang J, Vedam S, Krishnan S. Stability of MRI contrast agents in high-energy radiation of a 1.5T MR-Linac. Radiother Oncol 2021; 161:55-64. [PMID: 34089753 PMCID: PMC8324543 DOI: 10.1016/j.radonc.2021.05.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Gadolinium-based contrast is often used when acquiring MR images for radiation therapy planning for better target delineation. In some situations, patients may still have residual MRI contrast agents in their tissue while being treated with high-energy radiation. This is especially true when MRI contrast agents are administered during adaptive treatment replanning for patients treated on MR-Linac systems. PURPOSE The purpose of this study was to analyze the molecular stability of MRI contrast agents when exposed to high energy photons and the associated secondary electrons in a 1.5T MR-Linac system. This was the first step in assessing the safety of administering MRI contrast agents throughout the course of treatment. MATERIALS AND METHODS Two common MRI contrast agents were irradiated with 7 MV photons to clinical dose levels. The irradiated samples were analyzed using liquid chromatography-high resolution mass spectrometry to detect degradation products or conformational alterations created by irradiation with high energy photons and associated secondary electrons. RESULTS No significant change in chemical composition or displacement of gadolinium ions from their chelates was discovered in samples irradiated with 7 MV photons at relevant clinical doses in a 1.5T MR-Linac. Additionally, no significant correlation between concentrations of irradiated MRI contrast agents and radiation dose was observed. CONCLUSION The chemical composition stability of the irradiated contrast agents is promising for future use throughout the course of patient treatment. However, in vivo studies are needed to confirm that unexpected metabolites are not created in biological milieus.
Collapse
Affiliation(s)
- Jihong Wang
- Department of Radiation Physics, MD Anderson Cancer Center, Houston, United States.
| | - Travis Salzillo
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, United States
| | - Yongying Jiang
- The Institute for Applied Cancer Science, MD Anderson Cancer Center, Houston, United States
| | - Yuri Mackeyev
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, United States
| | - Clifton David Fuller
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, United States
| | - Caroline Chung
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, United States
| | - Seungtaek Choi
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, United States
| | - Neil Hughes
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, United States
| | - Yao Ding
- Department of Radiation Physics, MD Anderson Cancer Center, Houston, United States
| | - Jinzhong Yang
- Department of Radiation Physics, MD Anderson Cancer Center, Houston, United States
| | - Sastry Vedam
- Department of Radiation Oncology, University of Maryland, Baltimore, United States
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, United States
| |
Collapse
|
13
|
Guidolin N, Travagin F, Giovenzana GB, Vágner A, Lotti S, Chianale F, Brücher E, Maisano F, Kirchin MA, Tedoldi F, Giorgini A, Colombo Serra S, Baranyai Z. Interaction of macrocyclic gadolinium-based MR contrast agents with Type I collagen. Equilibrium and kinetic studies. Dalton Trans 2021; 49:14863-14870. [PMID: 33073806 DOI: 10.1039/d0dt03314f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The interactions of gadoterate meglumine, gadobutrol, gadoteridol and Gd(HB-DO3A) with bovine Type I collagen were investigated by ultrafiltration and dialysis. The affinity of the four agents to collagen is similar. However, the maximum adsorbed amount of GdIII-complexes decreases in the following order: gadoterate meglumine > gadobutrol > gadoteridol > Gd(HB-DO3A). Calculations with the open three-compartment model reveal that the structural homologs gadoteridol and Gd(HB-DO3A) have a lower adsorption onto collagen, which may explain the less prolonged in vivo retention of gadoteridol observed in soft tissues of rats.
Collapse
Affiliation(s)
- Nicol Guidolin
- Bracco Imaging Spa, Bracco Research Centre, Via Ribes 5, 10010 Colleretto Giacosa (TO), Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Use of Partial Molal Enthalpy for Refining the Partition of Water Activity into Electrostatic and Nonelectrostatic Components. J SOLUTION CHEM 2021. [DOI: 10.1007/s10953-021-01088-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Martino F, Amici G, Rosner M, Ronco C, Novara G. Gadolinium-Based Contrast Media Nephrotoxicity in Kidney Impairment: The Physio-Pathological Conditions for the Perfect Murder. J Clin Med 2021; 10:jcm10020271. [PMID: 33450989 PMCID: PMC7828445 DOI: 10.3390/jcm10020271] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 11/16/2022] Open
Abstract
Gadolinium-based contrast media (GBCM) toxicity in patients with kidney disease is a concern for the possible development of systemic nephrogenic fibrosis and possible renal complications. This review focuses on the pathological mechanisms underlying the potential kidney toxicity of gadolinium. Gadolinium, as a free compound (Gd3+), is highly toxic in humans because it competes with divalent calcium (Ca2+) and magnesium (Mg2+) ions, interfering in some relevant biologic processes. Its toxicity is blunted by the complexing of Gd3+ with a carrier, allowing its use in magnetic resonance imaging. The binding reaction between gadolinium and a carrier is thermodynamically reversible. Consequently, under some conditions, gadolinium can be released in the interstitial space as a free Gd3+ compound with the possibility of toxicity. Other metals such as iron, copper, and calcium can interfere with the binding between gadolinium and its carrier because they compete for the same binding site. This process is known as transmetallation. In patients with kidney impairment, conditions such as low clearance of the Gd-carrier complex, acid-base derangements, and high serum phosphorous can increase the presence of free Gd3+, leading to a higher risk for toxicity.
Collapse
Affiliation(s)
- Francesca Martino
- International Renal Research Institute Vicenza (IRRIV), San Bortolo Hospital, 36100 Vicenza, Italy;
- UO Nephrology, Dialysis and Kidney Transplant, San Bortolo Hospital, 36100 Vicenza, Italy
- Correspondence: (F.M.); (G.N.); Tel.: +39-0444-753650 (F.M.); +39-049-8211250 (G.N.)
| | - Gianpaolo Amici
- UO Nephrology and Dialysis, San Daniele del Friuli and Tolmezzo Hospital, ASUFC, 33038 San Daniele del Friuli, Italy;
| | - Mitchell Rosner
- Division of Nephrology, University of Virginia Health System, Charlottesville, VA 22903, USA;
| | - Claudio Ronco
- International Renal Research Institute Vicenza (IRRIV), San Bortolo Hospital, 36100 Vicenza, Italy;
- UO Nephrology, Dialysis and Kidney Transplant, San Bortolo Hospital, 36100 Vicenza, Italy
| | - Giacomo Novara
- Department of Surgery, Oncology, and Gastroenterology, Urology Clinic University of Padua, 35124 Padova, Italy
- Correspondence: (F.M.); (G.N.); Tel.: +39-0444-753650 (F.M.); +39-049-8211250 (G.N.)
| |
Collapse
|
16
|
Garda Z, Molnár E, Hamon N, Barriada JL, Esteban-Gómez D, Váradi B, Nagy V, Pota K, Kálmán FK, Tóth I, Lihi N, Platas-Iglesias C, Tóth É, Tripier R, Tircsó G. Complexation of Mn(II) by Rigid Pyclen Diacetates: Equilibrium, Kinetic, Relaxometric, Density Functional Theory, and Superoxide Dismutase Activity Studies. Inorg Chem 2020; 60:1133-1148. [PMID: 33378171 DOI: 10.1021/acs.inorgchem.0c03276] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We report the Mn(II) complexes with two pyclen-based ligands (pyclen = 3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene) functionalized with acetate pendant arms at either positions 3,6 (3,6-PC2A) or 3,9 (3,9-PC2A) of the macrocyclic fragment. The 3,6-PC2A ligand was synthesized in five steps from pyclen oxalate by protecting one of the secondary amine groups of pyclen using Alloc protecting chemistry. The complex with 3,9-PC2A is characterized by a higher thermodynamic stability [log KMnL = 17.09(2)] than the 3,6-PC2A analogue [log KMnL = 15.53(1); 0.15 M NaCl]. Both complexes contain a water molecule coordinated to the metal ion, which results in relatively high 1H relaxivities (r1p = 2.72 and 2.91 mM-1 s-1 for the complexes with 3,6-PC2A and 3,9-PC2A, respectively, at 25 °C and 0.49 T). The coordinated water molecule displays fast exchange kinetics with the bulk in both cases; the rates (kex298) are 140 × 106 and 126 × 106 s-1 for [Mn(3,6-PC2A)(H2O)] and [Mn(3,9-PC2A)(H2O)], respectively. The two complexes were found to be remarkably inert with respect to their dissociation, with half-lives of 63 and 21 h, respectively, at pH = 7.4 in the presence of excess Cu(II). The r1p values recorded in blood serum remain constant at least over a period of 120 h. Cyclic voltammetry experiments show irreversible oxidation features shifted to higher potentials with respect to [Mn(EDTA)(H2O)]2- (H4EDTA = ethylenediaminetetraacetic acid) and [Mn(PhDTA)(H2O)]2- (H4PhDTA = phenylenediamine-N,N,N',N'-tetraacetic acid), indicating that the PC2A complexes reported here have a lower tendency to stabilize Mn(III). The superoxide dismutase activity of the Mn(II) complexes was tested using the xanthine/xanthine oxidase/p-nitro blue tetrazolium chloride assay at pH = 7.8. The Mn(II) complexes of 3,6-PC2A and 3,9-PC2A are capable of assisting decomposition of the superoxide anion radical. The kinetic rate constant of the complex of 3,9-PC2A is smaller by 1 order of magnitude than that of 3,6-PC2A.
Collapse
Affiliation(s)
| | | | - Nadège Hamon
- Université Brest, UMR-CNRS 6521, CEMCA, 6 avenue Victor le Gorgeu, 29238 Brest, France
| | - José Luis Barriada
- Centro de Investigacións Científicas Avanzadas and Departamento de Química, Universidade da Coruña, Campus da Zapateira, Rúa da Fraga 10, 15008 A Coruña, Spain
| | - David Esteban-Gómez
- Centro de Investigacións Científicas Avanzadas and Departamento de Química, Universidade da Coruña, Campus da Zapateira, Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Balázs Váradi
- Doctoral School of Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | | | | | | | | | | | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas and Departamento de Química, Universidade da Coruña, Campus da Zapateira, Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Éva Tóth
- Centre de Biophysique Moléculaire, CNRS, rue Charles Sadron, 45071 Orléans, Cedex 2, France
| | - Raphaël Tripier
- Université Brest, UMR-CNRS 6521, CEMCA, 6 avenue Victor le Gorgeu, 29238 Brest, France
| | | |
Collapse
|
17
|
Kock FVC, Forgács A, Guidolin N, Stefania R, Vágner A, Gianolio E, Aime S, Baranyai Z. [Gd(AAZTA)] - Derivatives with n-Alkyl Acid Side Chains Show Improved Properties for Their Application as MRI Contrast Agents*. Chemistry 2020; 27:1849-1859. [PMID: 33184913 DOI: 10.1002/chem.202004479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/03/2020] [Indexed: 12/25/2022]
Abstract
Herein, the synthesis and an extensive characterization of two novel Gd(AAZTA) (AAZTA=6-amino-6-methylperhydro-1,4-diazepine tetra acetic acid) derivatives functionalized with short (C2 and C4 ) n-alkyl acid functions are reported. The carboxylate functionality is the site for further conjugations for the design of more specific contrast agents (CAs). Interestingly, it has been found that the synthesized complexes display enhanced properties for use as MRI contrast agents on their own. The stability constants determined by using potentiometric titration and UV/Vis spectrophotometry were slightly higher than the one reported for the parent Gd(AAZTA) complex. This observation might be accounted for by the larger sigma-electron donation of the acyl substituents with respect to the one provided by the methyl group in the parent complex. As far as concerns the kinetic stability, transmetallation experiments with endogenous ions (e.g. Cu2+ ) implied that the Gd3+ ions present in these Gd(AAZTA) derivatives show somewhat smaller susceptibility to chemical exchange towards these ions at 25 °C, close to the physiological condition. The 1 H NMR spectra of the complexes with EuIII and YbIII displayed a set of signals consistent with half the number of methylene protons present on each ligand. The number of resonances was invariant over a large range of temperatures, suggesting the occurrence of a fast interconversion between structural isomers. The relaxivity values (298 K, 20 MHz) were consistent with q=2 being equal to 8.8 mm-1 s-1 for the C2 derivative and 9.4 mm-1 s-1 for the C4 one, that is, sensibly larger than the one reported for Gd(AAZTA) (7.1 mm-1 s-1 ). Variable-temperature (VT)-T2 17 O NMR measurements showed, for both complexes, the presence of two populations of coordinated water molecules, one in fast and one in slow exchange with the bulk water. As the high-resolution 1 H NMR spectra of the analogs with EuIII and YbIII did not show the occurrence of distinct isomers (as frequently observed in other macrocyclic lanthanide(III)-containing complexes), we surmised the presence of two fast-interconverting isomers in solution. The analysis of the 17 O NMR VT-T2 profiles versus temperature allowed their relative molar fraction to be established as 35 % for the isomer with the fast exchanging water and 65 % for the isomer with the water molecules in slower exchange. Finally, 1 H NMRD profiles over an extended range of applied magnetic field strengths have been satisfactory fitted on the basis of the occurrence of the two interconverting species.
Collapse
Affiliation(s)
- Flávio Vinicius Crizóstomo Kock
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São Carlense 400, 13566-590, São Paulo, Brazil.,Department of Molecular Biotechnologies and Health Science, University of Turin, Via Nizza 52, 10125, Turin, Italy
| | - Attila Forgács
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, 4010, Debrecen, Hungary.,MTA-DE Redox and Homogeneous Catalytic Reaction Mechanisms, Research Group, Egyetem tér 1, Debrecen, 4032, Hungary
| | - Nicol Guidolin
- Bracco Imaging SpA, Bracco Research Center, Via Ribes 5, 10010, Colleretto Giacosa (TO), Italy
| | - Rachele Stefania
- Department of Molecular Biotechnologies and Health Science, University of Turin, Via Nizza 52, 10125, Turin, Italy
| | - Adrienn Vágner
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, 4010, Debrecen, Hungary
| | - Eliana Gianolio
- Department of Molecular Biotechnologies and Health Science, University of Turin, Via Nizza 52, 10125, Turin, Italy
| | - Silvio Aime
- Department of Molecular Biotechnologies and Health Science, University of Turin, Via Nizza 52, 10125, Turin, Italy
| | - Zsolt Baranyai
- Bracco Imaging SpA, Bracco Research Center, Via Ribes 5, 10010, Colleretto Giacosa (TO), Italy
| |
Collapse
|
18
|
Wang X, Chen L, Bai Z, Zhang D, Guan J, Zhang Y, Shi C, Diwu J. In Vivo Uranium Sequestration using a Nanoscale Metal–Organic Framework. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xiaomei Wang
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou 215123 China
| | - Lei Chen
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou 215123 China
| | - Zhuanling Bai
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou 215123 China
| | - Duo Zhang
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou 215123 China
| | - Jingwen Guan
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou 215123 China
| | - Yijing Zhang
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou 215123 China
| | - Cen Shi
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou 215123 China
| | - Juan Diwu
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou 215123 China
| |
Collapse
|
19
|
Wang X, Chen L, Bai Z, Zhang D, Guan J, Zhang Y, Shi C, Diwu J. In Vivo Uranium Sequestration using a Nanoscale Metal-Organic Framework. Angew Chem Int Ed Engl 2020; 60:1646-1650. [PMID: 33029917 DOI: 10.1002/anie.202012512] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Indexed: 01/17/2023]
Abstract
An agent for actinide sequestration with fast uranium uptake kinetics and efficient in vivo uranium removal using a nanoscale metal-organic framework (nano-MOF) is proposed. UiO-66 nanoparticles post-synthetically functionalized with carboxyl groups, UiO-66-(COOH)4 -180, exhibit the fastest uranium uptake kinetics reported with more than 65 % of uranyl in fetal bovine serum (FBS) removed within 5 min. Moreover, the in vivo bio-distribution studies show that the material partially accumulates in kidneys and femurs where uranium mainly deposits facilitating the in vivo sequestration of uranium. The results of the in vivo uranium decorporation assays with mice show that UiO-66-(COOH)4 -180 could successfully reduce the amounts of uranyl deposited in kidneys and femurs by up to 55.4 % and 36.5 %, respectively, and is significantly more efficient than the commercial actinide decorporation agent, ZnNa3 -DTPA.
Collapse
Affiliation(s)
- Xiaomei Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Lei Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Zhuanling Bai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Duo Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Jingwen Guan
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yijing Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Cen Shi
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Juan Diwu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| |
Collapse
|
20
|
Peters JA. Relaxivity of manganese ferrite nanoparticles. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 120-121:72-94. [PMID: 33198969 DOI: 10.1016/j.pnmrs.2020.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/25/2020] [Accepted: 07/26/2020] [Indexed: 05/27/2023]
Abstract
Manganese ferrite nanoparticles are superparamagnetic and have very high saturation magnetization, which makes them candidates for application as MRI contrast agents. Because these nanoparticles are very effective enhancers of transverse relaxation, they are particularly suitable as negative (T2-weighted) contrast agents. The magnitude of the relaxivity of nanoparticulate Mn ferrites seems to be determined mainly by the method of preparation, their dimensions, and their saturation magnetization.
Collapse
Affiliation(s)
- Joop A Peters
- Biocatalysis, Department of Biotechnology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands.
| |
Collapse
|
21
|
Garda Z, Nagy V, Rodríguez-Rodríguez A, Pujales-Paradela R, Patinec V, Angelovski G, Tóth É, Kálmán FK, Esteban-Gómez D, Tripier R, Platas-Iglesias C, Tircsó G. Unexpected Trends in the Stability and Dissociation Kinetics of Lanthanide(III) Complexes with Cyclen-Based Ligands across the Lanthanide Series. Inorg Chem 2020; 59:8184-8195. [DOI: 10.1021/acs.inorgchem.0c00520] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Zoltán Garda
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Viktoria Nagy
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Aurora Rodríguez-Rodríguez
- Centro de Investigacións Cientı́ficas Avanzadas and Departamento de Quı́mica, Facultade de Ciencias, Universidade da Coruña, 15071 Coruña, Galicia, Spain
| | - Rosa Pujales-Paradela
- Centro de Investigacións Cientı́ficas Avanzadas and Departamento de Quı́mica, Facultade de Ciencias, Universidade da Coruña, 15071 Coruña, Galicia, Spain
| | - Véronique Patinec
- Univ. Brest, UMR-CNRS 6521 CEMCA, 6, av. Victor le Gorgeu, 29200 Brest, France
| | - Goran Angelovski
- MR Neuroimaging Agents, Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany
| | - Éva Tóth
- Centre de Biophysique Moléculaire, UPR 4301, CNRS, Université d’Orléans, rue Charles Sadron, 45071 Orléans, Cedex 2, France
| | - Ferenc K. Kálmán
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - David Esteban-Gómez
- Centro de Investigacións Cientı́ficas Avanzadas and Departamento de Quı́mica, Facultade de Ciencias, Universidade da Coruña, 15071 Coruña, Galicia, Spain
| | - Raphaël Tripier
- Univ. Brest, UMR-CNRS 6521 CEMCA, 6, av. Victor le Gorgeu, 29200 Brest, France
| | - Carlos Platas-Iglesias
- Centro de Investigacións Cientı́ficas Avanzadas and Departamento de Quı́mica, Facultade de Ciencias, Universidade da Coruña, 15071 Coruña, Galicia, Spain
| | - Gyula Tircsó
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| |
Collapse
|
22
|
Botár R, Molnár E, Trencsényi G, Kiss J, Kálmán FK, Tircsó G. Stable and Inert Mn(II)-Based and pH-Responsive Contrast Agents. J Am Chem Soc 2020; 142:1662-1666. [DOI: 10.1021/jacs.9b09407] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Richárd Botár
- Department of Physical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| | - Enikő Molnár
- Department of Physical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| | - György Trencsényi
- Division of Nuclear Medicine, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - János Kiss
- Division of Nuclear Medicine, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Mediso Ltd., H-4032 Debrecen, Hungary
| | - Ferenc K. Kálmán
- Department of Physical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| | - Gyula Tircsó
- Department of Physical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
23
|
Gadolinium Retention in Erythrocytes and Leukocytes From Human and Murine Blood Upon Treatment With Gadolinium-Based Contrast Agents for Magnetic Resonance Imaging. Invest Radiol 2020; 55:30-37. [DOI: 10.1097/rli.0000000000000608] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Porcar-Tost O, Olivares JA, Pallier A, Esteban-Gómez D, Illa O, Platas-Iglesias C, Tóth É, Ortuño RM. Gadolinium Complexes of Highly Rigid, Open-Chain Ligands Containing a Cyclobutane Ring in the Backbone: Decreasing Ligand Denticity Might Enhance Kinetic Inertness. Inorg Chem 2019; 58:13170-13183. [PMID: 31524387 DOI: 10.1021/acs.inorgchem.9b02044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In an effort to explore novel ligand scaffolds for stable and inert lanthanide complexation in magnetic resonance imaging contrast agent research, three chiral ligands containing a highly rigid (1S,2S)-1,2-cyclobutanediamine spacer and different number of acetate and picolinate groups were efficiently synthesized. Potentiometric studies show comparable thermodynamic stability for the Gd3+ complexes formed with either the octadentate (L3)4- bearing two acetate or two picolinate groups or the heptadentate (L2)4- analogue bearing one picolinate and three acetate groups (log KGdL = 17.41 and 18.00 for [Gd(L2)]- and [Gd(L3)]-, respectively). In contrast, their dissociation kinetics is revealed to be very different: the monohydrated [Gd(L3)]- is considerably more labile, as a result of the significant kinetic activity of the protonated picolinate function, as compared to the bishydrated [Gd(L2)]-. This constitutes an uncommon example in which lowering ligand denticity results in a remarkable increase in kinetic inertness. Another interesting observation is that the rigid ligand backbone induces an unusually strong contribution of the spontaneous dissociation to the overall decomplexation process. Thanks to the presence of two inner-sphere water molecules, [Gd(L2)]- is endowed with high relaxivity (r1 = 7.9 mM-1 s-1 at 20 MHz, 25 °C), which is retained in the presence of large excess of endogenous anions, excluding ternary complex formation. The water exchange rate is similar for [Gd(L3)]- and [Gd(L2)]-, while it is 1 order of magnitude higher for the trishydrated tetraacetate analogue [Gd(L1)]- (kex298 = 8.1, 10, and 127 × 106 s-1, respectively). A structural analysis via density functional theory calculations suggests that the large bite angle imposed by the rigid (1S,2S)-1,2-cyclobutanediamine spacer could allow the design of ligands based on this scaffold with suitable properties for the coordination of larger metal ions with biomedical applications.
Collapse
Affiliation(s)
- Oriol Porcar-Tost
- Departament de Química , Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès , Barcelona , Spain
| | - José A Olivares
- Departament de Química , Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès , Barcelona , Spain
| | - Agnès Pallier
- Centre de Biophysique Moléculaire , UPR 4301, CNRS, Université d'Orléans , rue Charles Sadron , 45071 Orléans Cedex 2 , France
| | - David Esteban-Gómez
- Centro de Investigacións Científicas Avanzadas and Departamento de Química , Universidade da Coruña , Campus da Zapateira-Rúa da Fraga 10 , 15008 A Coruña , Spain
| | - Ona Illa
- Departament de Química , Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès , Barcelona , Spain
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas and Departamento de Química , Universidade da Coruña , Campus da Zapateira-Rúa da Fraga 10 , 15008 A Coruña , Spain
| | - Éva Tóth
- Centre de Biophysique Moléculaire , UPR 4301, CNRS, Université d'Orléans , rue Charles Sadron , 45071 Orléans Cedex 2 , France
| | - Rosa M Ortuño
- Departament de Química , Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès , Barcelona , Spain
| |
Collapse
|
25
|
Chehabeddine L, Al Saleh T, Baalbaki M, Saleh E, Khoury SJ, Hannoun S. Cumulative administrations of gadolinium-based contrast agents: risks of accumulation and toxicity of linear vs macrocyclic agents. Crit Rev Toxicol 2019; 49:262-279. [DOI: 10.1080/10408444.2019.1592109] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Lara Chehabeddine
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Tala Al Saleh
- Department of Physics, American University of Beirut, Beirut, Lebanon
| | - Marwa Baalbaki
- Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, Beirut, Lebanon
| | - Eman Saleh
- Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, Beirut, Lebanon
| | - Samia J. Khoury
- Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, Beirut, Lebanon
- Abu-Haidar Neuroscience Institute, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Salem Hannoun
- Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, Beirut, Lebanon
- Abu-Haidar Neuroscience Institute, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
26
|
Pujales-Paradela R, Carniato F, Esteban-Gómez D, Botta M, Platas-Iglesias C. Controlling water exchange rates in potential Mn 2+-based MRI agents derived from NO2A 2. Dalton Trans 2019; 48:3962-3972. [PMID: 30834411 DOI: 10.1039/c9dt00211a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report a series of pentadentate ligands based on a 1,4,7-triazacyclononane-1,4-diacetic acid (H2NO2A) containing different substituents attached to the third nitrogen atom of the macrocyclic unit. Detailed 1H Nuclear Magnetic Relaxation Dispersion (NMRD) characterisation of the corresponding Mn2+ complexes suggests the formation of six-coordinate species in solution containing an inner-sphere water molecule. This was confirmed by recording the transverse 17O relaxation time and chemical shift measurements. The water exchange rate of the coordinated water molecule was found to be strongly influenced by the nature of the substituent R at position 7 of the triazacyclononane unit (R = Me, k298ex = 62.6 × 107 s-1; R = Bz, k298ex = 4.4 × 107 s-1; R = 1-phenylethyl, k298ex = 2.6 × 107 s-1). The decreasing exchange rates are explained by the increasing bulkiness of the substituent, which hinders the approach of the entering water molecule in an associatively activated water exchange mechanism. This is supported by DFT calculations (M062X/TZVP), which confirm the associative nature of the water exchange reaction. A potentially decadentate ligand containing two NO2A units linked by a xylenyl spacer in the meta position was also synthesised. The corresponding binuclear Mn2+ complex contains two metal ions with different hydration numbers, as evidenced by 1H NMRD and 17O NMR measurements. DFT calculations show that this is related to the presence of a bridging bidentate μ-η1-carboxylate group connecting the two metal centers. The results reported in this work provide a straightforward strategy to control the exchange rate of the coordinated water molecule in this family of MRI contrast agent candidates.
Collapse
Affiliation(s)
- Rosa Pujales-Paradela
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain.
| | | | | | | | | |
Collapse
|
27
|
Zhang B, Cheng L, Duan B, Tang W, Yuan Y, Ding Y, Hu A. Gadolinium complexes of diethylenetriamine-N-oxide pentaacetic acid-bisamide: a new class of highly stable MRI contrast agents with a hydration number of 3. Dalton Trans 2019; 48:1693-1699. [DOI: 10.1039/c8dt04478c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diethylenetriamine-N-oxide pentaacetic acid-bisamide-based Gd(iii) complexes with 3 coordinated water molecules have been synthesized to achieve high stability and over three times of the relaxivities of commercial MRI contrast agents.
Collapse
Affiliation(s)
- BeiBei Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Likun Cheng
- Shanghai Key Laboratory of Advanced Polymeric Materials
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Bing Duan
- The State Key Laboratory of Bioreactor Engineering East China University of Science and Technology
- Shanghai
- China
| | - Weijun Tang
- Department of Radiology
- Huashan Hospital Affiliated to Fudan University
- Shanghai
- China
| | - Yuan Yuan
- The State Key Laboratory of Bioreactor Engineering East China University of Science and Technology
- Shanghai
- China
| | - Yun Ding
- Shanghai Key Laboratory of Advanced Polymeric Materials
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Aiguo Hu
- Shanghai Key Laboratory of Advanced Polymeric Materials
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| |
Collapse
|
28
|
Gianolio E, Gregorio ED, Aime S. Chemical Insights into the Issues of Gd Retention in the Brain and Other Tissues Upon the Administration of Gd-Containing MRI Contrast Agents. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201801220] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Eliana Gianolio
- Dipartimento di Biotecnologie Molecolari e Scienze per la Salute; Centro di Imaging molecolare; Università degli Studi di Torino; Via Nizza 52 10126 Torino Italy
| | - Enza Di Gregorio
- Dipartimento di Biotecnologie Molecolari e Scienze per la Salute; Centro di Imaging molecolare; Università degli Studi di Torino; Via Nizza 52 10126 Torino Italy
| | - Silvio Aime
- Dipartimento di Biotecnologie Molecolari e Scienze per la Salute; Centro di Imaging molecolare; Università degli Studi di Torino; Via Nizza 52 10126 Torino Italy
| |
Collapse
|
29
|
Shahid M, Siddique A, Ashafaq M, Raizada M, Sama F, Naqi Ahamad M, Mantasha I, Ansari IA, Khan IM, Kumar P, Fatma K, Siddiqi ZA. Spectroscopic investigations on La3+, Pr3+, Nd3+ and Gd3+ complexes with a multidentate ligating system: Luminescence properties and biological activities. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.07.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Le Fur M, Molnár E, Beyler M, Fougère O, Esteban-Gómez D, Rousseaux O, Tripier R, Tircsó G, Platas-Iglesias C. Expanding the Family of Pyclen-Based Ligands Bearing Pendant Picolinate Arms for Lanthanide Complexation. Inorg Chem 2018; 57:6932-6945. [DOI: 10.1021/acs.inorgchem.8b00598] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Mariane Le Fur
- Université de Bretagne Occidentale, UMR-CNRS 6521, IBSAM, UFR des Sciences et Techniques, 6 avenue Victor le Gorgeu, C.S. 93837, 29238 Brest Cedex 3, France
| | - Enikő Molnár
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Maryline Beyler
- Université de Bretagne Occidentale, UMR-CNRS 6521, IBSAM, UFR des Sciences et Techniques, 6 avenue Victor le Gorgeu, C.S. 93837, 29238 Brest Cedex 3, France
| | - Olivier Fougère
- Groupe Guerbet,
Centre de Recherche d’Aulnay-sous-Bois, BP 57400, 95943 Roissy CdG Cedex, France
| | - David Esteban-Gómez
- Departamento de Química, Facultade de Ciencias & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain
| | - Olivier Rousseaux
- Groupe Guerbet,
Centre de Recherche d’Aulnay-sous-Bois, BP 57400, 95943 Roissy CdG Cedex, France
| | - Raphaël Tripier
- Université de Bretagne Occidentale, UMR-CNRS 6521, IBSAM, UFR des Sciences et Techniques, 6 avenue Victor le Gorgeu, C.S. 93837, 29238 Brest Cedex 3, France
| | - Gyula Tircsó
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Carlos Platas-Iglesias
- Departamento de Química, Facultade de Ciencias & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain
| |
Collapse
|
31
|
|
32
|
Gianolio E, Bardini P, Arena F, Stefania R, Di Gregorio E, Iani R, Aime S. Gadolinium Retention in the Rat Brain: Assessment of the Amounts of Insoluble Gadolinium-containing Species and Intact Gadolinium Complexes after Repeated Administration of Gadolinium-based Contrast Agents. Radiology 2017; 285:839-849. [PMID: 28873047 DOI: 10.1148/radiol.2017162857] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Purpose To evaluate the speciation of gadolinium-containing species after multiple administrations of the gadolinium-based contrast agents (GBCAs) gadodiamide and gadoteridol and to quantify the amount of intact gadolinium complexes and insoluble gadolinium-containing species. Materials and Methods A total dose of 13.2 mmol per kilogram of body weight of each GBCA was administered in healthy Wistar rats over a period of 8 weeks. Three days after the final administration, rats were sacrificed, and the brains were excised and divided into three portions. Each portion of brain homogenate was divided into two parts, one for determination of the total gadolinium concentration with inductively coupled plasma mass spectrometry and one for determination of the amount of intact GBCA and gadolinium-containing insoluble species. Relaxometric measurements of gadodiamide and gadolinium trichloride in the presence of polysialic acid were also performed. Results The mean total gadolinium concentrations for gadodiamide and gadoteridol, respectively, were 0.317 μg/g ± 0.060 (standard deviation) and 0.048 μg/g ± 0.004 in the cortex, 0.418 μg/g ± 0.078 and 0.051 μg/g ± 0.009 in the subcortical brain, and 0.781 μg/g ± 0.079 and 0.061 μg/g ± 0.012 in the cerebellum. Gadoteridol comprised 100% of the gadolinium species found in rats treated with gadoteridol. In rats treated with gadodiamide, the largest part of gadolinium retained in brain tissue was insoluble species. In the cerebellum, the amount of intact gadodiamide accounts for 18.2% ± 10.6 of the total gadolinium found therein. The mass balance found for gadolinium implies the occurrence of other soluble gadolinium-containing species (approximately 30%). The relaxivity of the gadolinium polysialic acid species formed in vitro was 97.8 mM/sec at 1.5 T and 298 K. Conclusion Gadoteridol was far less retained, and the entire detected gadolinium was intact soluble GBCA, while gadodiamide yielded both soluble and insoluble gadolinium-containing species, with insoluble species dominating. © RSNA, 2017 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Eliana Gianolio
- From the Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, 10126 Turin, Italy (E.G., P.B., F.A., R.S., E.D.G., R.I., S.A.); and Centro di Eccellenza di Imaging Preclinico (CEIP), Colleretto Giacosa, Italy (P.B., F.A., S.A.)
| | - Paola Bardini
- From the Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, 10126 Turin, Italy (E.G., P.B., F.A., R.S., E.D.G., R.I., S.A.); and Centro di Eccellenza di Imaging Preclinico (CEIP), Colleretto Giacosa, Italy (P.B., F.A., S.A.)
| | - Francesca Arena
- From the Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, 10126 Turin, Italy (E.G., P.B., F.A., R.S., E.D.G., R.I., S.A.); and Centro di Eccellenza di Imaging Preclinico (CEIP), Colleretto Giacosa, Italy (P.B., F.A., S.A.)
| | - Rachele Stefania
- From the Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, 10126 Turin, Italy (E.G., P.B., F.A., R.S., E.D.G., R.I., S.A.); and Centro di Eccellenza di Imaging Preclinico (CEIP), Colleretto Giacosa, Italy (P.B., F.A., S.A.)
| | - Enza Di Gregorio
- From the Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, 10126 Turin, Italy (E.G., P.B., F.A., R.S., E.D.G., R.I., S.A.); and Centro di Eccellenza di Imaging Preclinico (CEIP), Colleretto Giacosa, Italy (P.B., F.A., S.A.)
| | - Rebecca Iani
- From the Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, 10126 Turin, Italy (E.G., P.B., F.A., R.S., E.D.G., R.I., S.A.); and Centro di Eccellenza di Imaging Preclinico (CEIP), Colleretto Giacosa, Italy (P.B., F.A., S.A.)
| | - Silvio Aime
- From the Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, 10126 Turin, Italy (E.G., P.B., F.A., R.S., E.D.G., R.I., S.A.); and Centro di Eccellenza di Imaging Preclinico (CEIP), Colleretto Giacosa, Italy (P.B., F.A., S.A.)
| |
Collapse
|
33
|
Physico-chemical properties of Mn II complexes formed with cis- and trans-DO2A: thermodynamic, electrochemical and kinetic studies. J Inorg Biochem 2016; 163:206-213. [PMID: 27567150 DOI: 10.1016/j.jinorgbio.2016.07.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/26/2016] [Accepted: 07/26/2016] [Indexed: 02/05/2023]
Abstract
SYNOPSIS MnII complexes formed with cis- and trans-DO2A (DO2A=1,4,7,10-tetraazacyclododecane-1,4 (or 1,7) -diacetic acid) chelators were investigated by pH-potentiometry, 1H relaxometry, UV-vis spectrophotometry and cyclic voltammetry. The physico-chemical characteristics of MnII complexes of these structure isomers do not differ dramatically, however the cis-DO2A platform has better potential for further development. Manganese (MnII) is a promising alternative to gadolinium (GdIII) as a magnetic resonance imaging (MRI) agent. Unlike gadolinium, this biogenic metal might be better tolerated by the body, reducing the risk of toxicity associated with dissociation of the complex. Herein we report detailed equilibrium and kinetic studies performed with MnII complexes of 1,4,7,10-tetraazacyclododecane-1,4-diacetic acid (1,4-DO2A or cis-DO2A) and 1,4,7,10-tetraazacyclododecane-1,7-diacetic acid (1,7-DO2A or trans-DO2A). The protonation constants of the ligands as well as stability constants of their MnII complexes have been determined by pH-potentiometry. The stability constants of [Mn(cis-DO2A)] are slightly higher than those of [Mn(trans-DO2A)] (log KMnL=15.68 and 15.22, respectively). Cyclic voltammetric (CV) experiments performed on [Mn(cis-DO2A)] and [Mn(trans-DO2A)] revealed quasireversible systems with a half-wave potential of +636 and +705mV versus Ag/AgCl, respectively. These values indicate that the MnII ion in these complexes is more stabilized against the oxidation than in [Mn(EDTA)]2-. The kinetic inertness of the complexes has been studied in transmetallation reactions with CuII or ZnII ions. Kinetic measurements indicate that both MnII complexes primarily undergo acid catalyzed dissociation and positions of the acetate pendant arms do not influence kinetic inertness. The inertness of these complexes is comparable to that of [Mn(NOTA)]- (NOTA=1,4,7-triazacyclononane-1,4,7-triacetic acid) and about twenty times lower than that of [Mn(DOTA)]2- (DOTA=1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid). In conclusion, [Mn(cis-DO2A)] displays some very interesting features (thermodynamic and redox stability as well as kinetic inertness) which makes this complex a promising platform for the development of more efficient MnII complexes as alternatives to Gd-based MRI agents.
Collapse
|
34
|
Feng M, Fan YZ, Ma XJ, Li JX, Yang XG. The gadolinium-based contrast agent Omniscan® promotes in vitro fibroblast survival through in situ precipitation. Metallomics 2016; 7:1103-10. [PMID: 25867453 DOI: 10.1039/c5mt00055f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The current study aims to explore how the gadolinium (Gd)-based contrast agent (GBCA) Omniscan® enhanced cell viability of murine fibroblasts. The results of scanning electron microscopy showed that Omniscan® can precipitate in cell culture media and deposit on cell membranes. Energy-dispersive X-ray analysis and Fourier-transform infrared spectroscopy demonstrated the presence of Gd and phosphates in the agglomerated particles. By filtering the Omniscan®-containing medium through a 220 nm filter, it can be clearly found that the increased cell viability should be mainly attributed to the insoluble species of gadolinium rather than to chelated gadolinium. Moreover, the effects of other gadolinium-based contrast agents, Magnevist® and Dotarem®, were compared with that of Omniscan®. It is noted that the three contrast agents differed in their ability to induce cell viability, which is possibly ascribed to the different chemical stabilities of gadolinium chelates as demonstrated by the attenuation in cell growth upon the addition of excess ligands to the compounds. The results of flow cytometry analysis also showed that Omniscan® can promote cell growth via an increase in the S-phase cell population as evidenced by the elevated levels of cell cycle associated proteins cyclin D, cyclin A and the phosphorylated Rb protein. Furthermore, our results revealed that integrin-mediated signaling may play an important role in both Omniscan® and Magnevist®-enhanced focal adhesion formation since the blockade of integrins decreased the level of ERK phosphorylation induced by the two GBCAs. Taken together, these data suggested that in situ gadolinium phosphate precipitation formation mediated Omniscan®-promoted fibroblast survival, which is similar to that of gadolinium chloride. It was demonstrated that the application of GBCAs with more stable thermodynamic stability may cause less dissociation of the gadolinium ion and thus resulted in less precipitation, finally leading to lower occurrence of nephrogenic systemic fibrosis. The obtained results would also be helpful for the development of safe gadolinium-based contrast agents.
Collapse
Affiliation(s)
- Min Feng
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China.
| | | | | | | | | |
Collapse
|
35
|
Rodríguez-Rodríguez A, Regueiro-Figueroa M, Esteban-Gómez D, Tripier R, Tircsó G, Kálmán FK, Bényei AC, Tóth I, Blas AD, Rodríguez-Blas T, Platas-Iglesias C. Complexation of Ln3+ Ions with Cyclam Dipicolinates: A Small Bridge that Makes Huge Differences in Structure, Equilibrium, and Kinetic Properties. Inorg Chem 2016; 55:2227-39. [DOI: 10.1021/acs.inorgchem.5b02627] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Aurora Rodríguez-Rodríguez
- Grupo QUICOOR,
Centro de Investigaciones Científicas Avanzadas (CICA) and
Departamento de Química Fundamental, Universidade da Coruña, Campus
da Zapateira, Rúa da Fraga 10, 15008 A Coruña, Spain
- Université de Bretagne Occidentale, UMR-CNRS 6521, UFR des Sciences et Techniques, 6 avenue Victor le Gorgeu, C.S. 93837, 29238 Brest, Cedex 3, France
| | - Martín Regueiro-Figueroa
- Grupo QUICOOR,
Centro de Investigaciones Científicas Avanzadas (CICA) and
Departamento de Química Fundamental, Universidade da Coruña, Campus
da Zapateira, Rúa da Fraga 10, 15008 A Coruña, Spain
| | - David Esteban-Gómez
- Grupo QUICOOR,
Centro de Investigaciones Científicas Avanzadas (CICA) and
Departamento de Química Fundamental, Universidade da Coruña, Campus
da Zapateira, Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Raphaël Tripier
- Université de Bretagne Occidentale, UMR-CNRS 6521, UFR des Sciences et Techniques, 6 avenue Victor le Gorgeu, C.S. 93837, 29238 Brest, Cedex 3, France
| | - Gyula Tircsó
- Centre de Biophysique Moléculaire, CNRS, rue Charles Sadron, 45071 Orléans, Cedex 2, France
- Le Studium, Loire Valley Institute for Advanced Studies, 1 Rue Dupanloup, 45000 Orléans, France
| | | | | | | | - Andrés de Blas
- Grupo QUICOOR,
Centro de Investigaciones Científicas Avanzadas (CICA) and
Departamento de Química Fundamental, Universidade da Coruña, Campus
da Zapateira, Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Teresa Rodríguez-Blas
- Grupo QUICOOR,
Centro de Investigaciones Científicas Avanzadas (CICA) and
Departamento de Química Fundamental, Universidade da Coruña, Campus
da Zapateira, Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Carlos Platas-Iglesias
- Grupo QUICOOR,
Centro de Investigaciones Científicas Avanzadas (CICA) and
Departamento de Química Fundamental, Universidade da Coruña, Campus
da Zapateira, Rúa da Fraga 10, 15008 A Coruña, Spain
| |
Collapse
|
36
|
Tircsó G, Regueiro-Figueroa M, Nagy V, Garda Z, Garai T, Kálmán FK, Esteban-Gómez D, Tóth É, Platas-Iglesias C. Approaching the Kinetic Inertness of Macrocyclic Gadolinium(III)-Based MRI Contrast Agents with Highly Rigid Open-Chain Derivatives. Chemistry 2016; 22:896-901. [DOI: 10.1002/chem.201503836] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Gyula Tircsó
- Department of Inorganic and Analytical Chemistry; University of Debrecen; 4010 Debrecen Egyetem tér 1 Hungary
- Centre de Biophysique Moléculaire; CNRS; rue Charles Sadron 45071 Orléans, Cedex 2 France)
- Le Studium; Loire Valley Institute for Advanced Studies; 1 Rue Dupanloup 45000 Orléans France
| | - Martín Regueiro-Figueroa
- Departamento de Química Fundamental; Universidade da Coruña; Campus da Zapateira, Rúa da Fraga 10 15008A Coruña Spain
| | - Viktória Nagy
- Department of Inorganic and Analytical Chemistry; University of Debrecen; 4010 Debrecen Egyetem tér 1 Hungary
| | - Zoltán Garda
- Department of Inorganic and Analytical Chemistry; University of Debrecen; 4010 Debrecen Egyetem tér 1 Hungary
| | - Tamás Garai
- Department of Inorganic and Analytical Chemistry; University of Debrecen; 4010 Debrecen Egyetem tér 1 Hungary
| | - Ferenc Krisztián Kálmán
- Department of Inorganic and Analytical Chemistry; University of Debrecen; 4010 Debrecen Egyetem tér 1 Hungary
| | - David Esteban-Gómez
- Departamento de Química Fundamental; Universidade da Coruña; Campus da Zapateira, Rúa da Fraga 10 15008A Coruña Spain
| | - Éva Tóth
- Centre de Biophysique Moléculaire; CNRS; rue Charles Sadron 45071 Orléans, Cedex 2 France)
| | - Carlos Platas-Iglesias
- Departamento de Química Fundamental; Universidade da Coruña; Campus da Zapateira, Rúa da Fraga 10 15008A Coruña Spain
| |
Collapse
|
37
|
Regueiro-Figueroa M, Gündüz S, Patinec V, Logothetis NK, Esteban-Gómez D, Tripier R, Angelovski G, Platas-Iglesias C. Gd(3+)-Based Magnetic Resonance Imaging Contrast Agent Responsive to Zn(2+). Inorg Chem 2015; 54:10342-50. [PMID: 26468992 DOI: 10.1021/acs.inorgchem.5b01719] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We report the heteroditopic ligand H5L, which contains a DO3A unit for Gd(3+) complexation connected to an NO2A moiety through a N-propylacetamide linker. The synthesis of the ligand followed a convergent route that involved the preparation of 1,4-bis(tert-butoxycarbonylmethyl)-1,4,7-triazacyclononane following the orthoamide strategy. The luminescence lifetimes of the Tb((5)D4) excited state measured for the TbL complex point to the absence of coordinated water molecules. Density functional theory calculations and (1)H NMR studies indicate that the EuL complex presents a square antiprismatic coordination in aqueous solution, where eight coordination is provided by the seven donor atoms of the DO3A unit and the amide oxygen atom of the N-propylacetamide linker. Addition of Zn(2+) to aqueous solutions of the TbL complex provokes a decrease of the emission intensity as the emission lifetime becomes shorter, which is a consequence of the coordination of a water molecule to the Tb(3+) ion upon Zn(2+) binding to the NO2A moiety. The relaxivity of the GdL complex recorded at 7 T (25 °C) increases by almost 150% in the presence of 1 equiv of Zn(2+), while Ca(2+) and Mg(2+) induced very small relaxivity changes. In vitro magnetic resonance imaging experiments confirmed the ability of GdL to provide response to the presence of Zn(2+).
Collapse
Affiliation(s)
- Martín Regueiro-Figueroa
- Grupo QUICOOR, Centro de Investigaciones Científicas Avanzadas (CICA) and Departamento de Química Fundamental, Universidade da Coruña , Campus da Zapateira, Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Serhat Gündüz
- MR Neuroimaging Agents, Max Planck Institute for Biological Cybernetics , Spemannstr. 41, 72076 Tübingen, Germany
| | - Véronique Patinec
- UFR des Sciences et Techniques, Université de Bretagne Occidentale, UMR-CNRS 6521 , 6 avenue Victor le Gorgeu, C.S. 93837, 29238 BREST Cedex 3, France
| | - Nikos K Logothetis
- Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics , Tübingen, Germany.,Department of Imaging Science and Biomedical Engineering, University of Manchester , Manchester, U.K
| | - David Esteban-Gómez
- Grupo QUICOOR, Centro de Investigaciones Científicas Avanzadas (CICA) and Departamento de Química Fundamental, Universidade da Coruña , Campus da Zapateira, Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Raphaël Tripier
- UFR des Sciences et Techniques, Université de Bretagne Occidentale, UMR-CNRS 6521 , 6 avenue Victor le Gorgeu, C.S. 93837, 29238 BREST Cedex 3, France
| | - Goran Angelovski
- MR Neuroimaging Agents, Max Planck Institute for Biological Cybernetics , Spemannstr. 41, 72076 Tübingen, Germany
| | - Carlos Platas-Iglesias
- Grupo QUICOOR, Centro de Investigaciones Científicas Avanzadas (CICA) and Departamento de Química Fundamental, Universidade da Coruña , Campus da Zapateira, Rúa da Fraga 10, 15008 A Coruña, Spain
| |
Collapse
|