1
|
Pohle MH, Lohmiller T, Böhme M, Rams M, Ziegenbalg S, Görls H, Schnegg A, Plass W. THz-EPR-based Magneto-Structural Correlations for Cobalt(II) Single-Ion Magnets With Bis-Chelate Coordination. Chemistry 2024; 30:e202401545. [PMID: 39136581 DOI: 10.1002/chem.202401545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Indexed: 10/18/2024]
Abstract
New cobalt(II)-based complexes with [N2O2] coordination formed by two bis-chelate ligands were synthesized and characterized by a multi-technique approach. The complexes possess an easy-axis anisotropy (D<0) and magnetic measurements show a field-induced slow relaxation of magnetization. The spin-reversal barriers, i. e., the splitting of the two lowest Kramers doublets (UZFS), have been measured by THz-EPR spectroscopy, which allows to distinguish the two crystallographically independent species present in one of the complexes. Based on these experimental UZFS energies together with those for related complexes reported in literature, it was possible to establish magneto-structural correlations. UZFS linearly depends on the elongation parameter ϵT of the (pseudo-)tetrahedral coordination, which is given by the ratio between the average obtuse and acute angles at the cobalt(II) ion, while UZFS was found to be virtually independent of the twist angle of the chelate planes. With increasing deviation from the orthogonality of the latter, the rhombicity (|E/D|) increases.
Collapse
Affiliation(s)
- Maximilian H Pohle
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - Thomas Lohmiller
- EPR4 Energy Joint Lab, Department Spins in Energy Conversion and Quantum Information Science, Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 16, 12489, Berlin, Germany
- Current address: Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Michael Böhme
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - Michał Rams
- Institute of Physics, Jagiellonian University, 30-348, Kraków, Poland
| | - Sven Ziegenbalg
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - Alexander Schnegg
- EPR Research Group, Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07743, Jena, Germany
| |
Collapse
|
2
|
Biswas S, Havlicek L, Nemec I, Salitros I, Mandal L, Neugebauer P, Kuppusamy SK, Ruben M. Levamisole Based Co(II) Single-Ion Magnet. Chem Asian J 2024; 19:e202400574. [PMID: 38870468 DOI: 10.1002/asia.202400574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024]
Abstract
A new Co(II) complex, [Co(NCS)2(L)2] (1) has been synthesized based on levamisole (L) as a new ligand. Single-crystal X-ray diffraction analyses confirm that the Co(II) ion is having a distorted tetrahedral coordination geometry in the complex. Notably strong intramolecular S⋅⋅⋅S and S⋅⋅⋅N interactions has been confirmed by employing Quantum Theory of Atoms in Molecules (QTAIM). These intramolecular interactions occur among the sulfur and nitrogen atoms of the levamisole ligands and also the nitrogen atoms of the thiocyanate. Direct current (dc) magnetic analyses reveal presence of zero field splitting (ZFS) and large magnetic anisotropy on Co(II). Detailed ab initio ligand field theory calculations quantitatively predicted the magnitude of ZFS. Prominent field-induced single-ion magnet (SIM) behavior was observed for 1 from dynamic magnetization measurements. Slow magnetic relaxation follows an Orbach mechanism with the effective energy barrier Ueff=29.6 (7) K and relaxation time τo=1.4 (4)×10-9 s.
Collapse
Affiliation(s)
- Soumava Biswas
- Dr. Vishwanath Karad MIT World Peace University Survey No, 124, Paud Rd, Kothrud, Pune, 411038, Maharashtra, India
| | - Lubomir Havlicek
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 61200, Brno, Czech Republic
- Institute of Physics of Materials, Czech Academy of Sciences, Zizkova 22, 61662, Brno, Czech Republic
| | - Ivan Nemec
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 61200, Brno, Czech Republic
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, 77147, Olomouc, Czech Republic
| | - Ivan Salitros
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 61200, Brno, Czech Republic
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava., Bratislava, SK-81237, Slovakia
| | - Leena Mandal
- Department of Chemistry, Polba Mahavidyalaya, Polba Hooghly, PIN-712148, West Bengal, India
| | - Petr Neugebauer
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 61200, Brno, Czech Republic
| | - Senthil Kumar Kuppusamy
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Mario Ruben
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
3
|
Yang EC, Tsai YT, Chang PY, Ozerov M, Krzystek J, Chien SY, He JX, Kuo TS, Sheu HS. Cobalt(II) Single-Ion Magnet Coordinated by Double Deprotonation of 2,2'-Bipyridine-6,6'-diol Ligands. ACS OMEGA 2024; 9:26149-26158. [PMID: 38911747 PMCID: PMC11190935 DOI: 10.1021/acsomega.4c01576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024]
Abstract
In this study, we synthesized a new Co(II) complex, [NMe4]2[Co(bpyO2)2] (1), using deprotonated 2,2'-bipyridine-6,6'-diol ligands (bpyO2 2-). This compound exhibits a significant zero-field splitting (D) value. The far-infrared magneto spectroscopy and high-frequency and field electron paramagnetic resonance (HFEPR) measurements indicated that compound 1 possesses D = -54.8 cm-1 and E ∼ 0 cm-1. These findings were subsequently confirmed by other experimental data, including DC magnetic susceptibilities and variable temperature and variable magnetic field reduced magnetizations. Additionally, we conducted a series of AC magnetic susceptibility measurements to investigate the kinetics of magnetization relaxation. Below 6.6 K and under zero external magnetic field, fast quantum tunneling of magnetization (QTM) dominates (∼570 Hz), and temperature-independent out-of-phase signals are observed. Above 8.1 K, temperature-dependent behavior is observed. Furthermore, we examined the AC magnetic susceptibility behavior under external magnetic fields ranging from 300 to 4000 G. The effect of QTM is significantly reduced in the presence of an external magnetic field. Temperature-dependent behavior is primarily governed by Raman relaxation. Through structural analysis of compound 1 and a series of pure nitrogen-coordinated single-ion magnets (SIMs), we propose that the oxo substituents from the double-deprotonated form of the 2,2'-bipyridine-6,6'-diol ligands donate their negative charge to the pyridine ring, forming amido anion sites. This triggers a more pronounced out-of-phase signal than that observed in pure pyridine-coordinated compounds. Moreover, we observed intermolecular interactions, including intermolecular hydrogen bonding, which, to some extent, influenced the slow relaxation of molecules. Therefore, we speculate that the slow relaxation phenomenon of compound 1 may be attributed to the combination of oxo back-donating effects and intermolecular interactions.
Collapse
Affiliation(s)
- En-Che Yang
- Department
of Chemistry, Fu-Jen Catholic University
Hsinchuang, New Taipei
City 242062, Taiwan, Republic of China
| | - Yu-Tung Tsai
- Department
of Chemistry, Fu-Jen Catholic University
Hsinchuang, New Taipei
City 242062, Taiwan, Republic of China
| | - Po-Ya Chang
- National
Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan, Republic of China
| | - Mykhaylo Ozerov
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 32310, United States
| | - Jurek Krzystek
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 32310, United States
| | - Su-Ying Chien
- Instrumentation
Centre College of Science, National Taiwan
University, Taipei 10617, Taiwan,
Republic of China
| | - Jun-Xian He
- Department
of Chemistry, Fu-Jen Catholic University
Hsinchuang, New Taipei
City 242062, Taiwan, Republic of China
| | - Ting-Shen Kuo
- Centre
of National Taiwan Normal University, Taipei 11677, Taiwan, Republic of China
| | - Hwo-Shuenn Sheu
- National
Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan, Republic of China
| |
Collapse
|
4
|
Cui HH, Xu H, Zhang T, Chen Q, Luo S, Wang M, Wang J, Chen L, Zhang M, Tang Y. Magnetic Anisotropy and Relaxation in Four-Coordinate Cobalt(II) Single-Ion Magnets with a [Co IIO 4] Core. Inorg Chem 2024; 63:9050-9057. [PMID: 38709957 DOI: 10.1021/acs.inorgchem.4c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
A mononuclear four-coordinate Co(II) complex with a [CoIIO4] core, namely, PPN[Li(MeOH)4][Co(L)2] (1) (PPN = bis(phosphoranediyl)iminium; H2L = perfluoropinacol), has been studied by X-ray crystallography, magnetic characterization, and theoretical calculations. This complex presents a severely distorted coordination geometry. The O-Co-O bite angle is 83.42°/83.65°, and the dihedral twist angle between the O-Co-O chelate planes is 55.6°. The structural distortion results in a large easy-axis magnetic anisotropy with D = -104(1) cm-1 and a transverse component with |E| = +4(2) cm-1. Alternating current (ac) susceptibility measurements demonstrate that 1 exhibits slow relaxation of magnetization at zero static field. However, the frequency-dependent out-of-phase (χ"M) susceptibilities of 1 at 0 Oe do not show a characteristic maximum. Upon the application of a dc field or the dilution with a diamagnetic Zn matrix, the quantum tunneling of magnetization (QTM) process can be successfully suppressed. Notably, after dilution with the Zn matrix, the obtained sample exhibits a structure different from that of the pristine complex. In this altered sample, the asymmetric unit does not contain the Li(MeOH)4+ cation, resulting in an O-Co-O bite angle of 86.05° and a dihedral twist angle of 75.84°, thereby leading to an approximate D2d symmetry. Although such differences are not desirable for magnetic studies, this study still gives some insights. Theoretical calculations reveal that the D parameter is governed by the O-Co-O bite angle, in line with our previous report for other tetrahedral Co(II) complex with a [CoIIN4] core. On the other hand, the rhombic component is found to increase as the dihedral angle deviates from 90°. These findings provide valuable guidelines for fine-tuning the magnetic properties of Co(II) complexes.
Collapse
Affiliation(s)
- Hui-Hui Cui
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Hongjuan Xu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Tengkun Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Qiukai Chen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Shuchang Luo
- School of Chemical Engineering, Guizhou University of Engineering Science, Bijie 551700, China
| | - Miao Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Lei Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Mingxing Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yanfeng Tang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| |
Collapse
|
5
|
Lococciolo G, Gupta SK, Dechert S, Demeshko S, Duboc C, Atanasov M, Neese F, Meyer F. Oxygen-Donor Metalloligands Induce Slow Magnetization Relaxation in Zero Field for a Cobalt(II) Complex with {CoO 4} Motif. Inorg Chem 2024; 63:5652-5663. [PMID: 38470330 DOI: 10.1021/acs.inorgchem.4c00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Most 3d metal-based single-molecule magnets (SMMs) use N-ligands or ligands with even softer donors to impart a particular coordination geometry and increase the zero-field splitting parameter |D|, while complexes with hard O-donor ligands showing slow magnetization relaxation are rare. Here, we report that a diamagnetic NiII complex of a tetradentate ligand featuring two N-heterocyclic carbene and two alkoxide-O donors, [LO,ONi], can serve as a {O,O'}-chelating metalloligand to give a trinuclear complex [(LO,ONi)Co(LO,ONi)](OTf)2 (2) with an elongated tetrahedral {CoIIO4} core, D = -74.3 cm-1, and a spin reversal barrier Ueff = 86.9 cm-1 in the absence of an external dc field. The influence of diamagnetic NiII on the electronic structure of the {CoO4} unit in comparison to [Co(OPh)4]2- (A) has been probed with multireference ab initio calculations. These reveal a contrapolarizing effect of the NiII, which forms stronger metal-alkoxide bonds than the central CoII, inducing a change in ligand field splitting and a 5-fold increase in the magnetic anisotropy in 2 compared to A, with an easy magnetization axis along the Ni-Co-Ni vector. This demonstrates a strategy to enhance the SMM properties of 3d metal complexes with hard O-donors by modulating the ligand field character via the coordination of diamagnetic ions and the benefit of robust metalloligands in that regard.
Collapse
Affiliation(s)
- Giuseppe Lococciolo
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, Göttingen 37077, Germany
| | - Sandeep K Gupta
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, Göttingen 37077, Germany
| | - Sebastian Dechert
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, Göttingen 37077, Germany
| | - Serhiy Demeshko
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, Göttingen 37077, Germany
| | - Carole Duboc
- Université Grenoble Alpes, CNRS UMR 5250, DCM, Grenoble F-38000, France
| | - Mihail Atanasov
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Akad. Georgi Bontchev Street 11, Sofia 1113, Bulgaria
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Franc Meyer
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, Göttingen 37077, Germany
| |
Collapse
|
6
|
Gupta SK, Rao SV, Demeshko S, Dechert S, Bill E, Atanasov M, Neese F, Meyer F. Air-stable four-coordinate cobalt(ii) single-ion magnets: experimental and ab initio ligand field analyses of correlations between dihedral angles and magnetic anisotropy. Chem Sci 2023; 14:6355-6374. [PMID: 37325133 PMCID: PMC10266464 DOI: 10.1039/d3sc00813d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023] Open
Abstract
For single-ion magnets (SIMs), understanding the effects of the local coordination environment and ligand field on magnetic anisotropy is key to controlling their magnetic properties. Here we present a series of tetracoordinate cobalt(ii) complexes of the general formula [FL2Co]X2 (where FL is a bidentate diamido ligand) whose electron-withdrawing -C6F5 substituents confer stability under ambient conditions. Depending on the cations X, these complexes adopt structures with greatly varying dihedral twist angle δ between the N-Co-N' chelate planes in the solid state (48.0 to 89.2°). AC and DC field magnetic susceptibility measurements show this to translate into very different magnetic properties, the axial zero-field splitting (ZFS) parameter D ranging from -69 cm-1 to -143 cm-1 with substantial or negligible rhombic component E, respectively. A close to orthogonal arrangement of the two N,N'-chelating σ- and π-donor ligands at the Co(ii) ion is found to raise the energy barrier for magnetic relaxation to above 400 K. Multireference ab initio methods were employed to describe the complexes' electronic structures, and the results were analyzed within the framework of ab initio ligand field theory to probe the nature of the metal-ligand bonding and spin-orbit coupling. A relationship between the energy gaps of the first few electronic transitions and the ZFS was established, and the ZFS was correlated with the dihedral angle δ as well as with the metal-ligand bonding variations, viz. the two angular overlap parameters eσ and eπs. These findings not only give rise to a Co(ii) SIM showing open hysteresis up to 3.5 K at a sweep rate of 30 Oe s-1, but they also provide design guidelines for Co(ii) complexes with favorable SIM signatures or even switchable magnetic relaxation properties.
Collapse
Affiliation(s)
- Sandeep K Gupta
- Institut für Anorganische Chemie, Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Shashank V Rao
- Max Planck Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Serhiy Demeshko
- Institut für Anorganische Chemie, Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Sebastian Dechert
- Institut für Anorganische Chemie, Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34-36 45470 Mülheim an der Ruhr Germany
| | - Mihail Atanasov
- Max Planck Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences Akad. Georgi Bontchev Street 11 1113 Sofia Bulgaria
| | - Frank Neese
- Max Planck Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Franc Meyer
- Institut für Anorganische Chemie, Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| |
Collapse
|
7
|
Pohle MH, Böhme M, Lohmiller T, Ziegenbalg S, Blechschmidt L, Görls H, Schnegg A, Plass W. Magnetic Anisotropy and Relaxation of Pseudotetrahedral [N 2 O 2 ] Bis-Chelate Cobalt(II) Single-Ion Magnets Controlled by Dihedral Twist Through Solvomorphism. Chemistry 2023; 29:e202202966. [PMID: 36468847 DOI: 10.1002/chem.202202966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/07/2022]
Abstract
The methanol solvomorph 1 ⋅ 2MeOH of the cobalt(II) complex [Co(LSal,2-Ph )2 ] (1) with the sterically demanding Schiff-base ligand 2-(([1,1'-biphenyl]-2-ylimino)methyl)phenol (HLSal,2-Ph ) shows the thus far largest dihedral twist distortion between the two chelate planes compared to an ideal pseudotetrahedral arrangement. The cobalt(II) ion in 1 ⋅ 2MeOH exhibits an easy-axis anisotropy leading to a spin-reversal barrier of 55.3 cm-1 , which corresponds to an increase of about 17 % induced by the larger dihedral twist compared to the solvent-free complex 1. The magnetic relaxation for 1 ⋅ 2MeOH is significantly slower compared to 1. An in-depth frequency-domain Fourier-transform (FD-FT) THz-EPR study not only allowed the direct measurement of the magnetic transition between the two lowest Kramers doublets for the cobalt(II) complexes, but also revealed the presence of spin-phonon coupling. Interestingly, a similar dihedral twist correlation is also observed for a second pair of cobalt(II)-based solvomorphs, which could be benchmarked by FD-FT THz-EPR.
Collapse
Affiliation(s)
- Maximilian H Pohle
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - Michael Böhme
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - Thomas Lohmiller
- EPR4Energy Joint Lab, Department Spins in Energy Conversion and Quantum Information Science, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 16, 12489, Berlin, Germany.,present address: Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Sven Ziegenbalg
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - Louis Blechschmidt
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - Alexander Schnegg
- EPR4Energy Joint Lab, Department Spins in Energy Conversion and Quantum Information Science, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 16, 12489, Berlin, Germany.,EPR Research Group, MPI for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07743, Jena, Germany
| |
Collapse
|
8
|
Gupta S, Nielsen HH, Thiel AM, Klahn EA, Feng E, Cao HB, Hansen TC, Lelièvre-Berna E, Gukasov A, Kibalin I, Dechert S, Demeshko S, Overgaard J, Meyer F. Multi-Technique Experimental Benchmarking of the Local Magnetic Anisotropy of a Cobalt(II) Single-Ion Magnet. JACS AU 2023; 3:429-440. [PMID: 36873706 PMCID: PMC9975825 DOI: 10.1021/jacsau.2c00575] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
A comprehensive understanding of the ligand field and its influence on the degeneracy and population of d-orbitals in a specific coordination environment are crucial for the rational design and enhancement of magnetic anisotropy of single-ion magnets (SIMs). Herein, we report the synthesis and comprehensive magnetic characterization of a highly anisotropic CoII SIM, [L2Co](TBA)2 (L is an N,N'-chelating oxanilido ligand), that is stable under ambient conditions. Dynamic magnetization measurements show that this SIM exhibits a large energy barrier to spin reversal U eff > 300 K and magnetic blocking up to 3.5 K, and the property is retained in a frozen solution. Low-temperature single-crystal synchrotron X-ray diffraction used to determine the experimental electron density gave access to Co d-orbital populations and a derived U eff, 261 cm-1, when the coupling between the d x 2 - y 2 and dxy orbitals is taken into account, in very good agreement with ab initio calculations and superconducting quantum interference device results. Powder and single-crystal polarized neutron diffraction (PNPD, PND) have been used to quantify the magnetic anisotropy via the atomic susceptibility tensor, revealing that the easy axis of magnetization is pointing along the N-Co-N' bisectors of the N,N'-chelating ligands (3.4° offset), close to the molecular axis, in good agreement with complete active space self-consistent field/N-electron valence perturbation theory to second order ab initio calculations. This study provides benchmarking for two methods, PNPD and single-crystal PND, on the same 3d SIM, and key benchmarking for current theoretical methods to determine local magnetic anisotropy parameters.
Collapse
Affiliation(s)
- Sandeep
K. Gupta
- Universität
Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, D-37077Göttingen, Germany
| | - Hannah H. Nielsen
- Department
of Chemistry, Aarhus University, Langelandsgade 140, DK-8000Aarhus C, Denmark
| | - Andreas M. Thiel
- Department
of Chemistry, Aarhus University, Langelandsgade 140, DK-8000Aarhus C, Denmark
| | - Emil A. Klahn
- Department
of Chemistry, Aarhus University, Langelandsgade 140, DK-8000Aarhus C, Denmark
| | - Erxi Feng
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee37831, United States
| | - Huibo B. Cao
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee37831, United States
| | - Thomas C. Hansen
- Institut
Laue-Langevin (ILL), 71 Avenue des Martyrs, 38042Grenoble, France
| | | | - Arsen Gukasov
- Laboratoire
Léon Brillouin (LLB), CEA CE de Saclay, Gif sur Yvette91191, France
| | - Iurii Kibalin
- Laboratoire
Léon Brillouin (LLB), CEA CE de Saclay, Gif sur Yvette91191, France
| | - Sebastian Dechert
- Universität
Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, D-37077Göttingen, Germany
| | - Serhiy Demeshko
- Universität
Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, D-37077Göttingen, Germany
| | - Jacob Overgaard
- Department
of Chemistry, Aarhus University, Langelandsgade 140, DK-8000Aarhus C, Denmark
| | - Franc Meyer
- Universität
Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, D-37077Göttingen, Germany
- Universität
Göttingen, International Center for Advanced Studies of Energy
Conversion (ICASEC), Tammannstraße 6, D-37077Göttingen, Germany
| |
Collapse
|
9
|
Ferreira PS, Malta JF, Bandeira NAG, Allgaier A, van Slageren J, Paixão JA, Almeida M, Pereira LCJ, Gomes PT. Enhancing SIM behaviour in a mononuclear tetrahedral [Co( N, N'-2-iminopyrrolyl) 2] complex. Chem Commun (Camb) 2022; 58:9682-9685. [PMID: 35950347 DOI: 10.1039/d2cc03511a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new homoleptic Co(II) complex bearing two highly sterically congested 2-formiminopyrrolyl N,N'-chelating ligands is reported, displaying slow relaxation of the magnetisation at zero static (DC) field. This compound shows a large value for the zero-field splitting (ZFS) parameter D of -42.6(4) cm-1 leading to a spin-reversal energy barrier Ueff of 85 cm-1.
Collapse
Affiliation(s)
- Patrícia S Ferreira
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisboa, Portugal. .,Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066, Bobadela LRS, Portugal.
| | - José F Malta
- Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066, Bobadela LRS, Portugal. .,CFisUC - Centro de Física da Universidade de Coimbra, Departamento de Física, Universidade de Coimbra, 3004-516, Coimbra, Portugal
| | - Nuno A G Bandeira
- BioISI - Biosystems & Integrative Sciences Institute, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Ed. C8, 1749-016, Lisboa, Portugal.
| | - Alexander Allgaier
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart, D-70569, Germany.
| | - Joris van Slageren
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart, D-70569, Germany.
| | - José A Paixão
- CFisUC - Centro de Física da Universidade de Coimbra, Departamento de Física, Universidade de Coimbra, 3004-516, Coimbra, Portugal
| | - Manuel Almeida
- Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066, Bobadela LRS, Portugal.
| | - Laura C J Pereira
- Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066, Bobadela LRS, Portugal.
| | - Pedro T Gomes
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisboa, Portugal.
| |
Collapse
|
10
|
Juráková J, Šalitroš I. Co(II) single-ion magnets: synthesis, structure, and magnetic properties. MONATSHEFTE FUR CHEMIE 2022; 153:1001-1036. [PMID: 35615113 PMCID: PMC9123880 DOI: 10.1007/s00706-022-02920-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/25/2022] [Indexed: 01/01/2023]
Abstract
Magnetoactive coordination compounds exhibiting bi- or multistability between two or more magnetic stable states present an attractive example of molecular switches. Currently, the research is focused on molecular nanomagnets, especially single molecule magnets (SMMs), which are molecules, where the slow relaxation of the magnetization based on the purely molecular origin is observed. Contrary to ferromagnets, the magnetic bistability of SMMs does not require intermolecular interactions, which makes them particularly interesting in terms of application potential, especially in the high-density storage of data. This paper aims to introduce the readers into a basic understanding of SMM behaviour, and furthermore, it provides an overview of the attractive Co(II) SMMs with emphasis on the relation between structural features, magnetic anisotropy, and slow relaxation of magnetization in tetra-, penta-, and hexacoordinate complexes. Graphical abstract
Collapse
Affiliation(s)
- Jana Juráková
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Ivan Šalitroš
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava, 81237 Slovakia
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| |
Collapse
|
11
|
Lüert D, Legendre CM, Herbst‐Irmer R, Stalke D. Alkali Metal Based Triimidosulfite Cages as Versatile Precursors for Single-Molecule Magnets. Chemistry 2022; 28:e202104470. [PMID: 35040528 PMCID: PMC9304269 DOI: 10.1002/chem.202104470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Indexed: 11/28/2022]
Abstract
Based on the potassium [{S(tBuN)2 (tBuNH)}2 K3 (tmeda)-K3 {(HNtBu)(NtBu)2 S}2 ] (1) and sodium precursors [S(tBuN)3 (thf)3 -Na3 SNa3 (thf)3 (NtBu)3 S] (2), [S(tBuN)3 (thf)3 Na3 {(HNtBu)(NtBu)2 S}] (3) and [(tmeda)3 S-{Na3 (NtBu)3 S}2 ] (4) the syntheses and magnetic properties of three mixed metal triimidosulfite based alkali-lanthanide-metal-cages [(tBuNH)Dy{K(0.5tmeda)}2 {(NtBu)3 S}2 ]n (5) and [ClLn{Na(thf)}2 {(NtBu)3 S}2 ] with Ln=Dy (6), Er (7) are reported. The corresponding potassium (1) and sodium (2-4) based cages are characterized through XRD and NMR experiments. Preventing lithium chloride co-complexation led to a significant increase of SMM performance to previously reported sulfur-nitrogen ligands. The subsequent DyIII -complexes 5 and 6 display slow relaxation of magnetization at zero field, with relaxation barriers U=77.0 cm-1 for 5, 512.9 and 316.3 cm-1 for 6, respectively. Significantly, the latter complex 6 also exhibits a butterfly-shaped hysteresis up to 7 K.
Collapse
Affiliation(s)
- Daniel Lüert
- Institut für Anorganische ChemieGeorg-August-University GöttingenTammannstraße 437077GöttingenGermany
| | - Christina M. Legendre
- Institut für Anorganische ChemieGeorg-August-University GöttingenTammannstraße 437077GöttingenGermany
| | - Regine Herbst‐Irmer
- Institut für Anorganische ChemieGeorg-August-University GöttingenTammannstraße 437077GöttingenGermany
| | - Dietmar Stalke
- Institut für Anorganische ChemieGeorg-August-University GöttingenTammannstraße 437077GöttingenGermany
| |
Collapse
|
12
|
Ferreira PS, Cerdeira AC, Cruz TFC, Bandeira NAG, Hunger D, Allgaier A, van Slageren J, Almeida M, Pereira LCJ, Gomes PT. Single-ion magnet behaviour in homoleptic Co( ii) complexes bearing 2-iminopyrrolyl ligands. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00601d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Four-coordinate distorted tetrahedral bis(2-iminopyrrolyl)cobalt(ii) complexes behave as Single-Ion Magnets (SIMs) in the absence of an external magnetic field.
Collapse
Affiliation(s)
- Patrícia S. Ferreira
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Ana C. Cerdeira
- Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - Tiago F. C. Cruz
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Nuno A. G. Bandeira
- BioISI – Biosystems & Integrative Sciences Institute, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Ed. C8, 1749-016 Lisboa, Portugal
| | - David Hunger
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart D-70569, Germany
| | - Alexander Allgaier
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart D-70569, Germany
| | - Joris van Slageren
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart D-70569, Germany
| | - Manuel Almeida
- Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - Laura C. J. Pereira
- Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - Pedro T. Gomes
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| |
Collapse
|
13
|
Zaverkin V, Netz J, Zills F, Köhn A, Kästner J. Thermally Averaged Magnetic Anisotropy Tensors via Machine Learning Based on Gaussian Moments. J Chem Theory Comput 2021; 18:1-12. [PMID: 34882425 DOI: 10.1021/acs.jctc.1c00853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We propose a machine learning method to model molecular tensorial quantities, namely, the magnetic anisotropy tensor, based on the Gaussian moment neural network approach. We demonstrate that the proposed methodology can achieve an accuracy of 0.3-0.4 cm-1 and has excellent generalization capability for out-of-sample configurations. Moreover, in combination with machine-learned interatomic potential energies based on Gaussian moments, our approach can be applied to study the dynamic behavior of magnetic anisotropy tensors and provide a unique insight into spin-phonon relaxation.
Collapse
Affiliation(s)
- Viktor Zaverkin
- Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Julia Netz
- Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Fabian Zills
- Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Andreas Köhn
- Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Johannes Kästner
- Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
14
|
Jung J, Legendre CM, Demeshko S, Herbst-Irmer R, Stalke D. Imidosulfonate scorpionate ligands in lanthanide single-molecule magnet design: slow magnetic relaxation and butterfly hysteresis in [ClDy{Ph 2PCH 2S(N tBu) 3} 2]. Dalton Trans 2021; 50:17194-17201. [PMID: 34783813 DOI: 10.1039/d1dt03555j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single-molecule magnets (SMMs) harbour vast opportunities for potential pioneering applications upon optimization like big data storage and quantum computing. Lanthanides were found to be highly suitable candidates in the design of such molecules, as they intrinsically hold a large unquenched orbital momentum and a strong spin-orbit coupling, warranting a high magnetic anisotropy. An indispensable element in successfully tailoring SMMs is the ligand design. Polyimido sulfur ligands offer a promising choice because the polar S+-N--bond facilitates both electronic and geometric adaptability to various f-metals. In particular, the acute N-Ln-N bite angle generates advantageous magnetic properties. The [Ph2PCH2S(NtBu)3]- anion, introduced from [(thf)3K{Ph2PCH2S(NtBu)3}] (2) to a series of complexes [ClLn{Ph2PCH2S(NtBu)3}2] with Ln = Tb (3a), Dy (3b), Er (3c), Ho (3d), and Lu (3e), provides tripodal shielding of the metal's hemisphere as well as a side-arm donation of a soft phosphorus atom. For the Tb and Er complexes 3a and 3d, slow magnetic relaxation (Ueff = 235 and 34.5 cm-1, respectively) was only observed under an applied dc field. The dysprosium congener 3b, however, is a true SMM with relaxation at zero field (Ueff = 66 cm-1) and showing a butterfly hysteresis close to 3.5 K. Upon magnetic dilution with the diamagnetic and isostructural lutetium complex 3e or application of a magnetic field, the energy barrier to spin reversal is increased to 74 cm-1.
Collapse
Affiliation(s)
- Jochen Jung
- Georg-August Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, 37077 Göttingen, Germany.
| | - Christina M Legendre
- Georg-August Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, 37077 Göttingen, Germany.
| | - Serhiy Demeshko
- Georg-August Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, 37077 Göttingen, Germany.
| | - Regine Herbst-Irmer
- Georg-August Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, 37077 Göttingen, Germany.
| | - Dietmar Stalke
- Georg-August Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, 37077 Göttingen, Germany.
| |
Collapse
|
15
|
Legendre CM, Herbst-Irmer R, Stalke D. Enhancing Steric Hindrance via Ligand Design in Dysprosium Complexes: From Induced Slow Relaxation to Zero-Field Single-Molecule Magnet Properties. Inorg Chem 2021; 60:13982-13989. [PMID: 34450008 DOI: 10.1021/acs.inorgchem.1c00973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis and magnetic characterization of three novel Dy compounds, [Dy{PPh2S(NtBu)2}2(μ-Cl2)Li(THF)2] (1), [Dy{PhS(NtBu)2}2(μ-Cl2)Li(THF)2] (2), and [Dy{MeS(NtBu)3}2(μ-Cl2)Li(THF)2] (3), based on the sulfur-nitrogen ligands RS(NtBu)x- (where R = PPh2, x = 2 for (1); R = Ph, x = 2 for (2); and R = Me, x = 3 for (3)) are reported. They represent rare examples of lanthanide-based complexes containing sulfur-nitrogen ligands, whose suitability to enhance the magnetic anisotropy in 3d metals was only recently established. Changes in the ligand field environment drastically affect the magnetic properties, with compounds 1 and 2 displaying field-induced single-molecule magnet (SMM) behavior, while compound 3 shows slow relaxation at zero field. These trends strongly suggest that ligand engineering strategies toward linear dysprosium complexes, similar to those for dysprosocenium complexes, should enhance the SMM performances of SN-based lanthanide compounds.
Collapse
Affiliation(s)
- Christina M Legendre
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| | - Regine Herbst-Irmer
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| | - Dietmar Stalke
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| |
Collapse
|
16
|
Klahn EA, Damgaard-Møller E, Krause L, Kibalin I, Gukasov A, Tripathi S, Swain A, Shanmugam M, Overgaard J. Quantifying magnetic anisotropy using X-ray and neutron diffraction. IUCRJ 2021; 8:833-841. [PMID: 34584744 PMCID: PMC8420765 DOI: 10.1107/s2052252521008290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
In this work, the magnetic anisotropy in two iso-structural distorted tetrahedral Co(II) complexes, CoX 2tmtu2 [X = Cl(1) and Br(2), tmtu = tetra-methyl-thio-urea] is investigated, using a combination of polarized neutron diffraction (PND), very low-temperature high-resolution synchrotron X-ray diffraction and CASSCF/NEVPT2 ab initio calculations. Here, it was found consistently among all methods that the compounds have an easy axis of magnetization pointing nearly along the bis-ector of the compression angle, with minute deviations between PND and theory. Importantly, this work represents the first derivation of the atomic susceptibility tensor based on powder PND for a single-molecule magnet and the comparison thereof with ab initio calculations and high-resolution X-ray diffraction. Theoretical ab initio ligand field theory (AILFT) analysis finds the d xy orbital to be stabilized relative to the d xz and d yz orbitals, thus providing the intuitive explanation for the presence of a negative zero-field splitting parameter, D, from coupling and thus mixing of d xy and . Experimental d-orbital populations support this interpretation, showing in addition that the metal-ligand covalency is larger for Br-ligated 2 than for Cl-ligated 1.
Collapse
Affiliation(s)
- Emil Andreasen Klahn
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C 8000, Denmark
| | - Emil Damgaard-Møller
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C 8000, Denmark
| | - Lennard Krause
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C 8000, Denmark
| | - Iurii Kibalin
- LLB, CEA, CE de Saclay, Gif sur Yvette 91191, France
| | - Arsen Gukasov
- LLB, CEA, CE de Saclay, Gif sur Yvette 91191, France
| | - Shalini Tripathi
- Department of Chemistry, IIT Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Abinash Swain
- Department of Chemistry, IIT Bombay, Powai, Mumbai, Maharashtra 400076, India
| | | | - Jacob Overgaard
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C 8000, Denmark
| |
Collapse
|
17
|
Jung J, Benner F, Herbst‐Irmer R, Demir S, Stalke D. Slow Magnetic Relaxation in Mono- and Bimetallic Lanthanide Tetraimido-Sulfate S(NtBu) 4 2- Complexes. Chemistry 2021; 27:12310-12319. [PMID: 33978251 PMCID: PMC8453918 DOI: 10.1002/chem.202101076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Indexed: 12/16/2022]
Abstract
Lanthanide ions are particularly well-suited for the design of single-molecule magnets owing to their large unquenched orbital angular momentum and strong spin-orbit coupling that gives rise to high magnetic anisotropy. Such nanoscopic bar magnets can potentially revolutionize high-density information storage and processing technologies, if blocking temperatures can be increased substantially. Exploring non-classical ligand scaffolds with the aim to boost the barriers to spin-relaxation are prerequisite. Here, the synthesis, crystallographic and magnetic characterization of a series of each isomorphous mono- and dinuclear lanthanide (Ln=Gd, Tb, Dy, Ho, Er) complexes comprising tetraimido sulfate ligands are presented. The dinuclear Dy complex [{(thf)2 Li(NtBu)2 S(tBuN)2 DyCl2 }2 ⋅ ClLi(thf)2 ] (1c) shows true signatures of single-molecule magnet behavior in the absence of a dc field. In addition, the mononuclear Dy and Tb complexes [{(thf)2 Li(NtBu)2 S(tBuN)2 LnCl2 (thf)2 ] (2b,c) show slow magnetic relaxation under applied dc fields.
Collapse
Affiliation(s)
- Jochen Jung
- Institut für Anorganische ChemieGeorg-August Universität GöttingenTammannstraße 437077GöttingenGermany
| | - Florian Benner
- Department of ChemistryMichigan State University578 S Shaw LaneEast LansingMI 48824USA
| | - Regine Herbst‐Irmer
- Institut für Anorganische ChemieGeorg-August Universität GöttingenTammannstraße 437077GöttingenGermany
| | - Selvan Demir
- Department of ChemistryMichigan State University578 S Shaw LaneEast LansingMI 48824USA
| | - Dietmar Stalke
- Institut für Anorganische ChemieGeorg-August Universität GöttingenTammannstraße 437077GöttingenGermany
| |
Collapse
|
18
|
Ishizaki T, Karasaki H, Kage Y, Kamioka M, Wang Y, Mori S, Ishikawa N, Fukuda T, Furuta H, Shimizu S. Janus Pyrrolopyrrole Aza-dipyrrin: Hydrogen-Bonded Assemblies and Slow Magnetic Relaxation of the Cobalt(II) Complex in the Solid State. Chemistry 2021; 27:12686-12692. [PMID: 34137468 DOI: 10.1002/chem.202101755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Indexed: 11/12/2022]
Abstract
A novel pyrrolopyrrole azadipyrrin (Janus-PPAD) with Janus duality was synthesized by a Schiff base-forming reaction of diketopyrrolopyrrole. The orthogonal interactions of the hydrogen-bonding ketopyrrole and metal-coordinating azadipyrrin moieties in Janus-PPAD enabled the metal ions to be arranged at regular intervals: zinc(II) and cobalt(II) coordination provided metal-coordinated Janus-PPAD dimers, which can subsequently form hydrogen-bonded one-dimensional arrays both in solution and in the solid state. The supramolecular assembly of the zinc(II) complex in solution was investigated by 1 H NMR spectroscopy based on the isodesmic model, in which a binding constant for the elongation of assemblies is constant. Owing to the tetrahedral coordination, in the solid state, the cobalt(II) complex exhibited a slow magnetic relaxation due to the negative D value of -27.1 cm-1 with an effective relaxation energy barrier Ueff of 38.0 cm-1 . The effect of magnetic dilution on the relaxation behavior is discussed. The relaxation mechanism at low temperature was analyzed by considering spin lattice interactions and quantum tunneling effects. The easy-axis magnetic anisotropy was confirmed, and the relevant wave functions were obtained by ab initio CASSCF calculations.
Collapse
Affiliation(s)
- Toshiharu Ishizaki
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan.,Current address: Department of Chemistry, College of Humanities and Sciences, Nihon University, Tokyo, 156-8550, Japan
| | - Hideaki Karasaki
- Department of Chemistry and Biochemistry, Graduate School of Engineering and, Center for Molecular Systems (CMS), Kyushu University, Fukuoka, 819-0395, Japan
| | - Yuto Kage
- Department of Chemistry and Biochemistry, Graduate School of Engineering and, Center for Molecular Systems (CMS), Kyushu University, Fukuoka, 819-0395, Japan
| | - Misaki Kamioka
- Department of Chemistry and Biochemistry, Graduate School of Engineering and, Center for Molecular Systems (CMS), Kyushu University, Fukuoka, 819-0395, Japan
| | - Yitong Wang
- Department of Chemistry and Biochemistry, Graduate School of Engineering and, Center for Molecular Systems (CMS), Kyushu University, Fukuoka, 819-0395, Japan
| | - Shigeki Mori
- Advanced Research Support Center (ADRES), Ehime University, Matsuyama, 790-8577, Japan
| | - Naoto Ishikawa
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan
| | - Takamitsu Fukuda
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan
| | - Hiroyuki Furuta
- Department of Chemistry and Biochemistry, Graduate School of Engineering and, Center for Molecular Systems (CMS), Kyushu University, Fukuoka, 819-0395, Japan
| | - Soji Shimizu
- Department of Chemistry and Biochemistry, Graduate School of Engineering and, Center for Molecular Systems (CMS), Kyushu University, Fukuoka, 819-0395, Japan
| |
Collapse
|
19
|
Jung J, Legendre CM, Demeshko S, Herbst-Irmer R, Stalke D. Trigonal Planar Iron(II) and Cobalt(II) Complexes Containing [RS(N tBu) 3] n- (R = N tBu, n = 2; CH 2PPh 2, n = 1) as Acute Bite-Angle Chelating Ligands: Soft P Donor Proves Beneficial to Magnetic Co Species. Inorg Chem 2021; 60:9580-9588. [PMID: 34125515 DOI: 10.1021/acs.inorgchem.1c00770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We prepared four new complexes, 4a,b and 5a,b, from polyimido sulfur-centered ligands with FeII and CoII amides. Their molecular structures were elucidated by single-crystal X-ray diffraction. Cobalt magnetic investigations and multiconfigurational calculations provided insight into magneto-structural correlations between the acute N,N' chelating bite angle and P-side arm donation. The deviation from an ideal trigonal planar geometry and the magnetic performance correlated in an unprecedented manor. Mononuclear cobalt species 4b and 5b showed slow magnetic relaxation under a small applied dc field with energy barriers of up to 33.0 and 21.9 cm-1, respectively. Although they possess some of the largest zero-field splitting parameters among three-coordinate cobalt single-ion magnets, both theory and experiment suggest that the high rhombicity (E/D) hampers large effective energy barriers to spin reversal at zero field from being obtained.
Collapse
Affiliation(s)
- Jochen Jung
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, 37077 Göttingen (Germany)
| | - Christina M Legendre
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, 37077 Göttingen (Germany)
| | - Serhiy Demeshko
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, 37077 Göttingen (Germany)
| | - Regine Herbst-Irmer
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, 37077 Göttingen (Germany)
| | - Dietmar Stalke
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, 37077 Göttingen (Germany)
| |
Collapse
|
20
|
Wang M, Xu H, Sun T, Cui H, Zhang YQ, Chen L, Tang Y. Optimal N–Co–N bite angle for enhancing the magnetic anisotropy of zero-field Co(II) single-ion magnets in tetrahedral [N4] coordination environment. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
Legendre CM, Damgaard‐Møller E, Overgaard J, Stalke D. The Quest for Optimal 3 d Orbital Splitting in Tetrahedral Cobalt Single‐Molecule Magnets Featuring Colossal Anisotropy and Hysteresis. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Christina M. Legendre
- Institut für Anorganische Chemie Georg-August-Universität Göttingen Tammannstraβe 4 37077 Göttingen Germany
| | - Emil Damgaard‐Møller
- Department of Chemistry Aarhus University Langelandsgade 140 Aarhus C 8000 Denmark
| | - Jacob Overgaard
- Department of Chemistry Aarhus University Langelandsgade 140 Aarhus C 8000 Denmark
| | - Dietmar Stalke
- Institut für Anorganische Chemie Georg-August-Universität Göttingen Tammannstraβe 4 37077 Göttingen Germany
| |
Collapse
|
22
|
Jung J, Münch A, Herbst‐Irmer R, Stalke D. Tetraimidoschwefelsäure H
2
S(N
t
Bu)
4
– isovalenzelektronisch zu H
2
SO
4. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jochen Jung
- Georg-August-Universität Göttingen Institut für Anorganische Chemie Tammannstraße 4 37077 Göttingen Deutschland
| | - Annika Münch
- Georg-August-Universität Göttingen Institut für Anorganische Chemie Tammannstraße 4 37077 Göttingen Deutschland
| | - Regine Herbst‐Irmer
- Georg-August-Universität Göttingen Institut für Anorganische Chemie Tammannstraße 4 37077 Göttingen Deutschland
| | - Dietmar Stalke
- Georg-August-Universität Göttingen Institut für Anorganische Chemie Tammannstraße 4 37077 Göttingen Deutschland
| |
Collapse
|
23
|
Jung J, Münch A, Herbst‐Irmer R, Stalke D. Tetraimido Sulfuric Acid H 2 S(NtBu) 4 -Valence Isoelectronic to H 2 SO 4. Angew Chem Int Ed Engl 2021; 60:5679-5682. [PMID: 33480147 PMCID: PMC7986191 DOI: 10.1002/anie.202014426] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/22/2020] [Indexed: 11/10/2022]
Abstract
The valence isoelectronic imido analog H2 S(NtBu)4 (1) of sulfuric acid H2 SO4 was synthesized, isolated, and characterized by NMR spectroscopy and high-resolution X-ray charge density analysis. The latter reveals strongly polarized Sδ+ -Nδ- bonds with virtually no double bond character. The easy-to-polarize S-N bonds are an advantageous and versatile feature of sulfur nitrogen ligands, which enables them to adapt to different electron requirements of various metal cations.
Collapse
Affiliation(s)
- Jochen Jung
- Georg-August Universität GöttingenInstitut für Anorganische ChemieTammannstrasse 437077GöttingenGermany
| | - Annika Münch
- Georg-August Universität GöttingenInstitut für Anorganische ChemieTammannstrasse 437077GöttingenGermany
| | - Regine Herbst‐Irmer
- Georg-August Universität GöttingenInstitut für Anorganische ChemieTammannstrasse 437077GöttingenGermany
| | - Dietmar Stalke
- Georg-August Universität GöttingenInstitut für Anorganische ChemieTammannstrasse 437077GöttingenGermany
| |
Collapse
|
24
|
Świtlicka A, Machura B, Cano J, Lloret F, Julve M. A Study of the Lack of Slow Magnetic Relaxation in Mononuclear Trigonal Bipyramidal Cobalt(II) Complexes. ChemistrySelect 2021. [DOI: 10.1002/slct.202100061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Anna Świtlicka
- Department Of Crystallography, Institute of Chemistry University of Silesia 9th Szkolna St., 40–006 Katowice Poland
| | - Barbara Machura
- Department Of Crystallography, Institute of Chemistry University of Silesia 9th Szkolna St., 40–006 Katowice Poland
| | - Joan Cano
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol) Facultat de Quimica de la Universitat de València C/ Catedrático Jose Beltrán 2 46980 Paterna, València Spain
| | - Francesc Lloret
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol) Facultat de Quimica de la Universitat de València C/ Catedrático Jose Beltrán 2 46980 Paterna, València Spain
| | - Miguel Julve
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol) Facultat de Quimica de la Universitat de València C/ Catedrático Jose Beltrán 2 46980 Paterna, València Spain
| |
Collapse
|
25
|
Jung J, Legendre CM, Herbst-Irmer R, Stalke D. Exchange Coupling in Binuclear Manganese and Cobalt Complexes with the Tetraimido Sulfate Anion [S(N tBu) 4] 2. Inorg Chem 2021; 60:967-972. [PMID: 33378190 DOI: 10.1021/acs.inorgchem.0c03085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The (hetero)bimetallic complexes [Cl2Mn(NtBu)2S(tBuN)2Mn{ClLi(THF)3}2] (1), [(acac)Co(NtBu)2S(tBuN)2Co(acac)] (2), and [(acac)Co(NtBu)2S(tBuN)2Li(THF)2] (3), with THF = tetrahydrofuran and acac = acetylacetonate [H2C(C(O)Me)2], were synthesized and investigated for their magnetic properties. While the two different MnII sites in 1 gave a weak coupling of J = -1.00 cm-1, we could observe an appreciable antiferromagnetic coupling of J = -6.08 cm-1 between the two CoII cations in 2, proving the tetraimido sulfate anion to be a challenging but promising linker to enhance magnetic communication between paramagnetic centers. The heterobimetallic complex 3 seems a versatile platform for magnetically interesting d/d, f/d, or f/f mixed-metal complexes.
Collapse
Affiliation(s)
- Jochen Jung
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, Göttingen 37077, Germany
| | - Christina M Legendre
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, Göttingen 37077, Germany
| | - Regine Herbst-Irmer
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, Göttingen 37077, Germany
| | - Dietmar Stalke
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, Göttingen 37077, Germany
| |
Collapse
|
26
|
Chen SY, Lv W, Cui HH, Chen L, Zhang YQ, Chen XT, Wang Z, Ouyang ZW, Yan H, Xue ZL. Magnetic anisotropies and slow magnetic relaxation of three tetrahedral tetrakis(pseudohalido)–cobalt( ii) complexes. NEW J CHEM 2021. [DOI: 10.1039/d1nj01916c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnetic anisotropies and slow magnetic relaxation of three homoleptic cobalt(ii) complexes with different pseudohalide ligands were studied via magnetometry, HFEPR and theoretical calculations.
Collapse
Affiliation(s)
- Shu-Yang Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei Lv
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hui-Hui Cui
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lei Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China
| | - Xue-Tai Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhenxing Wang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhong-Wen Ouyang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zi-Ling Xue
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, 37996, USA
| |
Collapse
|
27
|
Wu CM, Tsai JE, Lee GH, Yang EC. Slow magnetization relaxation in a tetrahedrally coordinated mononuclear Co(II) complex exclusively ligated with phenanthroline ligands. Dalton Trans 2020; 49:16813-16820. [PMID: 33180075 DOI: 10.1039/d0dt03481a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper describes a tetrahedral mononuclear Co(ii) complex [CoL2](ClO4)2 (1) in which L = 2,9-diphenyl-1,10-phenanthroline. The structure of 1, which was determined by single crystal X-ray diffraction, indicates that it exists in the triclinic space group P1[combining macron]. Magnetic property studies were conducted by reduced magnetization measurements, ab initio calculations and X-band EPR experiments, the results of which revealed a large zero-field splitting, with D ∼ -45.9 cm-1. The Arrhenius equation indicates that the kinetic energy barrier of 1 is Ueff = 46.9 cm-1. This study describes a very rare case of a Co(ii) single ion magnet (SIM) that is purely tetrahedrally coordinated by pyridine like ligands.
Collapse
Affiliation(s)
- Chen-Ming Wu
- Department of Chemistry, Fu-Jen Catholic University, Hsinchuang, New Taipei City, 24205, Taiwan, Republic of China.
| | | | | | | |
Collapse
|
28
|
A 3D interpenetrated Co(II)-glutarate coordination polymer: Synthesis, crystal structure, magnetic and adsorption properties. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Damgaard-Møller E, Krause L, Lassen H, Malaspina LA, Grabowsky S, Bamberger H, McGuire J, Miras HN, Sproules S, Overgaard J. Investigating Complex Magnetic Anisotropy in a Co(II) Molecular Compound: A Charge Density and Correlated Ab Initio Electronic Structure Study. Inorg Chem 2020; 59:13190-13200. [PMID: 32869986 DOI: 10.1021/acs.inorgchem.0c01489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding magnetic anisotropy and specifically how to tailor it is crucial in the search for high-temperature single-ion magnets. Herein, we investigate the magnetic anisotropy in a six-coordinated cobalt(II) compound that has a complex geometry and distinct triaxial magnetic anisotropy from the perspective of the electronic structure, using electronic spectra, ab initio calculations, and an experimental charge density, of which the latter two provides insight into the d-orbital splitting. The analysis showed that the d-orbital splitting satisfactorily predicted the complex triaxial magnetic anisotropy exhibited by the compound. Furthermore, a novel method to directly compare the ab initio results and the d-orbital populations obtained from the experimental charge density was developed, while a topological analysis of the density provided insights into the metal-ligand bonding. This work thus further establishes the validity of using d-orbitals for predicting magnetic anisotropy in transition metal compounds while also pointing out the need for a more frequent usage of the term triaxial anisotropy in the field of single-molecule magnetism.
Collapse
Affiliation(s)
- Emil Damgaard-Møller
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Lennard Krause
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Helene Lassen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Lorraine A Malaspina
- Department 2-Biology/Chemistry, University of Bremen, Leobener Str. 3, 28359 Bremen, Germany
| | - Simon Grabowsky
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Heiko Bamberger
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Jake McGuire
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, Glasgow, United Kingdom
| | - Haralampos N Miras
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, Glasgow, United Kingdom
| | - Stephen Sproules
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, Glasgow, United Kingdom
| | - Jacob Overgaard
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| |
Collapse
|
30
|
Peng G, Chen Y, Li B, Zhang YQ, Ren XM. Bulky Schiff-base ligand supported Co(ii) single-ion magnets with zero-field slow magnetic relaxation. Dalton Trans 2020; 49:5798-5802. [PMID: 32338258 DOI: 10.1039/d0dt00790k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two mononuclear Co(ii) complexes with tetrahedral coordination geometry have been constructed from different bulky Schiff-base ligands. Both complexes exhibit slow magnetic relaxation without a static field and their relaxation behaviors can be tuned by ligand substitution. Clear magnetic hysteresis loops were observed for both complexes at 2 K.
Collapse
Affiliation(s)
- Guo Peng
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | | | | | | | | |
Collapse
|
31
|
Cook AW, Bocarsly JD, Lewis RA, Touchton AJ, Morochnik S, Hayton TW. An iron ketimide single-molecule magnet [Fe 4(N[double bond, length as m-dash]CPh 2) 6] with suppressed through-barrier relaxation. Chem Sci 2020; 11:4753-4757. [PMID: 34122931 PMCID: PMC8159258 DOI: 10.1039/d0sc01578d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Reaction of FeBr2 with 1.5 equiv. of LiN[double bond, length as m-dash]CPh2 and 2 equiv. of Zn, in THF, results in the formation of the tetrametallic iron ketimide cluster [Fe4(N[double bond, length as m-dash]CPh2)6] (1) in moderate yield. Formally, two Fe centers in 1 are Fe(i) and two are Fe(ii); however, Mössbauer spectroscopy and SQUID magnetometry suggests that the [Fe4]6+ core of 1 exhibits complete valence electron delocalization, with a thermally-persistent spin ground state of S = 7. AC and DC SQUID magnetometry reveals the presence of slow magnetic relaxation in 1, indicative of single-molecule magnetic (SMM) behaviour with a relaxation barrier of U eff = 29 cm-1. Remarkably, very little quantum tunnelling or Raman relaxation is observed down to 1.8 K, which leads to an open hysteresis loop and long relaxation times (up to 34 s at 1.8 K and zero field and 440 s at 1.67 kOe). These results suggest that transition metal ketimide clusters represent a promising avenue to create long-lifetime single molecule magnets.
Collapse
Affiliation(s)
- Andrew W Cook
- Department of Chemistry and Biochemistry, University of California Santa Barbara California 93106 USA
| | - Joshua D Bocarsly
- Materials Department and Materials Research Laboratory, University of California, Santa Barbara Santa Barbara California 93106 USA
| | - Richard A Lewis
- Department of Chemistry and Biochemistry, University of California Santa Barbara California 93106 USA
| | - Alexander J Touchton
- Department of Chemistry and Biochemistry, University of California Santa Barbara California 93106 USA
| | - Simona Morochnik
- Department of Chemistry and Biochemistry, University of California Santa Barbara California 93106 USA
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California Santa Barbara California 93106 USA
| |
Collapse
|
32
|
Mantanona AJ, Tolentino DR, Cay KS, Gembicky M, Jazzar R, Bertrand G, Rinehart JD. Tuning electronic structure through halide modulation of mesoionic carbene cobalt complexes. Dalton Trans 2020; 49:2426-2430. [PMID: 32048665 DOI: 10.1039/c9dt04624k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first examples of Co(ii) mesoionic carbene complexes (CoX2DippMIC2; X = Cl-, Br-, I-) demonstrate a new electronic perturbation on tetrahedral Co(ii) complexes. Using absorption spectroscopy and magnetometry, the consequences of the MIC's strong σ-donating/minimal π-accepting nature are analyzed and shown to be further tunable by the nature of the coordinated halide.
Collapse
Affiliation(s)
- Alex J Mantanona
- Department of Chemistry and Biochemistry, University of California - San Diego, La Jolla, CA 92093, USA.
| | - Daniel R Tolentino
- Department of Chemistry and Biochemistry, University of California - San Diego, La Jolla, CA 92093, USA.
| | - Kristine S Cay
- Department of Chemistry and Biochemistry, University of California - San Diego, La Jolla, CA 92093, USA.
| | - Milan Gembicky
- Department of Chemistry and Biochemistry, University of California - San Diego, La Jolla, CA 92093, USA.
| | - Rodolphe Jazzar
- Department of Chemistry and Biochemistry, University of California - San Diego, La Jolla, CA 92093, USA.
| | - Guy Bertrand
- Department of Chemistry and Biochemistry, University of California - San Diego, La Jolla, CA 92093, USA.
| | - Jeffrey D Rinehart
- Department of Chemistry and Biochemistry, University of California - San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
33
|
Świtlicka A, Machura B, Kruszynski R, Moliner N, Carbonell JM, Cano J, Lloret F, Julve M. Magneto-structural diversity of Co(ii) compounds with 1-benzylimidazole induced by linear pseudohalide coligands. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00752h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The magneto-structural diversity of 1-benzylimidazole-containing cobalt(ii) compounds with linear pseudohalide ions (NCS−, NCO−, and N3−) is explored.
Collapse
Affiliation(s)
- Anna Świtlicka
- Department of Crystallography
- Institute of Chemistry
- University of Silesia
- 40-006 Katowice
- Poland
| | - Barbara Machura
- Department of Crystallography
- Institute of Chemistry
- University of Silesia
- 40-006 Katowice
- Poland
| | - Rafał Kruszynski
- Department of X-ray Crystallography and Crystal Chemistry
- Institute of General and Ecological Chemistry
- Lodz University of Technology
- 90-924 Łodz
- Poland
| | - Nicolás Moliner
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol)
- Facultat de Quimica de la Universitat de València
- 46980 Paterna
- Spain
| | - José Miguel Carbonell
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol)
- Facultat de Quimica de la Universitat de València
- 46980 Paterna
- Spain
| | - Joan Cano
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol)
- Facultat de Quimica de la Universitat de València
- 46980 Paterna
- Spain
| | - Francesc Lloret
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol)
- Facultat de Quimica de la Universitat de València
- 46980 Paterna
- Spain
| | - Miguel Julve
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol)
- Facultat de Quimica de la Universitat de València
- 46980 Paterna
- Spain
| |
Collapse
|
34
|
Massoud SS, Perez ZE, Courson JR, Fischer RC, Mautner FA, Vančo J, Čajan M, Trávníček Z. Slow magnetic relaxation in penta-coordinate cobalt(ii) field-induced single-ion magnets (SIMs) with easy-axis magnetic anisotropy. Dalton Trans 2020; 49:11715-11726. [DOI: 10.1039/d0dt02338h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two penta-coordinate [Co(Ln)(NCS)]ClO4 with substituted pyridyl based bispyrazolyl ligands have been structurally characterized. The complexes show an easy-axis magnetic anisotropy, large rhombicity and slow relaxation of magnetization.
Collapse
Affiliation(s)
- Salah S. Massoud
- Department of Chemistry
- University of Louisiana at Lafayette
- Lafayette
- USA
- Department of Chemistry
| | - Zoe E. Perez
- Department of Chemistry
- University of Louisiana at Lafayette
- Lafayette
- USA
| | | | - Roland C. Fischer
- Institut für Anorganische Chemie
- Technische Universität Graz
- A-8010 Graz
- Austria
| | - Franz A. Mautner
- Institut für Physikalische and Theoretische Chemie
- Technische Universität Graz
- A-8010 Graz
- Austria
| | - Ján Vančo
- Regional Centre of Advanced Technologies and Materials
- Division of Biologically Active Complexes and Molecular Magnets
- Palacký University in Olomouc
- CZ-783 71 Olomouc
- Czech Republic
| | - Michal Čajan
- Regional Centre of Advanced Technologies and Materials
- Division of Biologically Active Complexes and Molecular Magnets
- Palacký University in Olomouc
- CZ-783 71 Olomouc
- Czech Republic
| | - Zdeněk Trávníček
- Regional Centre of Advanced Technologies and Materials
- Division of Biologically Active Complexes and Molecular Magnets
- Palacký University in Olomouc
- CZ-783 71 Olomouc
- Czech Republic
| |
Collapse
|
35
|
Wu T, Zhai YQ, Deng YF, Chen WP, Zhang T, Zheng YZ. Correlating magnetic anisotropy with the subtle coordination geometry variation of a series of cobalt(ii)-sulfonamide complexes. Dalton Trans 2019; 48:15419-15426. [PMID: 31065655 DOI: 10.1039/c9dt01296f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Systematic substitution on the N-(pyridine-2-ylmethyl)-sulfonamide ligand leads to the subtle variation of the CoN4 coordination geometry in a series of cobalt(ii) complexes sharing the common formula of Co[R1(C6N2H5)R2]2, where R1 = H, R2 = 4-tert-butylphenylsulfonyl (tBuphs) 1, R2 = 5-(dimethylamino)naphthalen-1-ylsulfonyl (DNps) 2, R2 = mesitylsulfonyl (Ms) 3, R2 = tosyl (Tos) 4, and R2 = naphthalen-1-ylsulfonyl (Nps) 5; R1 = Me, R2 = tBuphs 6. Magnetic studies show that the axial zero-field splitting parameter (D) is subtlely correlated with the coordination geometric variation subjected to the peripheral substituted groups. Specifically, the distortion from the ideal tetrahedral geometry (Td symmetry) to the seesaw geometry (D2d symmetry) increases uniaxial magnetic anisotropy. The degree of distortion measured by the continuous symmetry measure (CSM) shows that a narrow interval of CSM (6-7), which corresponds to 14-15 degree deviation from the standard tetrahedron, is ideal for maximising the D value in this coordination geometry, while the direction of the D tensor is less sensitive to such a structural variation.
Collapse
Affiliation(s)
- Tao Wu
- Frontier Institute of Science and Technology (FIST), State Key Laboratory for Mechanical Behavior of Materials, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry and School of Science Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi 710054, P. R. China.
| | | | | | | | | | | |
Collapse
|
36
|
Cui HH, Lu F, Chen XT, Zhang YQ, Tong W, Xue ZL. Zero-Field Slow Magnetic Relaxation and Hysteresis Loop in Four-Coordinate Co II Single-Ion Magnets with Strong Easy-Axis Anisotropy. Inorg Chem 2019; 58:12555-12564. [PMID: 31553166 DOI: 10.1021/acs.inorgchem.9b01175] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Two mononuclear tetrahedral Co(II) complexes (HNEt3)2[Co(L1)2]·H2O (1) and (Bu4N)2[Co(L2)2]·H2O (2) (H2L1 = N,N'-bis(p-toluenesulfony1)oxamide, H2L2 = N,N'-diphenyloxamide) have been synthesized, and their structures have been characterized by single-crystal X-ray diffraction. Both complexes adopt distorted tetrahedral coordination geometries surrounding the Co(II) center, which is ligated by two doubly deprotonated oxamide ligands oriented perpendicularly to each other. Their axial magnetic anisotropies were revealed by the direct current (dc) magnetic measurements, high-field and high-frequency electron paramagnetic resonance, and theoretical calculations. Both complexes display slow magnetic relaxation in the absence of an applied dc field. Upon the application of the 0.15 T dc field, the quantum tunneling of magnetization is efficiently suppressed. In addition, both complexes display hysteresis loops with different field sweep rates at 1.8 K, which is rarely observed for Co(II) single-ion magnets (SIMs).
Collapse
Affiliation(s)
- Hui-Hui Cui
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Fang Lu
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology , Nanjing Normal University , Nanjing 210023 , China
| | - Xue-Tai Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology , Nanjing Normal University , Nanjing 210023 , China
| | - Wei Tong
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions , High Magnetic Field Laboratory of the Chinese Academy of Science , Hefei 230031 , Anhui , China
| | - Zi-Ling Xue
- Department of Chemistry , University of Tennessee , Knoxville , Tennessee 37996 , United States
| |
Collapse
|
37
|
Guo FS, Bar AK, Layfield RA. Main Group Chemistry at the Interface with Molecular Magnetism. Chem Rev 2019; 119:8479-8505. [PMID: 31059235 DOI: 10.1021/acs.chemrev.9b00103] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Innovative synthetic coordination and, increasingly, organometallic chemistry are at the heart of advances in molecular magnetism. Smart ligand design is essential for implementing controlled modifications to the electronic structure and magnetic properties of transition metal and f-element compounds, and many important recent developments use nontraditional ligands based on low-coordinate main group elements to drive the field forward. This review charts progress in molecular magnetism from the perspective of ligands in which the donor atoms range from low-coordinate 2p elements-particularly carbon but also boron and nitrogen-to the heavier p-block elements such as phosphorus, arsenic, antimony, and even bismuth. Emphasis is placed on the role played by novel main group ligands in addressing magnetic anisotropy of transition metal and f-element compounds, which underpins the development of single-molecule magnets (SMMs), a family of magnetic materials that can retain magnetization in the absence of a magnetic field below a blocking temperature. Nontraditional p-block donor atoms, with their relatively diffuse valence orbitals and more diverse bonding characteristics, also introduce scope for tuning the spin-orbit coupling properties and metal-ligand covalency in molecular magnets, which has implications in areas such as magnetic exchange coupling and spin crossover phenomena. The chemistry encompasses transition metals, lanthanides, and actinides and describes recently discovered molecular magnets that can be regarded, currently, as defining the state of the art. This review identifies that main group chemistry at the interface molecular magnetism is an area with huge potential to deliver new types of molecular magnets with previously unseen properties and applications.
Collapse
Affiliation(s)
- Fu-Sheng Guo
- Department of Chemistry, School of Life Sciences , University of Sussex , Brighton BN1 9QJ , United Kingdom
| | - Arun Kumar Bar
- Department of Chemistry, School of Life Sciences , University of Sussex , Brighton BN1 9QJ , United Kingdom
| | - Richard A Layfield
- Department of Chemistry, School of Life Sciences , University of Sussex , Brighton BN1 9QJ , United Kingdom
| |
Collapse
|
38
|
Ishizaki T, Fukuda T, Akaki M, Fuyuhiro A, Hagiwara M, Ishikawa N. Synthesis of a Neutral Mononuclear Four-Coordinate Co(II) Complex Having Two Halved Phthalocyanine Ligands That Shows Slow Magnetic Relaxations under Zero Static Magnetic Field. Inorg Chem 2019; 58:5211-5220. [DOI: 10.1021/acs.inorgchem.9b00286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Toshiharu Ishizaki
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Takamitsu Fukuda
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Mitsuru Akaki
- Center for Advanced High Magnetic Field Science (AHMF), Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Akira Fuyuhiro
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Masayuki Hagiwara
- Center for Advanced High Magnetic Field Science (AHMF), Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Naoto Ishikawa
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
39
|
Deng YF, Yao B, Zhan PZ, Gan D, Zhang YZ, Dunbar KR. Synthesis and magnetic studies of pentagonal bipyramidal metal complexes of Fe, Co and Ni. Dalton Trans 2019; 48:3243-3248. [PMID: 30775732 DOI: 10.1039/c8dt05074k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Three mononuclear metal complexes [MII(L-N3O2)(MeCN)2][BPh4]2 (M = Fe, 1; Co, 2; Ni, 3) were isolated and structurally characterized. Magnetic studies revealed uniaxial magnetic anisotropy for 1 (D = -17.1 cm-1) and 3 (D = -14.3 cm-1) and easy-plane magnetic anisotropy for 2 (D = +36.9 cm-1). Slow magnetic relaxation was observed for complexes 1 and 2 under an applied magnetic field, both of which are dominated by a Raman process.
Collapse
Affiliation(s)
- Yi-Fei Deng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.
| | | | | | | | | | | |
Collapse
|
40
|
Świtlicka A, Palion-Gazda J, Machura B, Cano J, Lloret F, Julve M. Field-induced slow magnetic relaxation in pseudooctahedral cobalt(ii) complexes with positive axial and large rhombic anisotropy. Dalton Trans 2019; 48:1404-1417. [DOI: 10.1039/c8dt03965h] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preparation, X-ray crystal structure, spectroscopic and variable-temperature dc and ac magnetic properties of two six-coordinate cobalt(ii) complexes of formula [Co(bim)4(tcm)2] (1) and [Co(bmim)4(tcm)2] (2) are reported.
Collapse
Affiliation(s)
- Anna Świtlicka
- Department of Crystallography
- Institute of Chemistry
- University of Silesia
- 40-006 Katowice
- Poland
| | - Joanna Palion-Gazda
- Department of Crystallography
- Institute of Chemistry
- University of Silesia
- 40-006 Katowice
- Poland
| | - Barbara Machura
- Department of Crystallography
- Institute of Chemistry
- University of Silesia
- 40-006 Katowice
- Poland
| | - Joan Cano
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol)
- Facultat de Quimica de la Universitat de València
- 46980 Paterna
- Spain
- Fundació General de la Universitat de València (FGUV)
| | - Francesc Lloret
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol)
- Facultat de Quimica de la Universitat de València
- 46980 Paterna
- Spain
| | - Miguel Julve
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol)
- Facultat de Quimica de la Universitat de València
- 46980 Paterna
- Spain
| |
Collapse
|
41
|
Sarto C, Rouzières M, Liu JL, Bamberger H, van Slageren J, Clérac R, Alborés P. Slow magnetization dynamics in Co(ii)/Co(iii) triethanolamine/pivalate complexes. Dalton Trans 2018; 47:17055-17066. [PMID: 30462116 DOI: 10.1039/c8dt04041a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the synthesis, structural characterization and a combined computational and experimental study of the magnetic properties of two pivalate cobalt complexes, a mononuclear Co(ii) one and a tetranuclear Co(ii)3Co(iii) mixed valence polynuclear one. The latter shows SMM behaviour revealed under an applied DC field with a thermal barrier of ca. 30 cm-1 competing with direct and Raman relaxation processes. The Orbach thermal barrier can be understood from the doublets energy ladder arising from the anisotropic exchange interaction among ground Seff = 1/2 of each Co(ii) sites. The strong local zero-field splitting of the S = 3/2 Co(ii) states affords these well isolated ground Kramers doublets. DC and AC magnetic susceptibility measurements as well as HF-EPR spectra support this interpretation. CASSCF quantum chemical computations have been also performed in order to aid the overall comprehension of the magnetic behaviour in the reported complexes.
Collapse
Affiliation(s)
- Carolina Sarto
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE (CONICET), Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina.
| | - Mathieu Rouzières
- CNRS, CRPP, UMR 5031, 33600 Pessac, France and Univ. Bordeaux, CRPP, UMR 5031, F-33600 Pessac, France
| | - Jun-Liang Liu
- CNRS, CRPP, UMR 5031, 33600 Pessac, France and Univ. Bordeaux, CRPP, UMR 5031, F-33600 Pessac, France
| | - Heiko Bamberger
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569, Stuttgart, Germany
| | - Joris van Slageren
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569, Stuttgart, Germany
| | - Rodolphe Clérac
- CNRS, CRPP, UMR 5031, 33600 Pessac, France and Univ. Bordeaux, CRPP, UMR 5031, F-33600 Pessac, France
| | - Pablo Alborés
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE (CONICET), Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina.
| |
Collapse
|
42
|
Zhai YQ, Deng YF, Zheng YZ. Pseudotetrahedral cobalt(ii) complexes with PNP-ligands showing uniaxial magnetic anisotropy. Dalton Trans 2018; 47:8874-8878. [PMID: 29922787 DOI: 10.1039/c8dt01683f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Two mononuclear pseudotetrahedral cobalt(ii) complexes with the formula Co(PNP)X2, where X = Cl (1) or X = SCN (2) and PNP = bis(2-(diphenylphosphaneyl)-4-methylphenyl)amine, have been synthesised. Magnetic and high-frequency/field electron paramagnetic resonance (HF-EPR) spectroscopy and ab initio calculation studies reveal that both complexes show uniaxial magnetic anisotropy.
Collapse
Affiliation(s)
- Yuan-Qi Zhai
- Frontier Institute of Science and Technology (FIST), State Key Laboratory for Mechanical Behavior of Materials, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry and School of Science, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi 710054, P. R. China.
| | | | | |
Collapse
|
43
|
Zhou J, Song J, Yuan A, Wang Z, Chen L, Ouyang ZW. Slow magnetic relaxation in two octahedral cobalt(II) complexes with positive axial anisotropy. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Rigamonti L, Bridonneau N, Poneti G, Tesi L, Sorace L, Pinkowicz D, Jover J, Ruiz E, Sessoli R, Cornia A. A Pseudo-Octahedral Cobalt(II) Complex with Bispyrazolylpyridine Ligands Acting as a Zero-Field Single-Molecule Magnet with Easy Axis Anisotropy. Chemistry 2018; 24:8857-8868. [PMID: 29655240 DOI: 10.1002/chem.201801026] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Indexed: 01/31/2023]
Abstract
The homoleptic mononuclear compound [Co(bpp-COOMe)2 ](ClO4 )2 (1) (bpp-COOMe=methyl 2,6-di(pyrazol-1-yl)pyridine-4-carboxylate) crystallizes in the monoclinic C2/c space group, and the cobalt(II) ion possesses a pseudo-octahedral environment given by the two mer-coordinated tridentate ligands. Direct-current magnetic data, single-crystal torque magnetometry, and EPR measurements disclosed the easy-axis nature of this cobalt(II) complex, which shows single-molecule magnet behavior when a static field is applied in alternating-current susceptibility measurements. Diamagnetic dilution in the zinc(II) analogue [Zn(bpp-COOMe)2 ](ClO4 )2 (2) afforded the derivative [Zn0.95 Co0.05 (bpp-COOMe)2 ](ClO4 )2 (3), which exhibits slow relaxation of magnetization even in zero field thanks to the reduction of dipolar interactions. Theoretical calculations confirmed the overall electronic structure and the magnetic scenario of the compound as drawn by experimental data, thus confirming the spin-phonon Raman relaxation mechanism, and a direct quantum tunneling in the ground state as the most plausible relaxation pathway in zero field.
Collapse
Affiliation(s)
- Luca Rigamonti
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, and INSTM RU of Modena and Reggio Emilia, via G. Campi 103, 41125, Modena, Italy
| | - Nathalie Bridonneau
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, and INSTM RU of Modena and Reggio Emilia, via G. Campi 103, 41125, Modena, Italy.,Current address: Laboratoire Interfaces Traitements Organisation, et Dynamique des Systèmes (ITODYS), UMR 7086 CNRS, Université Paris 7 Diderot, Paris Bât. Lavoisier, 15 rue Jean-Antoine de Baïf, 75205, Paris Cedex 13, France
| | - Giordano Poneti
- Laboratory of Molecular Magnetism (LAMM), Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, and INSTM RU of Firenze, via della Lastruccia 3-13, 50019, Sesto Fiorentino, FI, Italy.,Current address: Instituto de Química, Universidade Federal do Rio de Janeiro, 21941-909, Rio de Janeiro, Brazil
| | - Lorenzo Tesi
- Laboratory of Molecular Magnetism (LAMM), Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, and INSTM RU of Firenze, via della Lastruccia 3-13, 50019, Sesto Fiorentino, FI, Italy
| | - Lorenzo Sorace
- Laboratory of Molecular Magnetism (LAMM), Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, and INSTM RU of Firenze, via della Lastruccia 3-13, 50019, Sesto Fiorentino, FI, Italy
| | - Dawid Pinkowicz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Jesus Jover
- Departament de Química Inorgànica i Orgànica, Institut de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028, Barcelona, Spain
| | - Eliseo Ruiz
- Departament de Química Inorgànica i Orgànica, Institut de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028, Barcelona, Spain
| | - Roberta Sessoli
- Laboratory of Molecular Magnetism (LAMM), Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, and INSTM RU of Firenze, via della Lastruccia 3-13, 50019, Sesto Fiorentino, FI, Italy
| | - Andrea Cornia
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, and INSTM RU of Modena and Reggio Emilia, via G. Campi 103, 41125, Modena, Italy
| |
Collapse
|
45
|
Switlicka A, Machura B, Kruszynski R, Cano J, Toma LM, Lloret F, Julve M. The influence of pseudohalide ligands on the SIM behaviour of four-coordinate benzylimidazole-containing cobalt(ii) complexes. Dalton Trans 2018; 47:5831-5842. [PMID: 29648565 DOI: 10.1039/c7dt04735e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three, mononuclear complexes of the formula [Co(bmim)2(SCN)2] (1), [Co(bmim)2(NCO)2] (2) and [Co(bmim)2(N3)2] (3) [bmim = 1-benzyl-2-methylimidazole] were prepared and structurally analyzed by single-crystal X-ray crystallography. The cobalt(ii) ions in 1-3 are tetrahedrally coordinated with two bmim molecules and two pseudohalide anions. The angular distortion parameter δ was calculated and the SHAPE program (based on the CShM concept) was used for 1-3 to estimate the angular distortion from an ideal tetrahedron. The molecules of 1-3 are effectively separated, and the values of the shortest distance of cobalt-cobalt are 8.442(6) and 6.774(8) Å for 1, 10.349(8) and 10.716(8) Å for 2 and 6.778(1) and 9.232(1) Å for 3. Direct current (dc) magnetic susceptibility measurements on the crushed crystals of 1-3 were carried out in the temperature range 1.9-295 K. The variable-temperature magnetic data of 1-3 mainly obey the zero-field splitting effect (D) of the 4A2 ground term of the tetrahedral cobalt(ii) complexes (2D being the energy gap between the |±1/2 and |±3/2 levels of the spin). The analysis of their magnetic data through the Hamiltonian H = D[S2z - S(S + 1)/3] + E(Sx2 - Sy2) + gβHS led to the following best-fit parameters: g = 2.29, D = -7.5 cm-1 and E/D = 0.106 (1), g = 2.28, D = + 6.3 cm-1 and E/D = 0.007 (2) and g = 2.36, D = + 6.7 cm-1 and E/D = 0.090 (3). The signs of D for 1-3 were confirmed by Q-band EPR spectra on powdered samples in the temperature range 4.0-20 K. Field-induced SIM behaviour was observed for 1-3 below 4.0 K, and the frequency-dependent maxima of χ''M were observed for 1 and only incipient signals of χ''M occurred for 2 and 3. The values of the exponential factor (τ0) and activation energy (Ea) for 1-3 which were obtained from the Arrhenius plot suggest a single relaxation process characteristic of an Orbach mechanism.
Collapse
Affiliation(s)
- A Switlicka
- Department of Crystallography, Institute of Chemistry, University of Silesia, 9th Szkolna St., 40-006 Katowice, Poland.
| | | | | | | | | | | | | |
Collapse
|
46
|
Kalinke LHG, Cardoso JCO, Rabelo R, Valdo AK, Martins FT, Cano J, Julve M, Lloret F, Cangussu D. From Paramagnetic to Single‐Molecule Magnet Behaviour in Heterobimetallic Compounds Containing the Tetrakis(thiocyanato‐
κN
)cobaltate(II) Anion. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201701177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Lucas H. G. Kalinke
- IFG Instituto Federal Goiás Av. Pedro Ludovico, s/n, Reny Cury 75131‐457 Anápolis GO Brazil
- Instituto de Química Universidade Federal de Goiás Av. Esperança, s/n Campus Samabaia 74690‐900 Goiânia GO Brazil
| | - Jocielle C. O. Cardoso
- IFG Instituto Federal Goiás Av. Pedro Ludovico, s/n, Reny Cury 75131‐457 Anápolis GO Brazil
| | - Renato Rabelo
- Instituto de Química Universidade Federal de Goiás Av. Esperança, s/n Campus Samabaia 74690‐900 Goiânia GO Brazil
| | - Ana K. Valdo
- Instituto de Química Universidade Federal de Goiás Av. Esperança, s/n Campus Samabaia 74690‐900 Goiânia GO Brazil
| | - Felipe T. Martins
- Instituto de Química Universidade Federal de Goiás Av. Esperança, s/n Campus Samabaia 74690‐900 Goiânia GO Brazil
| | - Joan Cano
- Departament de Química Inorgànica, Instituto de Ciencia Molecular (ICMol) C/ Catedrático José Beltrán 2 46980 Paterna,Valencia Spain
| | - Miguel Julve
- Departament de Química Inorgànica, Instituto de Ciencia Molecular (ICMol) C/ Catedrático José Beltrán 2 46980 Paterna,Valencia Spain
| | - Francesc Lloret
- Departament de Química Inorgànica, Instituto de Ciencia Molecular (ICMol) C/ Catedrático José Beltrán 2 46980 Paterna,Valencia Spain
| | - Danielle Cangussu
- Instituto de Química Universidade Federal de Goiás Av. Esperança, s/n Campus Samabaia 74690‐900 Goiânia GO Brazil
| |
Collapse
|
47
|
Chakarawet K, Bunting PC, Long JR. Large Anisotropy Barrier in a Tetranuclear Single-Molecule Magnet Featuring Low-Coordinate Cobalt Centers. J Am Chem Soc 2018; 140:2058-2061. [PMID: 29359930 DOI: 10.1021/jacs.7b13394] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The tetranuclear cobalt cluster compound [Co4(μ-NPtBu3)4][B(C6F5)4] (tBu = tert-butyl) was synthesized by chemical oxidation of Co4(NPtBu3)4 with [FeCp2][B(C6F5)4] and magnetically characterized to study the effect of electronic communication between low-coordinate metal centers on slow magnetic relaxation in a transition metal cluster. The dc magnetic susceptibility data reveal that the complex exhibits a well-isolated S = 9/2 ground state, which persists even to 300 K and is attributed to the existence of direct metal-metal orbital overlap. The ac magnetic susceptibility data further reveals that the complex exhibits slow magnetic relaxation in the absence of an applied field, and that the relaxation dynamics can be fit with a combination of Orbach, quantum tunneling, and Raman relaxation processes. The effective spin reversal barrier for this molecule is 87 cm-1, the largest reported to date for a transition metal cluster, and arises due to the presence of a large easy-axis magnetic anisotropy. The complex additionally exhibits waist-restricted magnetic hysteresis and magnetic blocking below 3.6 K. Taken together, these results indicate that coupling of low-coordinate metal centers is a promising strategy to enhance magnetic anisotropy and slow magnetic relaxation in transition metal cluster compounds.
Collapse
Affiliation(s)
| | | | - Jeffrey R Long
- Materials Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| |
Collapse
|
48
|
Böhme M, Ziegenbalg S, Aliabadi A, Schnegg A, Görls H, Plass W. Magnetic relaxation in cobalt(ii)-based single-ion magnets influenced by distortion of the pseudotetrahedral [N2O2] coordination environment. Dalton Trans 2018; 47:10861-10873. [DOI: 10.1039/c8dt01530a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cobalt(ii) complexes with different dihedral angles between the bidentate ligands show a significant variation in their magnetic relaxation behavior.
Collapse
Affiliation(s)
- Michael Böhme
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- 07745 Jena
- Germany
| | - Sven Ziegenbalg
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- 07745 Jena
- Germany
| | - Azar Aliabadi
- Berlin Joint EPR Lab
- Institute for Nanospectroscopy
- Helmholtz-Zentrum Berlin für Materialien und Energie
- 12489 Berlin
- Germany
| | - Alexander Schnegg
- Berlin Joint EPR Lab
- Institute for Nanospectroscopy
- Helmholtz-Zentrum Berlin für Materialien und Energie
- 12489 Berlin
- Germany
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- 07745 Jena
- Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- 07745 Jena
- Germany
| |
Collapse
|
49
|
|
50
|
Wei HW, Yang QF, Lai XY, Wang XZ, Yang TL, Hou Q, Liu XY. Field-induced slow relaxation of magnetization in a distorted octahedral mononuclear high-spin Co(ii) complex. CrystEngComm 2018. [DOI: 10.1039/c7ce01981e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
By adopting the strategy of mixed rigid ligands, two novel mononuclear complexes with distorted octahedral geometries are obtained. SIM-type slow magnetic relaxation behavior is observed in Co(ii)-based complexes.
Collapse
Affiliation(s)
- Hai-Wen Wei
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- Ningxia University
- Yinchuan
- China
- College of Chemistry and Chemical Engineering
| | - Qing-Feng Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- Ningxia University
- Yinchuan
- China
- College of Chemistry and Chemical Engineering
| | - Xiao-Yong Lai
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- Ningxia University
- Yinchuan
- China
- College of Chemistry and Chemical Engineering
| | - Xiao-Zhong Wang
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan
- China
| | - Tian-Lin Yang
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan
- China
| | - Qin Hou
- College of Chemistry and Material Science
- Shandong Agricultural University
- Taian
- China
| | - Xiang-Yu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- Ningxia University
- Yinchuan
- China
- College of Chemistry and Chemical Engineering
| |
Collapse
|