1
|
Kulinich AV, Ishchenko AA. Merocyanines: Electronic Structure and Spectroscopy in Solutions, Solid State, and Gas Phase. Chem Rev 2024; 124:12086-12144. [PMID: 39423353 DOI: 10.1021/acs.chemrev.4c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Merocyanines, owing to their readily tunable electronic structure, are arguably the most versatile functional dyes, with ample opportunities for tailored design via variations of both the donor/acceptor (D/A) end groups and π-conjugated polymethine chain. A plethora of spectral properties, such as strong solvatochromism, high polarizability and hyperpolarizabilities, and sensitizing capacity, motivates extensive studies for their applications in light-converting materials for optoelectronics, nonlinear optics, optical storage, fluorescent probes, etc. Evidently, an understanding of the intrinsic structure-property relationships is a prerequisite for the successful design of functional dyes. For merocyanines, these regularities have been explored for over 70 years, but only in the past three decades have these studies expanded beyond the theory of their color and solvatochromism toward their electronic structure in the ground and excited states. This Review outlines the fundamental principles, essential for comprehension of the variable nature of merocyanines, with the main emphasis on understanding the impact of internal (chemical structure) and external (intermolecular interactions) factors on the electronic symmetry of the D-π-A chromophore. The research on the structure and properties of merocyanines in different media is reviewed in the context of interplay of the three virtual states: nonpolar polyene, ideal polymethine, and zwitterionic polyene.
Collapse
Affiliation(s)
- Andrii V Kulinich
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Akademika Kukharya St., Kyiv 02094, Ukraine
| | - Alexander A Ishchenko
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Akademika Kukharya St., Kyiv 02094, Ukraine
| |
Collapse
|
2
|
He D, Yan M, Sun Q, Zhang M, Xia Y, Sun Y, Li Z. Ketocyanine-Based Fluorescent Probe Revealing the Polarity Heterogeneity of Lipid Droplets and Enabling Accurate Diagnosis of Hepatocellular Carcinoma. Adv Healthc Mater 2024; 13:e2303212. [PMID: 38241604 DOI: 10.1002/adhm.202303212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/02/2024] [Indexed: 01/21/2024]
Abstract
Hepatocellular carcinoma (HCC) has gradually become a pronoun for terrifying death owing to its high mortality rate. With the progression of HCC, lipid droplets (LDs) in HCC cells exhibit specific variations such as increased LDs number and decreased polarity, which can serve as the diagnostic target. However, developing an effective method to achieve HCC diagnosis and reveal LDs polarity heterogeneity is still a crucial challenge. Herein, the first high-performance LDs-targeting probe (1) is reported based on ketocyanine strategy with ultrasensitive polarity-responding ability and near-infrared emission. Probe 1 shows excellent sensitivity to polarity parameter Δf (0.027-0.290) with 808-fold fluorescence enhancement and the emission wavelength red-shifts 91 nm. In HCC cells, probe 1 shows a 2.5- to 5.9-fold fluorescence enhancement compared with normal and other cancer cells which exceeds clinical threshold of 2.0, indicating probe 1 can distinguish HCC cells. The LDs polarity heterogeneity is revealed and it displays a sequence, HCC cells < other cancer cells < normal cells, which may provide useful insight to engineer LDs-targeting probes for HCC cell discrimination. Finally, probe 1 realizes accurate HCC diagnosis on the cellular, organ, and in vivo levels, providing a satisfying tool for clinical HCC diagnosis and surgical navigation.
Collapse
Affiliation(s)
- Deming He
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou, 450001, China
| | - Minmin Yan
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou, 450001, China
| | - Qiuling Sun
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou, 450001, China
| | - Mingwei Zhang
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou, 450001, China
| | - Yu Xia
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuanqiang Sun
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhaohui Li
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
3
|
Torán R, Miguélez R, Sanz‐Marco A, Vila C, Pedro JR, Blay G. Asymmetric Addition and Cycloaddition Reactions with Ylidene‐Five‐Membered Heterocycles. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ricardo Torán
- Departament de Química Orgànica Universitat de València C/Dr. Moliner 50 46100- Burjassot (València) Spain
| | - Rubén Miguélez
- Departament de Química Orgànica Universitat de València C/Dr. Moliner 50 46100- Burjassot (València) Spain
| | - Amparo Sanz‐Marco
- Departament de Química Orgànica Universitat de València C/Dr. Moliner 50 46100- Burjassot (València) Spain
| | - Carlos Vila
- Departament de Química Orgànica Universitat de València C/Dr. Moliner 50 46100- Burjassot (València) Spain
| | - José R. Pedro
- Departament de Química Orgànica Universitat de València C/Dr. Moliner 50 46100- Burjassot (València) Spain
| | - Gonzalo Blay
- Departament de Química Orgànica Universitat de València C/Dr. Moliner 50 46100- Burjassot (València) Spain
| |
Collapse
|
4
|
Bader K, Müller C, Molard Y, Baro A, Ehni P, Knelles J, Laschat S. Fluorenone imidazolium salts as novel de Vries materials. RSC Adv 2020; 10:23999-24016. [PMID: 35517358 PMCID: PMC9055108 DOI: 10.1039/d0ra04650g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/15/2020] [Indexed: 01/09/2023] Open
Abstract
In ionic liquid crystals (ILCs) tilted mesophases such as SmC required for electro-optic devices are quite rare. We report a design concept that induced the SmC phase and enabled de Vries-like behaviour in ILCs. For this purpose, we synthesized and characterized a library of ILC derivatives ImR(On,Ym)X which consist of a rigid central fluorenone core containing an alkoxy or thioether side chain and connected via a flexible spacer to an imidazolium head group. The mesomorphic properties were studied by differential scanning calorimetry (DSC), polarizing optical microscopy (POM) and X-ray diffraction (XRD). Temperature-dependent measurements of smectic layer spacing d by small-angle X-ray scattering (SAXS) and of optical tilt angles by POM demonstrate that ILCs ImR(On,Ym)X undergo SmA–SmC phase transitions with maximum layer contraction values between 0.4% and 2.1%. The lowest reduction factor R of 0.2 at the reduced temperature T − TAC = −10 K was calculated for Im(O12,S14)Br. Electron density calculations indicated a bilayer structure. Furthermore, temperature dependent emission studies show that self-assembling has a strong influence on the emission intensity of these ILCs. ILCs consisting of cationic head group–spacer–fluorenone central core–side chain show de Vries-like behaviour.![]()
Collapse
Affiliation(s)
- Korinna Bader
- Institut für Organische Chemie, Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Carsten Müller
- Institut für Physikalische Chemie, Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Yann Molard
- CNRS, ISCR-UMR 6226, ScanMAT-UMS 2001, University Rennes 35000 Rennes France
| | - Angelika Baro
- Institut für Organische Chemie, Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Philipp Ehni
- Institut für Organische Chemie, Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Jakob Knelles
- Institut für Organische Chemie, Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Sabine Laschat
- Institut für Organische Chemie, Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| |
Collapse
|
5
|
Mustroph H, Towns A. Fine Structure in Electronic Spectra of Cyanine Dyes: Are Sub-Bands Largely Determined by a Dominant Vibration or a Collection of Singly Excited Vibrations? Chemphyschem 2018; 19:1016-1023. [PMID: 29266605 PMCID: PMC5969267 DOI: 10.1002/cphc.201701300] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Indexed: 02/04/2023]
Abstract
This work critically examines attempts to model the fine structure apparent in electronic spectra of cyanine dyes and their analogues. Numerous computational studies reported over the past decade attribute the origin of sub‐bands and their relative intensities to vibronic transitions in which the relevant electronic transition is coupled, irrespective of symmetry, with a collection of vibrations. It is contended that this type of approach is not supported by experimental evidence. An argument is reiterated for a more appropriate model that adheres closely to fundamental principles and fits the data. It stipulates that essentially just one symmetric vibration, carbon–carbon bond stretching of the cyanine polymethine chain, dominates the coupling and is responsible for the observed fine structure. Furthermore, it is pointed out that the intensities of the sub‐bands are readily explained by means of the Franck–Condon principle.
Collapse
Affiliation(s)
- Heinz Mustroph
- FEW Chemicals GmbH, Technikumstraße 1, 06756, Bitterfeld-Wolfen, Germany
| | - Andrew Towns
- Lambson Ltd., Clifford House, York Road,Wetherby, West Yorkshire, LS22 7NS, England
| |
Collapse
|
6
|
Dai X, Dong B, Ren M, Lin W. Unique D–π–A–π–D type fluorescent probes for the two-photon imaging of intracellular viscosity. J Mater Chem B 2018; 6:381-385. [DOI: 10.1039/c7tb02414b] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
D–π–A–π–D type fluorescent probes for intracellular viscosity have been reported for the first time and successfully applied for two-photon imaging.
Collapse
Affiliation(s)
- Xi Dai
- Institute of Fluorescent Probes for Biological Imaging
- School of Materials Science and Engineering
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
| | - Baoli Dong
- Institute of Fluorescent Probes for Biological Imaging
- School of Materials Science and Engineering
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
| | - Mingguang Ren
- Institute of Fluorescent Probes for Biological Imaging
- School of Materials Science and Engineering
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging
- School of Materials Science and Engineering
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
| |
Collapse
|