1
|
Yang J, Quan Y, Ouyang Y, Tan KO, Weber RT, Griffin RG, Raines RT. Peptidic "Molecular Beacon" for Collagen. Biomacromolecules 2024; 25:6773-6779. [PMID: 39225003 DOI: 10.1021/acs.biomac.4c01000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Collagen-mimetic peptides (CMP) have been invaluable tools for understanding the structure and function of collagen, which is the most abundant protein in animals. CMPs have also been developed as probes that detect damaged collagen because of the specificity required to form a collagen triple helix. These probes are not, however, ratiometric. Here, we used EPR spectroscopy to determine the end-to-end distances of CMPs that do not form stable homotrimeric helices. We found that those distances are shorter than the distances in the context of a collagen triple helix, suggesting their potential utility as a "molecular beacon" and guiding the choice and location of a pendant fluorophore-quencher pair. We then showed that a molecular beacon based on a glycine-(2S,4S)-4-fluoroproline-(2S,4R)-4-hydroxyproline tripeptide repeat and EDANS-DABCYL pair enabled the ratiometric detection of its binding to both other CMPs and natural mammalian collagen. These results provide guidance for the development of a new modality for detecting damaged collagen in physiological settings.
Collapse
Affiliation(s)
- Jinyi Yang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yifan Quan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yifu Ouyang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kong Ooi Tan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ralph T Weber
- Bruker Biospin Corporation, Billerica, Massachusetts 01821, United States
| | - Robert G Griffin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ronald T Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Kubyshkin V, Rubini M. Proline Analogues. Chem Rev 2024; 124:8130-8232. [PMID: 38941181 DOI: 10.1021/acs.chemrev.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Within the canonical repertoire of the amino acid involved in protein biogenesis, proline plays a unique role as an amino acid presenting a modified backbone rather than a side-chain. Chemical structures that mimic proline but introduce changes into its specific molecular features are defined as proline analogues. This review article summarizes the existing chemical, physicochemical, and biochemical knowledge about this peculiar family of structures. We group proline analogues from the following compounds: substituted prolines, unsaturated and fused structures, ring size homologues, heterocyclic, e.g., pseudoproline, and bridged proline-resembling structures. We overview (1) the occurrence of proline analogues in nature and their chemical synthesis, (2) physicochemical properties including ring conformation and cis/trans amide isomerization, (3) use in commercial drugs such as nirmatrelvir recently approved against COVID-19, (4) peptide and protein synthesis involving proline analogues, (5) specific opportunities created in peptide engineering, and (6) cases of protein engineering with the analogues. The review aims to provide a summary to anyone interested in using proline analogues in systems ranging from specific biochemical setups to complex biological systems.
Collapse
Affiliation(s)
| | - Marina Rubini
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
3
|
Scherer A, Yao X, Qi M, Wiedmaier M, Godt A, Drescher M. Increasing the Modulation Depth of Gd III-Based Pulsed Dipolar EPR Spectroscopy (PDS) with Porphyrin-Gd III Laser-Induced Magnetic Dipole Spectroscopy. J Phys Chem Lett 2022; 13:10958-10964. [PMID: 36399541 PMCID: PMC9720741 DOI: 10.1021/acs.jpclett.2c02138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Distance determination with pulsed EPR has become an important technique for the structural investigation of biomacromolecules, with double electron-electron resonance spectroscopy (DEER) as the most important method. GdIII-based spin labels are one of the most frequently used spin labels for DEER owing to their stability against reduction, high magnetic moment, and absence of orientation selection. A disadvantage of GdIII-GdIII DEER is the low modulation depth due to the broad EPR spectrum of GdIII. Here, we introduce laser-induced magnetic dipole spectroscopy (LaserIMD) with a spin pair consisting of GdIII(PymiMTA) and a photoexcited porphyrin as an alternative technique. We show that the excited state of the porphyrin is not disturbed by the presence of the GdIII complex and that herewith modulation depths of almost 40% are possible. This is significantly higher than the value of 7.2% that was achieved with GdIII-GdIII DEER.
Collapse
Affiliation(s)
- Andreas Scherer
- Department
of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Xuemei Yao
- Faculty
of Chemistry and Center of Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Mian Qi
- Faculty
of Chemistry and Center of Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Max Wiedmaier
- Department
of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Adelheid Godt
- Faculty
of Chemistry and Center of Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Malte Drescher
- Department
of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
4
|
Pollastrini M, Pasquinelli L, Górecki M, Balzano F, Cupellini L, Lipparini F, Uccello Barretta G, Marchetti F, Pescitelli G, Angelici G. A Unique and Stable Polyproline I Helix Sorted out from Conformational Equilibrium by Solvent Polarity. J Org Chem 2022; 87:13715-13725. [PMID: 36242553 PMCID: PMC9639007 DOI: 10.1021/acs.joc.2c01377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Polyproline I helical structures are often considered as the hidden face of their most famous geminal sibling, Polyproline II, as PPI is generally spotted only within a conformational equilibrium. We designed and synthesized a stable Polyproline I structure exploiting the striking tendency of (S)-indoline-2-carboxylic acid to drive the peptide bond conformation toward the cis amide isomer, when dissolved in polar solvents. The cooperative effect of only four amino acidic units is sufficient to form a preferential structure in solution. We shed light on this rare secondary structure with a thorough analysis of the spectroscopic and chiroptical properties of the tetramer, supported by X-ray crystallography and computational studies.
Collapse
Affiliation(s)
- Matteo Pollastrini
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Luca Pasquinelli
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Marcin Górecki
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy,Institute
of Organic Chemistry, Polish Academy of
Sciences, ul. Kasprzaka
44/52, Warsaw 01-224, Poland
| | - Federica Balzano
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Lorenzo Cupellini
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Filippo Lipparini
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Gloria Uccello Barretta
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Fabio Marchetti
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Gennaro Pescitelli
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy,
| | - Gaetano Angelici
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy,
| |
Collapse
|
5
|
Lamers B, Herdlitschka A, Schnitzer T, Mabesoone MF, Schoenmakers SM, de Waal BF, Palmans AR, Wennemers H, Meijer E. Oligodimethylsiloxane-Oligoproline Block Co-Oligomers: the Interplay between Aggregation and Phase Segregation in Bulk and Solution. J Am Chem Soc 2021; 143:4032-4042. [PMID: 33660998 PMCID: PMC8041288 DOI: 10.1021/jacs.1c01076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Indexed: 12/14/2022]
Abstract
Discrete block co-oligomers (BCOs) assemble into highly ordered nanostructures, which adopt a variety of morphologies depending on their environment. Here, we present a series of discrete oligodimethylsiloxane-oligoproline (oDMS-oPro) BCOs with varying oligomer lengths and proline end-groups, and study the nanostructures formed in both bulk and solution. The conjugation of oligoprolines to apolar siloxanes permits a study of the aggregation behavior of oligoproline moieties in a variety of solvents, including a highly apolar solvent like methylcyclohexane. The apolar solvent is more reminiscent of the polarity of the siloxane bulk, which gives insights into the supramolecular interactions that govern both bulk and solution assembly processes of the oligoproline. This extensive structural characterization allows the bridging of the gap between solution and bulk assembly. The interplay between the aggregation of the oligoproline block and the phase segregation induced by the siloxane drives the assembly. This gives rise to disordered, micellar microstructures in apolar solution and crystallization-driven lamellar nanostructures in the bulk. While most di- and triblock co-oligomers adopt predictable morphological features, one of them, oDMS15-oPro6-NH2, exhibits pathway complexity leading to gel formation. The pathway selection in the complex interplay between aggregation and phase segregation gives rise to interesting material properties.
Collapse
Affiliation(s)
- Brigitte
A.G. Lamers
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Andreas Herdlitschka
- Laboratory
of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Tobias Schnitzer
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Mathijs F.J. Mabesoone
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Sandra M.C. Schoenmakers
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Bas F.M. de Waal
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Anja R.A. Palmans
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Helma Wennemers
- Laboratory
of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - E.W. Meijer
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
6
|
Koronkiewicz B, Swierk J, Regan K, Mayer JM. Shallow Distance Dependence for Proton-Coupled Tyrosine Oxidation in Oligoproline Peptides. J Am Chem Soc 2020; 142:12106-12118. [PMID: 32510937 PMCID: PMC7545454 DOI: 10.1021/jacs.0c01429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have explored the kinetic effect of increasing electron transfer (ET) distance in a biomimetic, proton-coupled electron-transfer (PCET) system. Biological ET often occurs simultaneously with proton transfer (PT) in order to avoid the high-energy, charged intermediates resulting from the stepwise transfer of protons and electrons. These concerted proton-electron-transfer (CPET) reactions are implicated in numerous biological ET pathways. In many cases, PT is coupled to long-range ET. While many studies have shown that the rate of ET is sensitive to the distance between the electron donor and acceptor, extensions to biological CPET reactions are sparse. The possibility of a unique ET distance dependence for CPET reactions deserves further exploration, as this could have implications for how we understand biological ET. We therefore explored the ET distance dependence for the CPET oxidation of tyrosine in a model system. We prepared a series of metallopeptides with a tyrosine separated from a Ru(bpy)32+ complex by an oligoproline bridge of increasing length. Rate constants for intramolecular tyrosine oxidation were measured using the flash-quench transient absorption technique in aqueous solutions. The rate constants for tyrosine oxidation decreased by 125-fold with three added proline residues between tyrosine and the oxidant. By comparison, related intramolecular ET rate constants in very similar constructs were reported to decrease by 4-5 orders of magnitude over the same number of prolines. The observed shallow distance dependence for tyrosine oxidation is proposed to originate in part from the requirement for stronger oxidants, leading to a smaller hole-transfer effective tunneling barrier height. The shallow distance dependence observed here and extensions to distance-dependent CPET reactions have potential implications for long-range charge transfers.
Collapse
Affiliation(s)
- Brian Koronkiewicz
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - John Swierk
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Kevin Regan
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - James M Mayer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
7
|
Qin Q, Zhao L, Liu Z, Liu T, Qu J, Zhang X, Li R, Yan L, Yan J, Jin S, Wang J, Qiao J. Bioinspired l-Proline Oligomers for the Cryopreservation of Oocytes via Controlling Ice Growth. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18352-18362. [PMID: 32227894 DOI: 10.1021/acsami.0c02719] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Various types of cells are routinely cryopreserved in modern regenerative and cell-based medicines. For instance, the oocyte is one of the most demanding cells to be cryopreserved in genetic engineering and human-assisted reproductive technology (ART). However, the usage of cryopreserved oocytes in ART clinics is still limited mainly because of the unstable survival rate. This is due to the fact that oocytes are more prone to be damaged by ice crystals in comparison to other cells, as oocytes are larger in size and surface area. Meanwhile, oocytes contain more water, and thus, ice crystals are easier to form inside the cells. Currently, to avoid injury by the formed ice crystals, cryopreservation (CP) of oocytes has to use large amounts of small molecules as cryoprotectants such as dimethyl sulfoxide (DMSO) and ethylene glycol (EG), which can permeate into the cell and prevent ice formation inside. However, these molecules are chemically and epigenetically toxic to cells. Therefore, great efforts have been focused on reducing the amount of DMSO and EG used for oocyte CP. In nature, the antifreeze (glyco)proteins (AFGPs) locate extracellularly with the ability to protect living organisms from freezing damage via controlling ice growth. Inspired by this, biocompatible and nontoxic L-proline oligomers (L-Pron), which have the same polyproline II helix structure as that of AFGPs, are first employed for the CP of oocytes. The experimental results reveal that L-Pro8 has a profound activity in inhibiting ice growth as that of AFGP8. Also, by the addition of 50 mM L-Pro8, the amount of DMSO and EG can be greatly reduced by ca. 1.8 M for oocyte CP; moreover, the survival rate of the cryopreserved oocytes is increased up to 99.11%, and the coefficient of variance of the survival rate is decreased from 7.47 to 2.15%. These results mean that almost all oocytes can survive after CP with our method; importantly, the mitochondrial function as a critical criterion for the quality of the frozen-thawed oocytes is also improved. It is proposed that with the addition of L-Pro8, the extracellular ice growth is slowed down, which prevents the direct injuries of cells by large ice crystals and the accompanying osmotic pressure increase. As such, this work is not only significant for meeting the ever-increasing demand by the ART clinics but also gives guidance for designing materials in controlling ice growth during CP of other cells and tissues.
Collapse
Affiliation(s)
- Qingyuan Qin
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North Hua Yuan Road, Hai Dian District, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Lishan Zhao
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhang Liu
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Tao Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North Hua Yuan Road, Hai Dian District, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Jiangxue Qu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North Hua Yuan Road, Hai Dian District, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Xiaowei Zhang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North Hua Yuan Road, Hai Dian District, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North Hua Yuan Road, Hai Dian District, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Liying Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North Hua Yuan Road, Hai Dian District, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Jie Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North Hua Yuan Road, Hai Dian District, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Shenglin Jin
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianjun Wang
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North Hua Yuan Road, Hai Dian District, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| |
Collapse
|
8
|
Di Silvio S, Bologna F, Milli L, Giuri D, Zanna N, Castellucci N, Monari M, Calvaresi M, Górecki M, Angelici G, Tomasini C, Pescitelli G. Elusive π-helical peptide foldamers spotted by chiroptical studies. Org Biomol Chem 2020; 18:865-877. [PMID: 31845697 DOI: 10.1039/c9ob02313e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A series of oligomers containing alternate l-Ala and pGlu (pyroglutamic acid) both in the L and D form have been prepared and conformationally investigated by X-ray, NMR, UV/ECD, IR/VCD and molecular modelling. X-ray diffraction analysis was possible for the shortest oligomers LL-1 and LD-1. Molecular dynamics simulations of the oligomers demonstrated that the energy landscapes of the LL-series are broad. In contrast, the energy landscapes of the LD-series are characterized by well-defined minima corresponding to specific conformational structures. A single well-defined minimum exists in the energy landscape of the largest oligomer LD-8, corresponding to a precise conformation, characterized by i + 5 →i N-HO[double bond, length as m-dash]C hydrogen bonds, typical of a π-helix. ECD and VCD spectra were measured to identify the chiroptical profiles of the oligomers. The most striking element in the ECD spectra of the LD-series is their exceptionally strong intensity, which confirms that these polypeptides attain a high degree of helical order. VCD spectra for the LD-series are well reproduced by frequency calculations when π-helix folds are employed as input structures, suggesting that a symmetrical VCD couplet around 1720 cm-1 can be taken as the VCD signature of π-helices.
Collapse
Affiliation(s)
- Sergio Di Silvio
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy.
| | - Fabio Bologna
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy.
| | - Lorenzo Milli
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy.
| | - Demetra Giuri
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy.
| | - Nicola Zanna
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy.
| | - Nicola Castellucci
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy.
| | - Magda Monari
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy.
| | - Matteo Calvaresi
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy.
| | - Marcin Górecki
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56124 Pisa, Italy. and Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw 01-224, Poland
| | - Gaetano Angelici
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56124 Pisa, Italy.
| | - Claudia Tomasini
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy.
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56124 Pisa, Italy.
| |
Collapse
|
9
|
Ochs NAK, Lewandowska U, Zajaczkowski W, Corra S, Reger S, Herdlitschka A, Schmid S, Pisula W, Müllen K, Bäuerle P, Wennemers H. Oligoprolines guide the self-assembly of quaterthiophenes. Chem Sci 2019; 10:5391-5396. [PMID: 31191896 PMCID: PMC6540903 DOI: 10.1039/c8sc05742g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 04/25/2019] [Indexed: 12/14/2022] Open
Abstract
Control over the molecular organization of π-conjugated oligothiophenes into different types of supramolecular assemblies is key to their use in organic electronics but difficult to achieve as these chromophores have a pronounced tendency to aggregate. Herein we show that oligoprolines, which do not self-assemble on their own, control the self-assembly of quaterthiophenes. Spectroscopic, microscopic, and diffraction studies with quaterthiophene-oligoproline conjugates revealed the formation of mono- or double-layered sheets or, alternatively, helically twisted ribbons - depending on the length of the oligoproline. The dimensions of the nanoscopic objects, which extend into the micrometer regime, correlate with the molecular dimensions of the quaterthiophene-oligoproline building blocks.
Collapse
Affiliation(s)
- Nellie A K Ochs
- Laboratory of Organic Chemistry , ETH Zürich , Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland .
| | - Urszula Lewandowska
- Laboratory of Organic Chemistry , ETH Zürich , Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland .
| | - Wojciech Zajaczkowski
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany .
| | - Stefano Corra
- Laboratory of Organic Chemistry , ETH Zürich , Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland .
| | - Stephan Reger
- Institute of Organic Chemistry II and Advanced Materials , University of Ulm , Germany .
| | - Andreas Herdlitschka
- Laboratory of Organic Chemistry , ETH Zürich , Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland .
| | - Sylvia Schmid
- Institute of Organic Chemistry II and Advanced Materials , University of Ulm , Germany .
| | - Wojciech Pisula
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany .
- Department of Molecular Physics , Faculty of Chemistry , Lodz University of Technology , Zeromskiego 116 , 90-924 Lodz , Poland
| | - Klaus Müllen
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany .
| | - Peter Bäuerle
- Institute of Organic Chemistry II and Advanced Materials , University of Ulm , Germany .
| | - Helma Wennemers
- Laboratory of Organic Chemistry , ETH Zürich , Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland .
| |
Collapse
|
10
|
Ritsch I, Hintz H, Jeschke G, Godt A, Yulikov M. Improving the accuracy of Cu(ii)–nitroxide RIDME in the presence of orientation correlation in water-soluble Cu(ii)–nitroxide rulers. Phys Chem Chem Phys 2019; 21:9810-9830. [DOI: 10.1039/c8cp06573j] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Detailed analysis of artefacts in the Cu(ii)–nitroxide RIDME experiments, related to orientation averaging, echo-crossing, ESEEM and background-correction is presented.
Collapse
Affiliation(s)
- Irina Ritsch
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Bioscience
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Henrik Hintz
- Faculty of Chemistry and Center for Molecular Materials (CM2)
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Bioscience
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM2)
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Maxim Yulikov
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Bioscience
- ETH Zurich
- 8093 Zurich
- Switzerland
| |
Collapse
|
11
|
Lewandowska U, Corra S, Zajaczkowski W, Ochs NAK, Shoshan MS, Tanabe J, Stappert S, Li C, Yashima E, Pisula W, Müllen K, Wennemers H. Positional Isomers of Chromophore-Peptide Conjugates Self-Assemble into Different Morphologies. Chemistry 2018; 24:12623-12629. [PMID: 29893493 DOI: 10.1002/chem.201801545] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/08/2018] [Indexed: 11/07/2022]
Abstract
Ordering π-systems into defined supramolecular structures is important for the development of organic functional materials. In recent years, peptides with defined secondary structures and/or self-assembly properties were introduced as powerful tools to order peptide-chromophore conjugates into different morphologies. This work explores whether or not the directionality of peptides can be used to control the self-assembly. The position of the π-system in conjugates between oligoprolines and perylene monoimide (PMI) chromophores was varied by attaching the PMI moiety to the second-to-last residue from the C- and N-termini, respectively. Microscopic and diffraction analysis revealed that the positional isomers form distinctly different supramolecular architectures that extend into the micrometer regime. NMR spectroscopic studies in solution phase allowed correlation of the self-assembly properties with markedly different conformational preferences of the isomeric building blocks. These insights enabled the design of building blocks with predictable self-assembly properties. Thus, the directionality of peptides offers exciting opportunities for controlling the self-assembly and electronic properties of π-systems.
Collapse
Affiliation(s)
- Urszula Lewandowska
- Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Stefano Corra
- Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | | | - Nellie A K Ochs
- Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Michal S Shoshan
- Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Junki Tanabe
- Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland.,Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Sebastian Stappert
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Chen Li
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Eiji Yashima
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Wojciech Pisula
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Institute of Physical Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Helma Wennemers
- Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| |
Collapse
|
12
|
Kaminker R, Kaminker I, Gutekunst WR, Luo Y, Lee S, Niu J, Han S, Hawker CJ. Tuning conformation and properties of peptidomimetic backbones through dual N/C α-substitution. Chem Commun (Camb) 2018; 54:5237-5240. [PMID: 29726557 PMCID: PMC6089238 DOI: 10.1039/c8cc01356j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We demonstrate that changing the backbone between peptides, peptoids and the underexplored dual N/Cα-substituted peptoids analogues allows for control over the preferred conformation of the intrinsically disordered biomimetic oligomers. The conformation tunability is directly probed using electron paramagnetic resonance (EPR), and is shown to manifest itself in differences in the nanoparticle-oligomer hybridization propensity.
Collapse
Affiliation(s)
- R Kaminker
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Kubyshkin V, Budisa N. Exploring hydrophobicity limits of polyproline helix with oligomeric octahydroindole-2-carboxylic acid. J Pept Sci 2018; 24:e3076. [PMID: 29582506 DOI: 10.1002/psc.3076] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/24/2018] [Accepted: 02/26/2018] [Indexed: 12/12/2022]
Abstract
The polyproline-II helix is the most extended naturally occurring helical structure and is widely present in polar, exposed stretches and "unstructured" denatured regions of polypeptides. Can it be hydrophobic? In this study, we address this question using oligomeric peptides formed by a hydrophobic proline analogue, (2S,3aS,7aS)-octahydroindole-2-carboxylic acid (Oic). Previously, we found the molecular principles underlying the structural stability of the polyproline-II conformation in these oligomers, whereas the hydrophobicity of the peptide constructs remains to be examined. Therefore, we investigated the octan-1-ol/water partitioning and inclusion in detergent micelles of the oligo-Oic peptides. The results showed that the hydrophobicity is remarkably enhanced in longer oligomeric sequences, and the oligo-Oic peptides with 3 to 4 residues and higher are specific towards hydrophobic environments. This contrasts significantly to the parent oligoproline peptides, which were moderately hydrophilic. With these findings, we have demonstrated that the polyproline-II structure is compatible with nonpolar media, whereas additional manipulations of the terminal functionalities feature solubility in extremely nonpolar solvents such as hexane.
Collapse
Affiliation(s)
- Vladimir Kubyshkin
- Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Str. 10, Berlin, 10623, Germany
| | - Nediljko Budisa
- Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Str. 10, Berlin, 10623, Germany
| |
Collapse
|
14
|
Dobitz S, Aronoff MR, Wennemers H. Oligoprolines as Molecular Entities for Controlling Distance in Biological and Material Sciences. Acc Chem Res 2017; 50:2420-2428. [PMID: 28885830 DOI: 10.1021/acs.accounts.7b00340] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nature utilizes large biomolecules to fulfill tasks that require spatially well-defined arrangements at the molecular level such as electron transfer, ligand-receptor interactions, or catalysis. The creation of synthetic molecules that enable precise control over spacing and functionalization provides opportunities across diverse disciplines. Key requirements of functionalizable oligomeric scaffolds include the specific control of their molecular properties where the correct balance of flexibility and rigidity must be maintained in addition to the prerequisite of defined length. These molecules must ideally be equally applicable in aqueous and organic environments, they must be easy to synthesize in a controlled stepwise fashion, and they must be easily modified with a palette of chemical appendages having diverse functionalities. Oligoproline, a peptidic polymer comprised of repeating units of the amino acid proline, is an ideal platform to meet such challenges. Oligoproline derives its characteristic rigidity and well-defined secondary structure from the innate features of proline. It is the only naturally occurring amino acid that has its side-chain cyclized to its α-amino group, generating often-populated trans and cis conformers around the tertiary amide bonds formed in proline oligomers. Oligoprolines are widely applied to define distance on the molecular level as they are capable of serving as both a "molecular ruler" with a defined length and as a "molecular scaffold" with precisely located and predictably oriented substitutions along the polymeric backbone. Our investigations focus on the use of oligoproline as a molecular scaffold. Toward this end, we have investigated the role of solvent upon helical structure of oligoproline, and the effect that substituents on the pyrrolidine ring and the oligomer termini have on the stability of the helix. We have also further explored the molecular characteristics of oligoproline through spectroscopic and crystallographic methods. All of these structural insights laid the basis for implementation of oligoproline in materials science and chemical biology. Within this Account, we highlight the value of oligoprolines for applications in distinctly different research areas. Toward materials chemistry, we have utilized oligoprolines for the size-controlled generation of noble metal nanoparticles, and to probe the role of spatial preorganization of π-systems for molecular self-assembly. Within the biological realm, we have applied oligoprolines to probe the role of distance on G-protein coupled receptor-mediated ligand uptake by cancerous cells and to investigate the effects of charge preorganization on the efficacy of cationic cell-penetrating peptides.
Collapse
Affiliation(s)
- Stefanie Dobitz
- ETH Zürich, Laboratory of Organic Chemistry, D-CHAB, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| | - Matthew R. Aronoff
- ETH Zürich, Laboratory of Organic Chemistry, D-CHAB, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| | - Helma Wennemers
- ETH Zürich, Laboratory of Organic Chemistry, D-CHAB, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| |
Collapse
|
15
|
Sánchez-Navarro M, Teixidó M, Giralt E. Jumping Hurdles: Peptides Able To Overcome Biological Barriers. Acc Chem Res 2017; 50:1847-1854. [PMID: 28715199 DOI: 10.1021/acs.accounts.7b00204] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cell membrane, the gastrointestinal tract, and the blood-brain barrier (BBB) are good examples of biological barriers that define and protect cells and organs. They impose different levels of restriction, but they also share common features. For instance, they all display a high lipophilic character. For this reason, hydrophilic compounds, like peptides, proteins, or nucleic acids have long been considered as unable to bypass them. However, the discovery of cell-penetrating peptides (CPPs) opened a vast field of research. Nowadays, CPPs, homing peptides, and blood-brain barrier peptide shuttles (BBB-shuttles) are good examples of peptides able to target and to cross various biological barriers. CPPs are a group of peptides able to interact with the plasma membrane and enter the cell. They display some common characteristics like positively charged residues, mainly arginines, and amphipathicity. In this field, our group has been focused on the development of proline rich CPPs and in the analysis of the importance of secondary amphipathicity in the internalization process. Proline has a privileged structure being the only amino acid with a secondary amine and a cyclic side chain. These features constrain its structure and hamper the formation of H-bonds. Taking advantage of this privileged structure, three different families of proline-rich peptides have been developed, namely, a proline-rich dendrimer, the sweet arrow peptide (SAP), and a group of foldamers based on γ-peptides. The structure and the mechanism of internalization of all of them has been evaluated and analyzed. BBB-shuttles are peptides able to cross the BBB and to carry with them compounds that cannot reach the brain parenchyma unaided. These peptides take advantage of the natural transport mechanisms present at the BBB, which are divided in active and passive transport mechanisms. On the one hand, we have developed BBB-shuttles that cross the BBB by a passive transport mechanism, like diketoperazines (DKPs), (N-MePhe)n, or (PhPro)n. On the other hand, we have investigated BBB-shuttles that utilize active transport mechanisms such as SGV, THRre, or MiniAp-4. For the development of both groups, we have explored several approaches, such as the use of peptide libraries, both chemical and phage display, or hit-to-lead optimization processes. In this Account, we describe, in chronologic order, our contribution to the development of peptides able to overcome various biological barriers and our efforts to understand the mechanisms that they display. In addition, the potential use of both CPPs and BBB-shuttles to improve the transport of promising therapeutic compounds is described.
Collapse
Affiliation(s)
- Macarena Sánchez-Navarro
- Institute
for Research in Biomedicine, Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Meritxell Teixidó
- Institute
for Research in Biomedicine, Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Ernest Giralt
- Institute
for Research in Biomedicine, Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
- Department
of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
16
|
Mykhailiuk PK, Kubyshkin V, Bach T, Budisa N. Peptidyl-Prolyl Model Study: How Does the Electronic Effect Influence the Amide Bond Conformation? J Org Chem 2017; 82:8831-8841. [DOI: 10.1021/acs.joc.7b00803] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pavel K. Mykhailiuk
- Taras Shevchenko National University of Kyiv, Chemistry Department, Volodymyrska 64, 01601 Kyiv, Ukraine
- Enamine Limited, Chervonotkatska 78, 01103 Kyiv, Ukraine
| | - Vladimir Kubyshkin
- Institute
of Chemistry, Technical University of Berlin, Müller-Breslau-Strasse 10, 10623 Berlin, Germany
| | - Thorsten Bach
- Lehrstuhl
für Organische Chemie I, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Nediljko Budisa
- Institute
of Chemistry, Technical University of Berlin, Müller-Breslau-Strasse 10, 10623 Berlin, Germany
| |
Collapse
|
17
|
Tomasini C, Zanna N. Oxazolidinone-containing pseudopeptides: Supramolecular materials, fibers, crystals, and gels. Biopolymers 2017; 108. [DOI: 10.1002/bip.22898] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/30/2016] [Accepted: 06/25/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Claudia Tomasini
- Dipartimento Di Chimica Ciamician; Università Di Bologna; via Selmi, 2 Bologna 40137 Italy
| | - Nicola Zanna
- Dipartimento Di Chimica Ciamician; Università Di Bologna; via Selmi, 2 Bologna 40137 Italy
| |
Collapse
|
18
|
Otani Y, Watanabe S, Ohwada T, Kitao A. Molecular Dynamics Study of Nitrogen-Pyramidalized Bicyclic β-Proline Oligomers: Length-Dependent Convergence to Organized Structures. J Phys Chem B 2017; 121:100-109. [PMID: 27995801 DOI: 10.1021/acs.jpcb.6b10668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this study, the solution structures of the homooligomers of a conformationally constrained bicyclic proline-type β-amino acid were studied by means of molecular dynamics (MD) calculations in explicit methanol and water using the umbrella sampling method. The ratio of trans-amide and cis-amide was estimated by NMR and the rotational barrier of the amide of acetylated bicyclic amino acid monomer was estimated by two-dimensional (2D) exchange spectroscopy (EXSY) or line-shape analysis. A bias potential was introduced with respect to the amide torsion angle ω to enhance conformational exchange including isomerization of amide bonds by lowering the rotation energy barrier. After determination of reweighting parameters to best reproduce the experimental results of the monomer amide, the free energy profile around the amide torsion angle ω was obtained from the MD trajectory by reweighting of the biased probability density. The MD simulation results support the existence of invertomers of nitrogen-pyramidalized amide. Furthermore, extended structures with a high fraction of trans-amide conformation appear to be increasingly stabilized as the oligomer is elongated, both in methanol and in water. Our conformational analysis of natural and non-natural tertiary-amide-based peptide oligomers indicates that these oligomers preferentially adopt a limited number of conformations.
Collapse
Affiliation(s)
- Yuko Otani
- Graduate School of Pharmaceutical Sciences, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satoshi Watanabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,National Center of Neurology and Psychiatry , 4-1-1 Ogawa-Higashimachi, Kodaira-shi, Tokyo 187-8551, Japan
| | - Tomohiko Ohwada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akio Kitao
- Institute of Molecular and Cellular Biosciences, The University of Tokyo , 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
19
|
Nagel YA, Raschle PS, Wennemers H. Effect of Preorganized Charge-Display on the Cell-Penetrating Properties of Cationic Peptides. Angew Chem Int Ed Engl 2016; 56:122-126. [PMID: 27900805 DOI: 10.1002/anie.201607649] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 09/21/2016] [Indexed: 12/11/2022]
Abstract
The effect of preorganized versus undefined charge display on the cellular uptake of cationic cell-penetrating peptides (CPPs) was investigated by comparing conformationally well-defined guanidinylated oligoprolines with flexible oligoarginines. Flow cytometry and confocal microscopy studies with different cancer cell lines (HeLa, MCF-7, and HT-29) showed that preorganization of cationic charges in lateral distances of ≈9 Å enhanced the cellular uptake of CPPs. Binding affinity measurements revealed tighter binding of analogues of cell-surface glycans to the guanidinylated octaproline with localized charges compared to flexible octaarginine, a finding that was further correlated to the cellular uptake by studies with CHO cells deficient in glycans on the outer plasma membrane.
Collapse
Affiliation(s)
- Yvonne A Nagel
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Philipp S Raschle
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Helma Wennemers
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| |
Collapse
|
20
|
Nagel YA, Raschle PS, Wennemers H. Effect of Preorganized Charge‐Display on the Cell‐Penetrating Properties of Cationic Peptides. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201607649] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yvonne A. Nagel
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Philipp S. Raschle
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Helma Wennemers
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| |
Collapse
|
21
|
Zanna N, Milli L, Del Secco B, Tomasini C. Factors Affecting the Stabilization of Polyproline II Helices in a Hydrophobic Environment. Org Lett 2016; 18:1662-5. [DOI: 10.1021/acs.orglett.6b00532] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Nicola Zanna
- Dipartimento di Chimica Ciamician, Università di Bologna, Via Selmi
2, 40126 Bologna, Italy
| | - Lorenzo Milli
- Dipartimento di Chimica Ciamician, Università di Bologna, Via Selmi
2, 40126 Bologna, Italy
| | - Benedetta Del Secco
- Dipartimento di Chimica Ciamician, Università di Bologna, Via Selmi
2, 40126 Bologna, Italy
| | - Claudia Tomasini
- Dipartimento di Chimica Ciamician, Università di Bologna, Via Selmi
2, 40126 Bologna, Italy
| |
Collapse
|
22
|
Qi M, Hülsmann M, Godt A. Spacers for Geometrically Well-Defined Water-Soluble Molecular Rulers and Their Application. J Org Chem 2016; 81:2549-71. [DOI: 10.1021/acs.joc.6b00125] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Mian Qi
- Faculty of Chemistry and
Center for Molecular Materials (MC2), Bielefeld University, Universitätsstraße
25, 33615 Bielefeld, Germany
| | - Miriam Hülsmann
- Faculty of Chemistry and
Center for Molecular Materials (MC2), Bielefeld University, Universitätsstraße
25, 33615 Bielefeld, Germany
| | - Adelheid Godt
- Faculty of Chemistry and
Center for Molecular Materials (MC2), Bielefeld University, Universitätsstraße
25, 33615 Bielefeld, Germany
| |
Collapse
|
23
|
Lewandowska U, Zajaczkowski W, Pisula W, Ma Y, Li C, Müllen K, Wennemers H. Effect of Structural Modifications on the Self-Assembly of Oligoprolines Conjugated with Sterically Demanding Chromophores. Chemistry 2016; 22:3804-9. [PMID: 26891419 DOI: 10.1002/chem.201504952] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Indexed: 12/14/2022]
Abstract
Conjugates between oligoprolines and sterically demanding perylene monoimides (PMIs) form hierarchical supramolecular self-assemblies. The influence of the length and stereochemistry at the attachment site between the peptide backbone and the chromophore on the self-assembly properties of the conjugates was explored. Comparison between oligoprolines bearing 4R- or 4S-configured azidoprolines (Azp) for the conjugation with the PMIs revealed that diastereoisomers with 4R configuration guide the self-assembly consistently better than conjugates with 4S configuration. Elongating the peptide chain beyond nine proline residues or introducing structural "errors", by altering the absolute configuration of one stereogenic center at the outside of the functionalizable oligoproline helix, lowered the efficacy of self-assembly significantly, both in solution phase and in the solid state. The results showed how subtle structural modifications allow for tuning the self-assembly of chromophores and provided further design principles for the development of peptide-chromophore conjugates into nanostructured materials.
Collapse
Affiliation(s)
- Urszula Lewandowska
- Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | | | - Wojciech Pisula
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Yingjie Ma
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Chen Li
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| | - Helma Wennemers
- Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland.
| |
Collapse
|
24
|
Keller K, Zalibera M, Qi M, Koch V, Wegner J, Hintz H, Godt A, Jeschke G, Savitsky A, Yulikov M. EPR characterization of Mn(ii) complexes for distance determination with pulsed dipolar spectroscopy. Phys Chem Chem Phys 2016; 18:25120-25135. [DOI: 10.1039/c6cp04884f] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
EPR properties of four Mn(ii) complexes and Tikhonov regularization-based analysis of RIDME data containing dipolar overtones are presented.
Collapse
Affiliation(s)
- Katharina Keller
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Bioscience
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Michal Zalibera
- Max Planck Institut for Chemical Energy Conversion
- D-45470 Mülheim an der Ruhr
- Germany
- Institute of Physical Chemistry and Chemical Physics
- Slovak University of Technology in Bratislava
| | - Mian Qi
- Faculty of Chemistry and Center for Molecular Materials (CM2)
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Vanessa Koch
- Faculty of Chemistry and Center for Molecular Materials (CM2)
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Julia Wegner
- Faculty of Chemistry and Center for Molecular Materials (CM2)
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Henrik Hintz
- Faculty of Chemistry and Center for Molecular Materials (CM2)
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM2)
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Bioscience
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Anton Savitsky
- Max Planck Institut for Chemical Energy Conversion
- D-45470 Mülheim an der Ruhr
- Germany
| | - Maxim Yulikov
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Bioscience
- ETH Zurich
- 8093 Zurich
- Switzerland
| |
Collapse
|
25
|
Lin YJ, Chu LK, Horng JC. Effects of the Terminal Aromatic Residues on Polyproline Conformation: Thermodynamic and Kinetic Studies. J Phys Chem B 2015; 119:15796-806. [PMID: 26641495 DOI: 10.1021/acs.jpcb.5b08717] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In a peptide or protein, the sequence of aromatic residue-proline or proline-aromatic residue shows a high propensity in forming cis prolyl bonds due to aromatic-proline interactions. In this work, we designed and prepared the polyproline peptides with aromatic amino acids (F, Y, W) incorporated into their N-terminal or C-terminal end to investigate the effects of a terminal aromatic residue on polyproline conformation and the transition kinetics of polyproline I (PPI) to polyproline II (PPII) helices. Circular dichroism measurements reveal that the N-terminal aromatic-proline interaction imposes a more pronounced consequence on the forming propensity of PPI conformation than does the C-terminal aromatic-proline interaction in n-propanol. The propensity of forming PPI is correlated with the strength of aromatic-proline interactions in the order of Tyr-Pro > Trp-Pro > Phe-Pro. In aqueous solution, kinetic studies indicate that aromatic-substitution effects are nondirectional and indistinct on the PPI → PPII conversion rates, suggesting that aromatic-proline interactions may not be an important factor in this process. In addition, the temperature-dependent kinetics shows that the hydrophobicity of aromatic side chain may play a critical role affecting the activation enthalpy and entropy of the conversion of PPI to PPII, providing new insights into the folding of polyproline helices.
Collapse
Affiliation(s)
- Yu-Ju Lin
- Department of Chemistry, National Tsing Hua University , Hsinchu, Taiwan 30013, R.O.C
| | - Li-Kang Chu
- Department of Chemistry, National Tsing Hua University , Hsinchu, Taiwan 30013, R.O.C.,Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University , Hsinchu, Taiwan 30013, R.O.C
| | - Jia-Cherng Horng
- Department of Chemistry, National Tsing Hua University , Hsinchu, Taiwan 30013, R.O.C.,Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University , Hsinchu, Taiwan 30013, R.O.C
| |
Collapse
|
26
|
Doll A, Qi M, Wili N, Pribitzer S, Godt A, Jeschke G. Gd(III)-Gd(III) distance measurements with chirp pump pulses. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 259:153-62. [PMID: 26340436 DOI: 10.1016/j.jmr.2015.08.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/13/2015] [Accepted: 08/14/2015] [Indexed: 05/15/2023]
Abstract
The broad EPR spectrum of Gd(III) spin labels restricts the dipolar modulation depth in distance measurements between Gd(III) pairs to a few percent. To overcome this limitation, frequency-swept chirp pulses are utilized as pump pulses in the DEER experiment. Using a model system with 3.4 nm Gd-Gd distance, application of one single chirp pump pulse at Q-band frequencies leads to modulation depths beyond 10%. However, the larger modulation depth is counteracted by a reduction of the absolute echo intensity due to the pump pulse. As supported by spin dynamics simulations, this effect is primarily driven by signal loss to double-quantum coherence and specific to the Gd(III) high spin state of S=7/2. In order to balance modulation depth and echo intensity for optimum sensitivity, a simple experimental procedure is proposed. An additional improvement by 25% in DEER sensitivity is achieved with two consecutive chirp pump pulses. These pulses pump the Gd(III) spectrum symmetrically around the observation position, therefore mutually compensating for dynamical Bloch-Siegert phase shifts at the observer spins. The improved sensitivity of the DEER data with modulation depths on the order of 20% is due to mitigation of the echo reduction effects by the consecutive pump pulses. In particular, the second pump pulse does not lead to additional signal loss if perfect inversion is assumed. Moreover, the compensation of the dynamical Bloch-Siegert phase prevents signal loss due to spatial dependence of the dynamical phase, which is caused by inhomogeneities in the driving field. The new methodology is combined with pre-polarization techniques to measure long distances up to 8.6 nm, where signal intensity and modulation depth become attenuated by long dipolar evolution windows. In addition, the influence of the zero-field splitting parameters on the echo intensity is studied with simulations. Herein, larger sensitivity is anticipated for Gd(III) complexes with zero-field splitting that is smaller than for the employed Gd-PyMTA complex.
Collapse
Affiliation(s)
- Andrin Doll
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| | - Mian Qi
- Faculty of Chemistry and Center for Molecular Materials, Bielefeld University, Unversitätsstraße 25, 33615 Bielefeld, Germany
| | - Nino Wili
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| | - Stephan Pribitzer
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials, Bielefeld University, Unversitätsstraße 25, 33615 Bielefeld, Germany
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland.
| |
Collapse
|
27
|
Vincent Ching HY, Demay-Drouhard P, Bertrand HC, Policar C, Tabares LC, Un S. Nanometric distance measurements between Mn(ii)DOTA centers. Phys Chem Chem Phys 2015; 17:23368-77. [DOI: 10.1039/c5cp03487f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The distance between two Mn(ii)DOTA complexes attached to the ends of polyproline helices of varying lengths was measured by 94 GHz PELDOR spectroscopy with good accuracy demonstrating their effectiveness as spin-labels.
Collapse
Affiliation(s)
- H. Y. Vincent Ching
- Institute for Integrative Biology of the Cell (I2BC)
- Department of Biochemistry
- Biophysics and Structural Biology
- Université Paris-Saclay
- CEA
| | - Paul Demay-Drouhard
- Ecole Normale Supérieure-PSL Research University
- Départment de Chimie
- Sorbonne Universités – UPMC Univ Paris 06
- CNRS UMR 7203 LBM
- F-75005 Paris
| | - Hélène C. Bertrand
- Ecole Normale Supérieure-PSL Research University
- Départment de Chimie
- Sorbonne Universités – UPMC Univ Paris 06
- CNRS UMR 7203 LBM
- F-75005 Paris
| | - Clotilde Policar
- Ecole Normale Supérieure-PSL Research University
- Départment de Chimie
- Sorbonne Universités – UPMC Univ Paris 06
- CNRS UMR 7203 LBM
- F-75005 Paris
| | - Leandro C. Tabares
- Institute for Integrative Biology of the Cell (I2BC)
- Department of Biochemistry
- Biophysics and Structural Biology
- Université Paris-Saclay
- CEA
| | - Sun Un
- Institute for Integrative Biology of the Cell (I2BC)
- Department of Biochemistry
- Biophysics and Structural Biology
- Université Paris-Saclay
- CEA
| |
Collapse
|