1
|
Chen C, Guo Y, Chang Z, Müllen K, Wang XY. Synthesis of quadruply boron-doped acenes with stimuli-responsive multicolor emission. Nat Commun 2024; 15:8555. [PMID: 39362864 PMCID: PMC11450196 DOI: 10.1038/s41467-024-51806-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 08/19/2024] [Indexed: 10/05/2024] Open
Abstract
Boron-doped acenes have attracted attention due to their unique structures and intriguing luminescent properties. However, the hitherto known boron-doped acenes have only one or two boron atoms, limiting the chemical space of this unique family of compounds and the capability to tune their optical properties. Herein, we report the synthesis of quadruply boron-doped acenes, including pentacene, heptacene, and nonacene. The importance of the boron doping level on the luminescent properties of acenes is demonstrated. The title compounds manifest enhanced Lewis acidity as compared with dihydrodiboraacenes, leading to Lewis-base-responsive emission in the solid state. Moreover, quadruply boron-doped nonacene displays mechanochromic luminescence in addition to Lewis-base-responsive properties, realizing high-contrast solid-state multicolor emission. This work greatly expands the chemistry of boron-doped acenes and offers opportunities for developing boron-based luminescent materials.
Collapse
Affiliation(s)
- Cheng Chen
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Yongkang Guo
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Zhidong Chang
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Xiao-Ye Wang
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China.
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China.
| |
Collapse
|
2
|
Palanisamy J, Rajagopal R, Alfarhan A. Naphthalimide Based Fluorophore for the Detection of Hazardous Volatile Organic Compounds (VOCs). J Fluoresc 2024:10.1007/s10895-024-03903-6. [PMID: 39153168 DOI: 10.1007/s10895-024-03903-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024]
Abstract
The naphthalimide molecule (NAP) was successfully synthesized and characterized by spectroscopy techniques. The NAP probe was exposed to a solvatochromic and aggregation-induced emission (AIE) probe using UV-visible and PL spectroscopy. In this case, the increased polarity of the solvent shows that it is red-shifted. The probe emission, a sky blue to yellow-green color at hexane to DCM, exhibited an excellent quantum yield. Meanwhile, the high-polar solvents of DMF and DMSO had poor quantum yields. This probe NAP showed the aggregation-induced emission property dramatically enhanced the emissions (at 540 nm) from fw = 80-90%. NAP was conducted with two polar solvent vapors in hexane and chloroform to investigate VOCs in a further solid-state study. A real-life test paper kit NAP probe was prepared and investigated VOCs detection against hexane and chloroform. When exposed to hexane vapors, the NAP probe test kit showed sky blue emission under UV light, which returned to greenish emission upon exposure to chloroform. Therefore, the results show that this NAP probe can be used for gas leak detection applications.
Collapse
Affiliation(s)
- Jayasudha Palanisamy
- Department of Chemistry, Subramanya College of Arts and Science, Palani, Tamilnadu, 624618, India.
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
3
|
Huang Y, Ning L, Zhang X, Zhou Q, Gong Q, Zhang Q. Stimuli-fluorochromic smart organic materials. Chem Soc Rev 2024; 53:1090-1166. [PMID: 38193263 DOI: 10.1039/d2cs00976e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Smart materials based on stimuli-fluorochromic π-conjugated solids (SFCSs) have aroused significant interest due to their versatile and exciting properties, leading to advanced applications. In this review, we highlight the recent developments in SFCS-based smart materials, expanding beyond organometallic compounds and light-responsive organic luminescent materials, with a discussion on the design strategies, exciting properties and stimuli-fluorochromic mechanisms along with their potential applications in the exciting fields of encryption, sensors, data storage, display, green printing, etc. The review comprehensively covers single-component and multi-component SFCSs as well as their stimuli-fluorochromic behaviors under external stimuli. We also provide insights into current achievements, limitations, and major challenges as well as future opportunities, aiming to inspire further investigation in this field in the near future. We expect this review to inspire more innovative research on SFCSs and their advanced applications so as to promote further development of smart materials and devices.
Collapse
Affiliation(s)
- Yinjuan Huang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Lijian Ning
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xiaomin Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Qian Zhou
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Qiuyu Gong
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Qichun Zhang
- Department Materials Science and Engineering, Department of Chemistry & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China.
| |
Collapse
|
4
|
Yu H, Tian P, Han N, Li M, Wang M. Nitrogen Atom Induced Contrast Effect on the Mechanofluorochromic Characteristics of Anthracene-Based Acceptor-Donor-Acceptor Fluorescent Molecules. Chem Asian J 2023; 18:e202300712. [PMID: 37735950 DOI: 10.1002/asia.202300712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 09/23/2023]
Abstract
The mechanofluorochromic (MFC) characteristics of anthracene-based acceptor-donor-acceptor (A-D-A) fluorescent molecules are explored through a comprehensive investigation of their photophysical behaviors. Six 9,10-diheteroarylanthracene derivatives with varying acceptor groups (pyridin-4-yl, pyridin-3-yl, pyridin-2-yl, pyrimidin-5-yl, pyrazinyl and quinoxalinyl) are synthesized and systematically characterized. The photophysical properties in both solution and solid-state are examined, revealing subtle yet significant influences of the spatial arrangement and number of nitrogen atoms within the acceptor group on fluorescence emission. Single-crystal structures of these compounds provide insights into their steric configurations and intermolecular packing modes, offering valuable insights into the fundamental mechanisms that underlie the observed MFC properties. This study illuminates the intricate interplay between MFC properties and the refined molecular structure, thus presenting promising avenues for the design and advancement of novel MFC materials.
Collapse
Affiliation(s)
- Hao Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Peiyuan Tian
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Ningxu Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Meng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| |
Collapse
|
5
|
Biesen L, Hartmann Y, Müller TJJ. Diaroyl-S,N-ketene Acetals: Red-Shifted Solid-State and Aggregation-Induced Emitters from a One-Pot Synthesis. Chemistry 2023; 29:e202301908. [PMID: 37475616 DOI: 10.1002/chem.202301908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/22/2023]
Abstract
Symmetric and unsymmetric diaroyl-S,N-ketene acetals can be readily accessed in consecutive syntheses in good to excellent yields by exploiting the inherent nucleophilic character of the methine position. Different aroyl-S,N-ketene acetals as well as acid chlorides yield a library of 19 diaroyl compounds with substitution and linker pattern-tunable emission properties, leading to a significant red-shift of emission in the solid and aggregated state, which was thoroughly investigated. Additionally, the stability of the luminescent aggregates is highly increased. In a follow-up one-pot procedure, pyrazolo-S,N-ketene acetals can easily be accessed employing a nucleophilic cyclocondensation.
Collapse
Affiliation(s)
- Lukas Biesen
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Yannic Hartmann
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Thomas J J Müller
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|
6
|
Tuning the Solid Phase Fluorescence Emission from Long Wavelength Visible to Near-Infrared in Oxazol-5-One Derivatives: Structure-Property Relationship, Theoretical and Experimental Studies. J Fluoresc 2023:10.1007/s10895-023-03158-7. [PMID: 36763296 DOI: 10.1007/s10895-023-03158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/25/2023] [Indexed: 02/11/2023]
Abstract
Most of the fluorescent molecules among organic [Formula: see text]-conjugated materials show blue or green emission in the solid phase but few of them emit red-shifted visible and near-infrared light in the material science. To create molecules emitting for this feature, two π-conjugated oxazol-5-one derivatives containing donor (OCH3) and acceptor groups (NO2) were synthesized. Their optical and charge-transport properties were investigated through experimental and theoretical methods including the single crystal X-ray crystallography, Hirshfeld Surface Analysis, photophysical studies and Density Functional Theory (DFT), respectively. In addition, FT-IR, 1H-NMR, 13C-NMR spectroscopy, cyclic voltammetry (CV) measurements were performed. According to our results, both molecules may provide the significant pathway of development of long wavelength visible and red emissive features in solid phase with the aggregation induced enhanced emission (AIEE) properties particularly in the fields of OLEDs, optical communication, defence and bioimaging.
Collapse
|
7
|
Kajjam AB, Didar S, Allen MJ. AIE active triphenylamine-CF3 based α-cyanostilbenes for selective detection of picric acid in aqueous media and solid support. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Position of Biphenyl Group Turning the Structure and Photophysical Property of D-π- π -A Prototype Fluorescent Material. J Fluoresc 2022; 32:1369-1380. [PMID: 35384545 DOI: 10.1007/s10895-022-02945-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
Abstract
Three novel D-π-π-A prototype compounds, namely, (E)-2-(3-([1,1'-biphenyl]-2-yl)-1-(9H-fluoren-2-yl)allylidene)malononitri-le (2-BAM), (E)-2-(3-([1,1'-biphenyl]-3-yl)-1-(9H-fluoren-2-yl)allylidene)malononitri-le (3-BAM), and (E)-2-(3-([1,1'-biphenyl]-4-yl)-1-(9H-fluoren-2-yl)allylidene)malononitri-le (4-BAM) were synthesized. Furthermore, the structures and photophysical properties of three compounds were compared. Molecules of 2-BAM were packed into a 1D column structure with H-aggregation. However, both of 3-BAM and 4-BAM were packed into 3D layer structures with J-aggregation, respectively. Although all three compounds showed highly twisted molecular geometries, their respective molecular packing and intermolecular interactions were different. Because of the differences in electronic structures of molecules, three compounds displayed different emission behaviors in solid and dilute solution states. This study indicated that changing the position of biphenyl groups is an effective way for turning the structures and photophysical properties of such D-π-π-A prototype fluorescent materials.
Collapse
|
9
|
Wang Z, Li R, Chen L, Zhai X, Liu W, Lin X, Chen L, Chen N, Sun S, Li Z, Hao J, Chen X, Lin B, Xie L. Precise Molecular Design of a Pair of New Regioisomerized Fluorophores With Opposite Fluorescent Properties. Front Chem 2022; 9:823519. [PMID: 35127656 PMCID: PMC8811449 DOI: 10.3389/fchem.2021.823519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Aggregation-induced emission (AIE) has attracted much attention in the past 2 decades. To develop novel AIE-active materials, ACQ-to-AIE transformation via regioisomerization is one of the most straightforward method. However, most of the reported ACQ-to-AIE transformations are achieved by migrating bulky units. In this work, a facile conversion was realized by migrating a small pyrrolidinyl group from para- to ortho-position on the rofecoxib scaffold. As a result, a pair of new isomers named MOX2 and MOX4 exhibited AIE behavior and ACQ activity, respectively. Moreover, MOX2 also showed solvatochromic, mechanochromic, and acidochromic properties with reversible multi-stimulus behavior. Single crystal X-ray analysis of MOX2 revealed that the molecular conformation and its packing mode were responsible for the AIE emission behavior. Further investigation indicated that MOX2 showed high lipid droplets staining selectivity. Taken together, the current work not only provides a new design philosophy for achieving ACQ-to-AIE conversion by migrating a small pyrrolidinyl group but also presents a promising candidate MOX2 for potential applications such as in security ink, optical recording and biological applications.
Collapse
Affiliation(s)
- Zexin Wang
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, China
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Renfu Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Li Chen
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, China
| | - Xin Zhai
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Wei Liu
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, China
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xiang Lin
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, China
- Hengyang Medical School, Institute of Cytology and Genetics, University of South China, Hengyang, China
| | - Liwei Chen
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, China
| | - Nannan Chen
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, China
| | - Shitao Sun
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhenli Li
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Jinle Hao
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Xueyuan Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Bin Lin
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Lijun Xie
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, China
| |
Collapse
|
10
|
Solvent- and Light-Sensitive AIEE-Active Azo Dye: From Spherical to 1D and 2D Assemblies. Int J Mol Sci 2022; 23:ijms23020965. [PMID: 35055154 PMCID: PMC8778914 DOI: 10.3390/ijms23020965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 02/01/2023] Open
Abstract
Fluorescent molecular assembly systems provide an exciting platform for creating stimuli-responsive nano- and microstructured materials with optical, electronic, and sensing functions. To understand the relationship between (i) the plausible molecular structures preferentially adopted depending on the solvent polarity (such as N,N-dimethylformamide [DMF], tetrahydrofuran [THF], and toluene), (ii) the resulting spectroscopic features, and (iii) self-assembled nano-, micro-, and macrostructures, we chose a sterically crowded triangular azo dye (3Bu) composed of a polar molecular core and three peripheral biphenyl wings. The chromophore changed the solution color from yellow to pink-red depending on the solvent polarity. In a yellow DMF solution, a considerable amount of the twisted azo form could be kept stable with the help of favorable intermolecular interactions with the solvent molecules. By varying the concentration of the DMF solution, the morphology of self-assembled structures was transformed from nanoparticles to micrometer-sized one-dimensional (1D) structures such as sticks and fibers. In a pink-red toluene solution, the periphery of the central ring became more planar. The resulting significant amount of the keto-hydrazone tautomer grew into micro- and millimeter-sized 1D structures. Interestingly, when THF-H2O (1:1) mixtures were stored at a low temperature, elongated fibers were stacked sideways and eventually developed into anisotropic two-dimensional (2D) sheets. Notably, subsequent exposure of visible-light-irradiated sphere samples to solvent vapor resulted in reversible fluorescence off↔on switching accompanied by morphological restoration. These findings suggest that rational selection of organic dyes, solvents, and light is important for developing reusable fluorescent materials.
Collapse
|
11
|
Wang Z, Chen L, Lin X, Liu W, Han J, Chen N, Jiang H, Sun S, Li Z, Hao J, Lin B, Li R, Chen X, Zhai X, Xie L. Development of a New Type of Multi-Functional Mechanochromic Luminescence Materials by Infusing a Phenyl Rotator into the Structure of 3,4-diphenylmaleic anhydride. NEW J CHEM 2022. [DOI: 10.1039/d2nj00033d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mechanochromic luminescence (MCL) materials have attracted increasing attention due to their versatile functions in many fields. In this work, based on the structure of 3,4-diphenylmaleic anhydride (BPMA, Mei et. al,...
Collapse
|
12
|
Zhang H, Xu Z, Tao F, Yu WW, Cui Y. Enhanced photostability of aggregation induced emission by hydrophobic groups. Anal Chim Acta 2021; 1186:339076. [PMID: 34756266 DOI: 10.1016/j.aca.2021.339076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022]
Abstract
Since the aggregation induced emission (AIE) phenomenon was reported, many research groups have used this unique AIE effect to develop chemo- or bio-sensors for detecting ions, gases, explosives, proteins, and enzymes. Most of these sensors work in their aggregate state, therefore, fluorescence stability has become one of the important problem, and unfortunately, as far as we know, there is no paper to discuss what factors can improve the fluorescence stability of AIE compounds in the aggregate state, if the fluorescence stability of the sensors are poor, there will seriously affect the detection result. In this article, we found that compounds with hydrophobic long alkyl substituents can maintain stable fluorescence intensity for a long time in the aggregate state. In addition, cyclohexane is introduced as a hydrophobic substituent. Therefore, the fluorescence stability of the aggregates also increased by 90% within 1800s. The aggregation solutions of CB-3 and CSB-2 were left for two weeks, and no significant changes were found in the fluorescence intensity. Molecular dynamics simulation (MDS) shows that the presence of hydrophobic substituents in compounds cause the molecules to be closely interspersed with each other, hence, making it difficult to change the optical properties, microstructure and stacking mode of the AIE aggregates by external stimulations. The introduction of hydrophobic substituents improves the fluorescence stability of AIE compounds, and makes the AIE phenomenon more valuable in the fields of biological/chemical sensing and imaging.
Collapse
Affiliation(s)
- Hanjun Zhang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Zhen Xu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Furong Tao
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - William W Yu
- Louisiana State University, Shreveport, LA, 71115, USA
| | - Yuezhi Cui
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| |
Collapse
|
13
|
The isomeric effect on the D-π-π-A prototype fluorescent material: synthesis, photophysical property, and computation. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02846-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Mise Y, Imato K, Ogi T, Tsunoji N, Ooyama Y. Fluorescence sensors for detection of water based on tetraphenylethene–anthracene possessing both solvatofluorochromic properties and aggregation-induced emission (AIE) characteristics. NEW J CHEM 2021. [DOI: 10.1039/d1nj00186h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
TPE-(An-CHO)4 has been developed as an SFC (solvatofluorochromism)/AIEE (aggregation-induced emission enhancement)-based fluorescence sensor for detection of water over a wide range from low to high water content regions in solvents.
Collapse
Affiliation(s)
- Yuta Mise
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| | - Keiichi Imato
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| | - Takashi Ogi
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| | - Nao Tsunoji
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| | - Yousuke Ooyama
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| |
Collapse
|
15
|
Sodre ER, Guido BC, de Souza PEN, Machado DFS, Carvalho-Silva VH, Chaker JA, Gatto CC, Correa JR, Fernandes TDA, Neto BAD. Deciphering the Dynamics of Organic Nanoaggregates with AIEE Effect and Excited States: Lipophilic Benzothiadiazole Derivatives as Selective Cell Imaging Probes. J Org Chem 2020; 85:12614-12634. [PMID: 32876447 DOI: 10.1021/acs.joc.0c01805] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An aggregation-induced emission enhancement (AIEE) effect in fluorescent lipophilic 2,1,3-benzothiadiazole (BTD) derivatives and their organic nanoaggregates were studied. A set of techniques such as single-crystal X-ray, dynamic light scattering (DLS), electron paramagnetic resonance (EPR), UV-vis, fluorescence, and density functional theory (DFT) calculations have been used to decipher the formation/break (kinetics), properties, and dynamics of the organic nanoaggregates of three BTD small organic molecules. An in-depth study of the excited-state also revealed the preferential relaxation emissive pathways for the BTD derivatives and the dynamics associated with it. The results described herein, for the first time, explain the formation of fluorescent BTD nanoaggregate derivatives and allow for the understanding of their dynamics in solution as well as the ruling forces of both aggregation and break processes along with the involved equilibrium. One of the developed dyes could be used at a nanomolar concentration to selectively stain lipid droplets emitting an intense and bright fluorescence at the red channel. The other two BTDs could also stain lipid droplets at very low concentrations and were visualized preferentially at the blue channel.
Collapse
Affiliation(s)
- Elaine R Sodre
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70904-900, Brazil
| | - Bruna C Guido
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70904-900, Brazil
| | - Paulo E N de Souza
- Laboratory of Software and Instrumentation in Applied Physics and Laboratory of Electron Paramagnetic Resonance, Institute of Physics, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70904-970, Brazil
| | - Daniel F S Machado
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70904-900, Brazil
| | - Valter H Carvalho-Silva
- Divisão de Modelagem de Transformações Físicas e Químicas, Grupo de Química Teo'rica e Estrutural de Ana'polis, Centro de Pesquisa e Pos-Graduação, Universidade Estadual de Goia's,, Ana'polis, Goia's 75001-970, Brazil
| | - Juliano A Chaker
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70904-900, Brazil
| | - Claudia C Gatto
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70904-900, Brazil
| | - Jose R Correa
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70904-900, Brazil
| | - Talita de A Fernandes
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70904-900, Brazil
| | - Brenno A D Neto
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70904-900, Brazil
| |
Collapse
|
16
|
Domínguez R, Moral M, Fernández-Liencres MP, Peña-Ruiz T, Tolosa J, Canales-Vázquez J, García-Martínez JC, Navarro A, Garzón-Ruiz A. Understanding the Driving Mechanisms of Enhanced Luminescence Emission of Oligo(styryl)benzenes and Tri(styryl)-s-triazine. Chemistry 2020; 26:3373-3384. [PMID: 31967698 DOI: 10.1002/chem.201905336] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/10/2020] [Indexed: 01/23/2023]
Abstract
This work is focused on unraveling the mechanisms responsible for the aggregation-induced enhanced emission and solid-state luminescence enhancement effects observed in star-shaped molecules based on 1,3,5-tris(styryl)benzene and tri(styryl)-s-triazine cores. To achieve this, the photophysical properties of this set of molecules were analyzed in three states: free molecules, molecular aggregates in solution, and the solid state. Different spectroscopy and microscopy experiments and DFT calculations were conducted to scrutinize the causative mechanisms of the luminescence enhancement phenomenon observed in some experimental conditions. Enhanced luminescence emission was interpreted in the context of short- and long-range excitonic coupling mechanisms and the restriction of intramolecular vibrations. Additionally, we found that the formation of π-stacking aggregates could block E/Z photoisomerization through torsional motions between phenylene rings in the excited state, and hence, enhancing the luminescence of the system.
Collapse
Affiliation(s)
- Rocío Domínguez
- Department of Inorganic, Organic and Biochemistry, Faculty of Pharmacy, University of Castilla-La Mancha, José María Sánchez Ibañez s/n, 02071, Albacete, Spain.,Regional Center for Biomedical Research (CRIB), University of Castilla-La Mancha, Almansa s/n, 02071, Albacete, Spain
| | - Mónica Moral
- Renewable Energy Research Institute, University of Castilla-La Mancha, Paseo de la Investigación 1, 02071, Albacete, Spain
| | - M Paz Fernández-Liencres
- Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas, 23071, Jaén, Spain
| | - Tomás Peña-Ruiz
- Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas, 23071, Jaén, Spain
| | - Juan Tolosa
- Department of Inorganic, Organic and Biochemistry, Faculty of Pharmacy, University of Castilla-La Mancha, José María Sánchez Ibañez s/n, 02071, Albacete, Spain.,Regional Center for Biomedical Research (CRIB), University of Castilla-La Mancha, Almansa s/n, 02071, Albacete, Spain
| | - Jesús Canales-Vázquez
- Renewable Energy Research Institute, University of Castilla-La Mancha, Paseo de la Investigación 1, 02071, Albacete, Spain
| | - Joaquín C García-Martínez
- Department of Inorganic, Organic and Biochemistry, Faculty of Pharmacy, University of Castilla-La Mancha, José María Sánchez Ibañez s/n, 02071, Albacete, Spain.,Regional Center for Biomedical Research (CRIB), University of Castilla-La Mancha, Almansa s/n, 02071, Albacete, Spain
| | - Amparo Navarro
- Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas, 23071, Jaén, Spain
| | - Andrés Garzón-Ruiz
- Department of Physical Chemistry, Faculty of Pharmacy, University of Castilla-La Mancha, José María Sánchez Ibañez s/n, 02071, Albacete, Spain
| |
Collapse
|
17
|
Zhao CM, Wang KR, Wang C, He X, Li XL. Cooling-Induced NIR Emission Enhancement and Targeting Fluorescence Imaging of Biperylene Monoimide and Glycodendrimer Conjugates. ACS Macro Lett 2019; 8:381-386. [PMID: 35651141 DOI: 10.1021/acsmacrolett.9b00095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Under high concentrations, strong pressure, and low temperature, fluorophores usually exhibit the fluorescence quenching phenomenon. Of significance, the development of aggregation-induced emission (AIE) and pressure-induced emission (PIE) fluorophores has perfectly prevented fluorescence quenching under high concentrations and strong pressure. However, cooling-induced fluorescence quenching in water is still an urgent problem. In this paper, cooling-induced emission (CIE) enhancement based on a biperylene monoimide (BPMI) derivative, BPMI-18Lac, with a conjugated lactose-based glycodendrimer was developed. BPMI-18Lac, as a non-AIE molecule, exhibited the CIE phenomenon with a fluorescent intensity increasing 7-fold when the temperature decreased from 80 to -40 °C. The mechanism was due to the inhibition of the intramolecular electron interactions between the perylene monoimide moieties linked by the C-C single bond. In addition, BPMI-18Lac, as a multivalent glycodendrimer, showed selective fluorescence imaging for HepG 2 cells through the ASGP receptor on the cell surface. Importantly, this work developed a water-soluble CIE molecule for potential application below freezing temperature.
Collapse
Affiliation(s)
- Chun-Miao Zhao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Ke-Rang Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Chong Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Xu He
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Xiao-Liu Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| |
Collapse
|
18
|
Honda T, Nagahara M, Taka N, Nishida JI, Kawase T, Ono K, Kobayashi T, Naito H, Kitamura C. Synthesis and Characterization of Soluble Directly 2,2′-Linked Tetracene Dimer. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tasuku Honda
- Department of Materials Science; School of Engineering; The University of Shiga Prefecture; 2500 Hassaka-cho 522-8533 Hikone Shiga Japan
| | - Masaya Nagahara
- Department of Applied Chemistry; Graduate School of Engineering; University of Hyogo; 2167 Shosha 671-2280 Himeji Hyogo Japan
| | - Naohiro Taka
- Department of Applied Chemistry; Graduate School of Engineering; University of Hyogo; 2167 Shosha 671-2280 Himeji Hyogo Japan
| | - Jun-ichi Nishida
- Department of Applied Chemistry; Graduate School of Engineering; University of Hyogo; 2167 Shosha 671-2280 Himeji Hyogo Japan
| | - Takeshi Kawase
- Department of Applied Chemistry; Graduate School of Engineering; University of Hyogo; 2167 Shosha 671-2280 Himeji Hyogo Japan
| | - Katsuhiko Ono
- Department of Materials Science and Engineering; Graduate School of Engineering; Nagoya Institute of Technology; Gokiso Showa-ku, Nagoya Aichi 466-8555 Japan
| | - Takashi Kobayashi
- Department of Physics and Electronics; Graduate School of Engineering; Osaka Prefecture University; 1-1 Gakuen-cho 599-8531 Naka-ku, Sakai Osaka Japan
| | - Hiroyoshi Naito
- Department of Physics and Electronics; Graduate School of Engineering; Osaka Prefecture University; 1-1 Gakuen-cho 599-8531 Naka-ku, Sakai Osaka Japan
| | - Chitoshi Kitamura
- Department of Materials Science; School of Engineering; The University of Shiga Prefecture; 2500 Hassaka-cho 522-8533 Hikone Shiga Japan
| |
Collapse
|
19
|
Alkyl chains length dependent fluorescence emission and reversible mechanofluorochromism of AIEE-based quinoline derivatives. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.12.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
20
|
Guo S, Pan J, Huang J, Kong L, Yang J. Two AIEE-active α-cyanostilbene derivatives containing BF2 unit for detecting explosive picric acid in aqueous medium. RSC Adv 2019; 9:26043-26050. [PMID: 35531042 PMCID: PMC9070377 DOI: 10.1039/c9ra05116c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/12/2019] [Indexed: 01/04/2023] Open
Abstract
Two novel α-cyanostilbene derivatives bearing triphenylamine and BF2 groups are synthesized (named TPE-B and TPE-BN). The fluorescent emissions of compounds TPE-B and TPE-BN are hypochromatically shifted and bathochromically shifted, respectively, with increasing polarity of the solvents, suggesting that the two compounds have characteristic polarity-dependent solvatochromic effects. Furthermore, they show obvious aggregation-induced emission enhancement (AIEE) phenomenon in THF/water mixture solutions. Meanwhile, compounds TPE-B and TPE-BN emit orange and yellow fluorescence in their solid states, respectively. Most significantly, in aqueous medium, compounds TPE-B and TPE-BN can selectively and sensitively detect picric acid (PA) among a number of nitroaromatic compounds, and their limits of detection (LOD) are calculated as 1.26 × 10−6 M and 1.51 × 10−6 M, respectively. The recognition mechanism for PA can be attributed to the photo-induced electron transfer (PET) process and this is supported by density functional theory (DFT) calculation. This research provides two novel compounds for the rational design of AIEE-active materials for sensing systems. Two α-cyanostilbene derivatives bearing triphenylamine and BF2 groups exhibit AIEE properties and can detect explosive picric acid in aqueous medium.![]()
Collapse
Affiliation(s)
- Shengmei Guo
- College of Chemistry & Chemical Engineering
- Anhui University
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functional Materials
- Hefei 230601
- P. R. China
| | - Jianting Pan
- College of Chemistry & Chemical Engineering
- Anhui University
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functional Materials
- Hefei 230601
- P. R. China
| | - Jianyan Huang
- College of Chemistry & Chemical Engineering
- Anhui University
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functional Materials
- Hefei 230601
- P. R. China
| | - Lin Kong
- College of Chemistry & Chemical Engineering
- Anhui University
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functional Materials
- Hefei 230601
- P. R. China
| | - Jiaxiang Yang
- College of Chemistry & Chemical Engineering
- Anhui University
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functional Materials
- Hefei 230601
- P. R. China
| |
Collapse
|
21
|
Osawa M, Yamayoshi H, Hoshino M, Tanaka Y, Akita M. Luminescence color alteration induced by trapped solvent molecules in crystals of tetrahedral gold(i) complexes: near-unity luminescence mixed with thermally activated delayed fluorescence and phosphorescence. Dalton Trans 2019; 48:9094-9103. [DOI: 10.1039/c9dt01373c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Emission color alteration caused by captured solvent molecules in the crystal lattice of tetrahedral gold(i) complexes.
Collapse
Affiliation(s)
- Masahisa Osawa
- Department of Applied Chemistry
- Nippon Institute of Technology
- Saitama
- Japan
| | - Hiroto Yamayoshi
- Department of Applied Chemistry
- Nippon Institute of Technology
- Saitama
- Japan
| | - Mikio Hoshino
- Department of Applied Chemistry
- Nippon Institute of Technology
- Saitama
- Japan
| | - Yuya Tanaka
- Laboratory for Chemistry and Life Science Institute of Innovative Research
- Tokyo Institute of Technology R1-27
- Yokohama 226-8503
- Japan
| | - Munetaka Akita
- Laboratory for Chemistry and Life Science Institute of Innovative Research
- Tokyo Institute of Technology R1-27
- Yokohama 226-8503
- Japan
| |
Collapse
|
22
|
Mechanoresponsive Material of AIE-Active 1,4-Dihydropyrrolo[3,2-b]pyrrole Luminophores Bearing Tetraphenylethylene Group with Rewritable Data Storage. MOLECULES (BASEL, SWITZERLAND) 2018; 23:molecules23123255. [PMID: 30544649 PMCID: PMC6321101 DOI: 10.3390/molecules23123255] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/25/2018] [Accepted: 11/28/2018] [Indexed: 01/05/2023]
Abstract
A new tetraphenylethylene (TPE) functionalized 1,4-dihydropyrrolo[3,2-b]pyrrole derivative (APPTPECN) was synthesized with obvious aggregation-induced emission (AIE) active by simple synthetic method. APPTPECN exhibited reversible mechanofluorochromic (MFC) behavior. The powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM) investigations exhibited that the MFC nature is originated through a conversion from the microcrystalline to amorphous phase under the stimulus of external force. The results obtained would be of major help in understanding the MFC mechanism and designing new MFC materials. Compound APPTPECN has the potential possibility to employ in rewritable data storage and is of assistance in the rational design of smart luminescent materials.
Collapse
|
23
|
Baig MK, Prusti B, Roy D, Sahu PK, Sarkar M, Sharma A, Chakravarty M. Weak Donor-/Strong Acceptor-Linked Anthracenyl π-Conjugates as Solvato(fluoro)chromophore and AEEgens: Contrast between Nitro and Cyano Functionality. ACS OMEGA 2018; 3:9114-9125. [PMID: 31459046 PMCID: PMC6644878 DOI: 10.1021/acsomega.8b01258] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/30/2018] [Indexed: 05/06/2023]
Abstract
Steady development on photophysical behaviors for a variety of organic fluorophores inspired us to generate anthracene-based fluorescent molecules with a strong acceptor and a significantly weak donor through a π-spacer. Such molecules are found to have substantial twisted conformational orientations in the solid state and enhanced apolar character because of the attachment of tolyl or mesityl group with an anthracenyl core. Upon exposure to a variety of solvents, strong solvatochromism was noticed for 4-nitro compound (84 nm red shift) in contrast to the cyano analogue (18 nm red shift). Both these probes were highly emissive in apolar solvents while nitro-analogue, in particular, could discriminate the solvents of E T(30) (a measure of microscopic solvent polarity) ranging from 31 to 37. Thus, 4-nitro compounds can be successfully employed to detect and differentiate the apolar solvents. On the contrary, the 2-nitro analogue is almost nonemissive for the same range of solvents perhaps because of favorable excited-state intramolecular proton-transfer process. The fundamental understanding of solvatochromic properties through the formation of twisted intramolecular charge-transfer (TICT) state is experimentally analyzed by synthesizing and studying the π-conjugates linked to only benzene in place of nitro or cyanobenzene, which exhibits no solvatochromism and that helped finding the possible emission, originated from the locally excited state. Moreover, the molecular structures for these compounds are determined by the single-crystal X-ray diffraction studies to examine the change in emission properties with molecular packing and alignment in the aggregated state. The measurement of dihedral angles between the substituents and anthracenyl core was helpful in finding the possible extent of electronic conjugations within the system to decipher both solvatochromism and aggregation enhanced emission (AEE)-behavior. The cyano analogue exhibited prominent AEE-behavior, whereas nitro analogues showed the aggregation-caused quenching effect. The reason behind such dissimilarity in solvatochromism and AEE-behavior between cyano- and nitro-linked anthracenyl π-conjugates are also addressed through experimental outcomes.
Collapse
Affiliation(s)
- Moghal
Zubair Khalid Baig
- Department
of Chemistry, Birla Institute of Technology
and Science, Pilani-Hyderabad Campus, Jawahar Nagar, Shamirpet
Mandal, Hyderabad, Telangana 500078, India
| | - Banchhanidhi Prusti
- Department
of Chemistry, Birla Institute of Technology
and Science, Pilani-Hyderabad Campus, Jawahar Nagar, Shamirpet
Mandal, Hyderabad, Telangana 500078, India
| | - Durba Roy
- Department
of Chemistry, Birla Institute of Technology
and Science, Pilani-Hyderabad Campus, Jawahar Nagar, Shamirpet
Mandal, Hyderabad, Telangana 500078, India
| | - Prabhat Kumar Sahu
- School
of Chemical Sciences, National Institute
of Science Education and Research Bhubaneswar, Jatni, Odisha 752050, India
| | - Moloy Sarkar
- School
of Chemical Sciences, National Institute
of Science Education and Research Bhubaneswar, Jatni, Odisha 752050, India
| | - Aayushi Sharma
- Department
of Chemistry, Birla Institute of Technology
and Science, Pilani-Hyderabad Campus, Jawahar Nagar, Shamirpet
Mandal, Hyderabad, Telangana 500078, India
| | - Manab Chakravarty
- Department
of Chemistry, Birla Institute of Technology
and Science, Pilani-Hyderabad Campus, Jawahar Nagar, Shamirpet
Mandal, Hyderabad, Telangana 500078, India
- E-mail: (M.C.)
| |
Collapse
|
24
|
Huang XD, Kurmoo M, Bao SS, Fan K, Xu Y, Hu ZB, Zheng LM. Coupling photo-, mechano- and thermochromism and single-ion-magnetism of two mononuclear dysprosium-anthracene-phosphonate complexes. Chem Commun (Camb) 2018. [PMID: 29537016 DOI: 10.1039/c8cc00220g] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
DyIII(depma)3(NO3)3 (1) and DyIII(depma)4(NO3)2(CF3SO3) (2) differ structurally by the number of depma ligands and the supramolecular interactions (π-π and C-Hπ, respectively) between anthracene moieties. They exhibit single-ion-magnetism which is coupled to photo- and mechanochromism that are partially reversible by thermal annealing. The changes are associated with the formation and destruction of excimers.
Collapse
Affiliation(s)
- Xin-Da Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
25
|
Wang Z, Cheng X, Qin A, Zhang H, Sun JZ, Tang BZ. Multiple Stimuli Responses of Stereo-Isomers of AIE-Active Ethynylene-Bridged and Pyridyl-Modified Tetraphenylethene. J Phys Chem B 2018; 122:2165-2176. [DOI: 10.1021/acs.jpcb.7b10929] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zhaoyang Wang
- MOE
Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiao Cheng
- MOE
Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Anjun Qin
- Guangdong
Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State
Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Haoke Zhang
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Institute
for Advanced Study, Institute of Molecular Functional Materials, Division
of Biomedical Engineering, The Hong Kong University of Science and Technology,
Clear Water Bay, Kowloon, Hong Kong, China
| | - Jing Zhi Sun
- MOE
Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ben Zhong Tang
- MOE
Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Guangdong
Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State
Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong 510640, China
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Institute
for Advanced Study, Institute of Molecular Functional Materials, Division
of Biomedical Engineering, The Hong Kong University of Science and Technology,
Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
26
|
Pang X, Yu X, Xie D, Li Y, Geng L, Ren J, Zhen X. Tunable multicolor emissions in a monocomponent gel system by varying the solvent, temperature and fluoride anion. Org Biomol Chem 2018; 14:11176-11182. [PMID: 27834972 DOI: 10.1039/c6ob02007k] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The facile tuning of the fluorescent properties of organogels is highly desirable for optical switches, light-emitting diodes, chemosensors and bioprobes. The design of organic molecules with multiple emission colors but only one molecular platform remains challenging. Herein, a new cholesterol-based organogelator N1 containing D-A pairs (salicylaldehyde and naphthalimide units) was designed. We successfully obtained multiple solvent-tuned emission colors in both the solution and gel states using a unimolecular platform. Moreover, the effects of the solvent on the gel morphology, rheology and anion-responsive properties were studied. Finally, we showed that the gel in benzene displayed reversible thermochromic properties with changes in emission color from yellow-green to red. Several experiments suggested that a short-distance and ordered array of the D-A pairs facilitated the efficient intermolecular electron transfer of the fluorophores.
Collapse
Affiliation(s)
- Xuelei Pang
- Hebei Research Center of Pharmaceutical and Chemical Engineering, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China.
| | - Xudong Yu
- Hebei Research Center of Pharmaceutical and Chemical Engineering, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China.
| | - Dongyan Xie
- Hebei Research Center of Pharmaceutical and Chemical Engineering, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China.
| | - Yajuan Li
- Hebei Research Center of Pharmaceutical and Chemical Engineering, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China.
| | - Lijun Geng
- Hebei Research Center of Pharmaceutical and Chemical Engineering, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China.
| | - Jujie Ren
- Hebei Research Center of Pharmaceutical and Chemical Engineering, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China.
| | - Xiaoli Zhen
- Hebei Research Center of Pharmaceutical and Chemical Engineering, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China.
| |
Collapse
|
27
|
Liu M, Onchaiya S, Tan LYF, Haghighatbin MA, Luu T, Owyong TC, Hushiarian R, Hogan CF, Smith TA, Hong Y. 9-Vinylanthracene Based Fluorogens: Synthesis, Structure-Property Relationships and Applications. Molecules 2017; 22:molecules22122148. [PMID: 29207549 PMCID: PMC6149741 DOI: 10.3390/molecules22122148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/24/2017] [Accepted: 12/01/2017] [Indexed: 01/16/2023] Open
Abstract
Fluorescent dyes with aggregation-induced emission (AIE) properties exhibit intensified emission upon aggregation. They are promising candidates to study biomolecules and cellular changes in aqueous environments when aggregation formation occurs. Here, we report a group of 9-position functionalized anthracene derivatives that were conveniently synthesized by the palladium-catalyzed Heck reaction. Using fluorometric analyses, these dyes were confirmed to show AIE behavior upon forming aggregates at high concentrations, in viscous solvents, and when poorly solubilized. Their photophysical properties were then further correlated with their structural features, using density functional theory (DFT) calculation. Finally, we demonstrated their potential applications in monitoring pH changes, quantifying globular proteins, as well as cell imaging with confocal microscopy.
Collapse
Affiliation(s)
- Mengjie Liu
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086 Australia.
| | - Sawaros Onchaiya
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086 Australia.
| | - Lewis Yi Fong Tan
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086 Australia.
| | - Mohammad A Haghighatbin
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086 Australia.
| | - Tracey Luu
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086 Australia.
| | - Tze Cin Owyong
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086 Australia.
- School of Chemistry, The University of Melbourne, Parkville, VIC 3010 Australia.
| | - Roozbeh Hushiarian
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086 Australia.
| | - Conor F Hogan
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086 Australia.
| | - Trevor A Smith
- School of Chemistry, The University of Melbourne, Parkville, VIC 3010 Australia.
| | - Yuning Hong
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086 Australia.
| |
Collapse
|
28
|
Yang W, Liu C, Lu S, Du J, Gao Q, Zhang R, Liu Y, Yang C. Smart On-Off Switching Luminescence Materials with Reversible Piezochromism and Basichromism. ChemistrySelect 2017. [DOI: 10.1002/slct.201701997] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Wei Yang
- College of Biological and Pharmaceutical Science; China Three Gorges University; Yichang 443002, P R China
| | - Chunlin Liu
- College of Biological and Pharmaceutical Science; China Three Gorges University; Yichang 443002, P R China
| | - Shuang Lu
- College of Biological and Pharmaceutical Science; China Three Gorges University; Yichang 443002, P R China
| | - Jinya Du
- College of Biological and Pharmaceutical Science; China Three Gorges University; Yichang 443002, P R China
| | - Qingyun Gao
- College of Biological and Pharmaceutical Science; China Three Gorges University; Yichang 443002, P R China
| | - Ronghua Zhang
- College of Biological and Pharmaceutical Science; China Three Gorges University; Yichang 443002, P R China
| | - Yi Liu
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072, PR China
| | - Changying Yang
- College of Biological and Pharmaceutical Science; China Three Gorges University; Yichang 443002, P R China
| |
Collapse
|
29
|
Piezochromic luminescence and aggregation induced emission of 9,10-bis[2-(2-alkoxynaphthalen-1-yl)vinyl]anthracene derivatives. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.02.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Liu H, Huang R, Fang Y. New Fluorescent Conjugates Displaying Solvatochromic Properties. CHINESE J CHEM 2017. [DOI: 10.1002/cjoc.201600732] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Huijing Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering; Shaanxi Normal University; Xi'an Shaanxi 710062 China
| | - Rongrong Huang
- School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an Shaanxi 710062 China
| | - Yu Fang
- School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an Shaanxi 710062 China
| |
Collapse
|
31
|
Lübtow M, Helmers I, Stepanenko V, Albuquerque RQ, Marder TB, Fernández G. Self-Assembly of 9,10-Bis(phenylethynyl) Anthracene (BPEA) Derivatives: Influence of π-π and Hydrogen-Bonding Interactions on Aggregate Morphology and Self-Assembly Mechanism. Chemistry 2017; 23:6198-6205. [DOI: 10.1002/chem.201605989] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Michael Lübtow
- Institut für Organische Chemie; Universität Würzburg; Am Hubland 97074 Würzburg Germany
- Institut für Anorganische Chemie; Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Ingo Helmers
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Germany
| | - Vladimir Stepanenko
- Institut für Organische Chemie; Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Rodrigo Q. Albuquerque
- School of Pharmacy and Biomolecular Sciences; Liverpool John Moores University (LJMU); Liverpool UK
| | - Todd B. Marder
- Institut für Anorganische Chemie; Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Gustavo Fernández
- Institut für Organische Chemie; Universität Würzburg; Am Hubland 97074 Würzburg Germany
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
32
|
Peng L, Xu S, Zheng X, Cheng X, Zhang R, Liu J, Liu B, Tong A. Rational Design of a Red-Emissive Fluorophore with AIE and ESIPT Characteristics and Its Application in Light-Up Sensing of Esterase. Anal Chem 2017; 89:3162-3168. [DOI: 10.1021/acs.analchem.6b04974] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lu Peng
- Department
of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation,
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, People’s Republic of China
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Shidang Xu
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Xiaokun Zheng
- Department
of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation,
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Xiamin Cheng
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Ruoyu Zhang
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Jie Liu
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Bin Liu
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- Institute of Materials Research and Engineering (A*STAR), 3 Research Link, Singapore 117602, Singapore
| | - Aijun Tong
- Department
of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation,
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, People’s Republic of China
| |
Collapse
|
33
|
Qian L, Zhou Y, Liu M, Huang X, Wu G, Gao W, Ding J, Wu H. Mechanofluorochromic properties of fluorescent molecules based on a dicyanomethylene-4H-pyran and indole isomer containing different alkyl chains via an alkene module. RSC Adv 2017. [DOI: 10.1039/c7ra06951k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The length and isomerization of the alkyl chains exhibit different effects on the mechanofluorochromic properties of the dicyanomethylene-4H-pyran derivatives when the substitution position of the indole unit is different.
Collapse
Affiliation(s)
- Lebin Qian
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou
- P. R. China
| | - Yibin Zhou
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou
- P. R. China
| | - Miaochang Liu
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou
- P. R. China
| | - Xiaobo Huang
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou
- P. R. China
| | - Ge Wu
- School of Pharmacy
- Wenzhou Medical University
- Wenzhou 325035
- P. R. China
| | - Wenxia Gao
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou
- P. R. China
| | - Jinchang Ding
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou
- P. R. China
| | - Huayue Wu
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou
- P. R. China
| |
Collapse
|
34
|
Zhang Y, Feng YQ, Wang JH, Han G, Li MY, Xiao Y, Feng ZD. Moiety effect on the luminescent property of star-shaped triphenylamine (TPA) derivatives as mechanochromic materials. RSC Adv 2017. [DOI: 10.1039/c7ra03123h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Introducing small moieties, such as –COOH/–COOCH3, on TPA will form supramolecular interactions with different self-assemblies, demonstrating different effects on the MCF luminescent property.
Collapse
Affiliation(s)
- Ying Zhang
- Institute of Molecular Science
- Innovation Center of Chemistry and Molecular Science
- Shanxi University
- Key Laboratory of Energy Conversation and Storage of Shanxi Province
- Taiyuan 030006
| | - Yao-Qin Feng
- Institute of Molecular Science
- Innovation Center of Chemistry and Molecular Science
- Shanxi University
- Key Laboratory of Energy Conversation and Storage of Shanxi Province
- Taiyuan 030006
| | - Jun-Hao Wang
- Institute of Crystalline Materials
- Shanxi University
- Taiyuan 030006
- PR China
| | - Gaoyi Han
- Institute of Molecular Science
- Innovation Center of Chemistry and Molecular Science
- Shanxi University
- Key Laboratory of Energy Conversation and Storage of Shanxi Province
- Taiyuan 030006
| | - Miao-Yu Li
- Institute of Molecular Science
- Innovation Center of Chemistry and Molecular Science
- Shanxi University
- Key Laboratory of Energy Conversation and Storage of Shanxi Province
- Taiyuan 030006
| | - Yaoming Xiao
- Institute of Molecular Science
- Innovation Center of Chemistry and Molecular Science
- Shanxi University
- Key Laboratory of Energy Conversation and Storage of Shanxi Province
- Taiyuan 030006
| | - Zhen-Dong Feng
- Institute of Molecular Science
- Innovation Center of Chemistry and Molecular Science
- Shanxi University
- Key Laboratory of Energy Conversation and Storage of Shanxi Province
- Taiyuan 030006
| |
Collapse
|
35
|
|
36
|
Qi C, Ma H, Fan H, Yang Z, Cao H, Wei Q, Lei Z. Study of Red-Emission Piezochromic Materials Based on Triphenylamine. Chempluschem 2016; 81:637-645. [DOI: 10.1002/cplu.201600104] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Chunxuan Qi
- Chemistry Department; Northwest Normal University; 967 Anning East Road Lanzhou 730070 P. R. China
| | - Hengchang Ma
- Chemistry Department; Northwest Normal University; 967 Anning East Road Lanzhou 730070 P. R. China
| | - Hongting Fan
- Chemistry Department; Northwest Normal University; 967 Anning East Road Lanzhou 730070 P. R. China
| | - Zengming Yang
- Chemistry Department; Northwest Normal University; 967 Anning East Road Lanzhou 730070 P. R. China
| | - Haiying Cao
- Chemistry Department; Northwest Normal University; 967 Anning East Road Lanzhou 730070 P. R. China
| | - Qiaojuan Wei
- Chemistry Department; Northwest Normal University; 967 Anning East Road Lanzhou 730070 P. R. China
| | - Ziqiang Lei
- Chemistry Department; Northwest Normal University; 967 Anning East Road Lanzhou 730070 P. R. China
| |
Collapse
|
37
|
He L, Li L, Liu X, Wang J, Huang H, Bu W. Acid–base-controlled and dibenzylammonium-assisted aggregation induced emission enhancement of poly(tetraphenylethene) with an impressive blue shift. Polym Chem 2016. [DOI: 10.1039/c6py00275g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The non-covalent interaction between dibenzylammonium chloride and DB24C8 groups in poly(tetraphenylethene)-based conjugated polymers not only leads to an AIEE feature but also a significant blue shift from 515 to 483 nm.
Collapse
Affiliation(s)
- Lipeng He
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province
- State Key Laboratory of Applied Organic Chemistry
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou City
| | - Lijie Li
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province
- State Key Laboratory of Applied Organic Chemistry
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou City
| | - Xiaoning Liu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province
- State Key Laboratory of Applied Organic Chemistry
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou City
| | - Jun Wang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province
- State Key Laboratory of Applied Organic Chemistry
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou City
| | - Huanting Huang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province
- State Key Laboratory of Applied Organic Chemistry
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou City
| | - Weifeng Bu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province
- State Key Laboratory of Applied Organic Chemistry
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou City
| |
Collapse
|
38
|
Han F, Zhang R, Zhang Z, Su J, Ni Z. A new TICT and AIE-active tetraphenylethene-based Schiff base with reversible piezofluorochromism. RSC Adv 2016. [DOI: 10.1039/c6ra14729a] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A new tetraphenylethene-based Schiff base N-5-nitrosalicylidene-4-tetraphenylethenylamine (NSTPE) exhibits an interesting “on–off–on” optical switching property and reversible piezofluorochromic properties.
Collapse
Affiliation(s)
- Fangfang Han
- School of Chemical Engineering and Technology
- China University of Mining and Technology
- Xuzhou 221116
- P. R. China
| | - Ran Zhang
- School of Chemical Engineering and Technology
- China University of Mining and Technology
- Xuzhou 221116
- P. R. China
| | | | - Jianguo Su
- School of Chemical Engineering and Technology
- China University of Mining and Technology
- Xuzhou 221116
- P. R. China
| | - Zhonghai Ni
- School of Chemical Engineering and Technology
- China University of Mining and Technology
- Xuzhou 221116
- P. R. China
| |
Collapse
|
39
|
Yu X, Ge X, Lan H, Li Y, Geng L, Zhen X, Yi T. Tunable and Switchable Control of Luminescence through Multiple Physical Stimulations in Aggregation-Based Monocomponent Systems. ACS APPLIED MATERIALS & INTERFACES 2015; 7:24312-24321. [PMID: 26462144 DOI: 10.1021/acsami.5b08402] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This report describes how the luminescence of naphthalimide could be tuned by various physical stimuli, including heat, sonication, and grinding. Herein, instant and switchable control of color and fluorescent emissions has been achieved by the sonication-triggered gelation of an organic liquid with naphthalimide-based organogelators (N3-N7). Green emissive suspensions of the gelators in organic liquids are transformed into orange emissive gels upon brief irradiation with ultrasound with an emission wavelength red-shift of approximately 60 nm and fluorescence intensity quenching by a factor of 20, which can subsequently be reversed by heating. When sonication-triggered S-gels are evaporated to S-xerogels, the solid state xerogels (N3, N4, N6, N7) exhibit mechanochromism, the color of which changes from red to yellow and the emission color of which changes from orange to green with enhanced intensity by grinding. This mechanochromic property can be reversed through a regelation process. The mechanochromic character of the S-xerogel of N3 is thus applied to quantitatively sense the mechanical pressure range from 2 to 40 MPa through fluorescence changes, reflecting a new type of application for gelation assembly. The physical stimuli triggered fluorescence changes of these compounds strongly depend on the molecular structure and solvent. The results demonstrate that the different aggregation modes and long-range order arrangement of the molecules regulated by the stimulus may affect the internal charge transfer (ICT) process of the naphthalimide groups, resulting in the tunability of the photophysical properties of the gelators. This report provides a new strategy for tunable and switchable control of luminescence through nonchemical stimuli in aggregation-based monocomponent systems.
Collapse
Affiliation(s)
- Xudong Yu
- Department of Chemistry and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University , 220 Handan Road, Shanghai 200433, China
- College of Science and Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology , Yuhua Road 70, Shijiazhuang 050080, China
| | - Xiaoting Ge
- College of Science and Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology , Yuhua Road 70, Shijiazhuang 050080, China
| | - Haichuang Lan
- Department of Chemistry and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University , 220 Handan Road, Shanghai 200433, China
| | - Yajuan Li
- College of Science and Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology , Yuhua Road 70, Shijiazhuang 050080, China
| | - Lijun Geng
- College of Science and Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology , Yuhua Road 70, Shijiazhuang 050080, China
| | - Xiaoli Zhen
- College of Science and Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology , Yuhua Road 70, Shijiazhuang 050080, China
| | - Tao Yi
- Department of Chemistry and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University , 220 Handan Road, Shanghai 200433, China
| |
Collapse
|