1
|
Levet V, Ramesh B, Wang C, Besset T. C-H Trifluoromethylthiolation of aldehyde hydrazones. Beilstein J Org Chem 2024; 20:2883-2890. [PMID: 39559444 PMCID: PMC11571951 DOI: 10.3762/bjoc.20.242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024] Open
Abstract
The selective C-H trifluoromethylthiolation of aldehyde hydrazones afforded interesting fluorinated building blocks, which could be used as a synthetic platform. Starting from readily available (hetero)aromatic and aliphatic hydrazones, the formation of a C-SCF3 bond was achieved under oxidative and mild reaction conditions in the presence of the readily available AgSCF3 salt via a one-pot sequential process (28 examples, up to 91% yield). Mechanistic investigations revealed that AgSCF3 was the active species in the transformation.
Collapse
Affiliation(s)
- Victor Levet
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| | - Balu Ramesh
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| | - Congyang Wang
- Beijing National Laboratory for Molecular Sciences CAS key Laboratory of Molecular Recognition and Function CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Tatiana Besset
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| |
Collapse
|
2
|
Wang N, Wang WW, Liang XW, Wang PY, Liu T, Yao ZQ, Zhao JP, Liu FC. Giant Anisotropic Thermal Expansion Phase Transition of Silver Iodide Anionic Organic-Inorganic Hybrid. Inorg Chem 2024; 63:12350-12359. [PMID: 38887050 DOI: 10.1021/acs.inorgchem.4c01846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Hybrid metal halide materials with charming phase transition behaviors have attracted considerable attention. In former works, much attention has been focused on the phase transition triggered by the order-disorder or displacement motions of the organic component. However, manipulating the variation of the inorganic component to achieve the phase transition has rarely been reported. Herein, two novel organic-inorganic hybrid materials, [THPM]n[AgX2]n (THPM = 3,4,5,6-tetrahydropyrimidin-1-ium, X = I for 1 and Br for 2) with the [AgX2]nn- anionic chain structure, were synthesized. At 293 K, the [AgX2]nn- chains in 1 were constructed by the tetramer units of Ag atoms, while that in 2 was assembled by the dimer structure. Upon heating to 355 K, owing to the variation of the metallophilic interaction between adjacent Ag atoms, a unique transformation process from tetramer to dimer in [AgI2]nn- chains of 1 can be detected and endow 1 with a giant anisotropic thermal expansion with linear strain of ∼7% and shear strain of ∼20%, which can be used as a mechanical actuator for switching. Alternatively, for 2, no phase transition process can be observed upon the temperature variation. This work provides an effective approach to design phase transition materials triggered by the inorganic part.
Collapse
Affiliation(s)
- Nan Wang
- TKL of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Wei-Wei Wang
- TKL of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Xiao-Wen Liang
- TKL of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Pu-Yue Wang
- TKL of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Tong Liu
- TKL of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Zhao-Quan Yao
- TKL of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Jiong-Peng Zhao
- TKL of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Fu-Chen Liu
- TKL of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| |
Collapse
|
3
|
Lu B, Cheng H, Qu L. Inorganic Hydrogel Based on Low-Dimensional Nanomaterials. ACS NANO 2024; 18:2730-2749. [PMID: 38221737 DOI: 10.1021/acsnano.3c11262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Composed of three-dimensional (3D) nanoscale inorganic bones and up to 99% water, inorganic hydrogels have attracted much attention and undergone significant growth in recent years. The basic units of inorganic hydrogels could be metal nanoparticles, metal nanowires, SiO2 nanowires, graphene nanosheets, and MXene nanosheets, which are then assembled into the special porous structures by the sol-gel process or gelation via either covalent or noncovalent interactions. The high electrical and thermal conductivity, resistance to corrosion, stability across various temperatures, and high surface area make them promising candidates for diverse applications, such as energy storage, catalysis, adsorption, sensing, and solar steam generation. Besides, some interesting derivatives, such as inorganic aerogels and xerogels, can be produced through further processing, diversifying their functionalities and application domains greatly. In this context, we primarily provide a comprehensive overview of the current status of inorganic hydrogels and their derivatives, including the structures of inorganic hydrogels with various compositions, their gelation mechanisms, and their exceptional practical performance in fields related to energy and environmental applications.
Collapse
Affiliation(s)
- Bing Lu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- Laboratory of Flexible Electronics Technology, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Tsinghua University, Beijing 100084, P. R. China
| | - Huhu Cheng
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- Laboratory of Flexible Electronics Technology, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Tsinghua University, Beijing 100084, P. R. China
| | - Liangti Qu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- Laboratory of Flexible Electronics Technology, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
4
|
Monsigny L, Doche F, Besset T. Transition-metal-catalyzed C-H bond activation as a sustainable strategy for the synthesis of fluorinated molecules: an overview. Beilstein J Org Chem 2023; 19:448-473. [PMID: 37123090 PMCID: PMC10130906 DOI: 10.3762/bjoc.19.35] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
The last decade has witnessed the emergence of innovative synthetic tools for the synthesis of fluorinated molecules. Among these approaches, the transition-metal-catalyzed functionalization of various scaffolds with a panel of fluorinated groups (XRF, X = S, Se, O) offered straightforward access to high value-added compounds. This review will highlight the main advances made in the field with the transition-metal-catalyzed functionalization of C(sp2) and C(sp3) centers with SCF3, SeCF3, or OCH2CF3 groups among others, by C-H bond activation. The scope and limitations of these transformations are discussed in this review.
Collapse
Affiliation(s)
- Louis Monsigny
- Normandie University, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Floriane Doche
- Normandie University, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Tatiana Besset
- Normandie University, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| |
Collapse
|
5
|
Mumtaz Y, Liu J, Huang X. Copper-Promoted Trifluoromethylthiolation of Anilines with CF 3SO 2Na. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202203031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
6
|
Liu L, Gu YC, Zhang CP. Palladium-catalyzed C-H trifluoromethylselenolation of arenes with [Me 4N][SeCF 3] and an oxidant. Chem Commun (Camb) 2022; 58:9238-9241. [PMID: 35899839 DOI: 10.1039/d2cc02897b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Trifluoromethylselenolation of arenes with [Me4N][SeCF3] in the presence of an oxidant through Pd-catalyzed C(sp2)-H activation under the assistance of a directing group is established for the first time. The reaction tolerates different directing groups and a variety of functional groups, enabling selective installation of a SeCF3 moiety onto the ortho positions of arenes. Mechanistic studies revealed that the CF3SeSeCF3 intermediate in situ generated from oxidation of [Me4N][SeCF3] might be the real SeCF3 reagent in the reaction.
Collapse
Affiliation(s)
- Lei Liu
- School of Materials Science and Engineering & School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China.
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG426EY, UK
| | - Cheng-Pan Zhang
- School of Materials Science and Engineering & School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China.
| |
Collapse
|
7
|
Cui M, Wang R, Yang Q, Kuang C. Copper-Promoted One-Pot Sandmeyer-Type Reaction for the Synthesis of N-Aryltriazoles. J Org Chem 2022; 87:9654-9662. [PMID: 35880792 DOI: 10.1021/acs.joc.2c00697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we report the copper-catalyzed one-pot Sandmeyer-type reaction of aromatic amines with triazoles to afford N-aryl-1,2,3-triazoles. Diazonium salts, formed from aromatic amines and tert-butyl nitrite in the presence of fluoroboric acid, reacted with triazoles in a copper-catalyzed Sandmeyer-type reaction. The reaction proceeded under mild conditions to afford N-aryltriazoles in moderate to good yields. This method is amenable to a wide range of aromatic amines and triazoles and shows diverse functional group tolerance. Inhibition of the reaction upon the addition of free radical scavengers suggested a radical pathway, in which the aryl radical, copper, and triazole formed a complex that underwent reductive elimination to give aryltriazole compounds; this is consistent with the mechanism underlying the Sandmeyer reaction. Thus, we demonstrate a new effective strategy for the construction of C-N bonds via Sandmeyer-type reactions and a valuable alternative approach for the synthesis of aryltriazole derivatives.
Collapse
Affiliation(s)
- Menghan Cui
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Rong Wang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qing Yang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chunxiang Kuang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
8
|
Guo R, Zhang X, Bu X, Wang M, Zhao B, Gao Y, Jia Q, Wang Y. Se
‐(Fluoromethyl) Benzenesulfonoselenoates: Shelf‐Stable, Easily Available Reagents for Monofluoromethylselenolation. Chemistry 2022; 28:e202200981. [DOI: 10.1002/chem.202200981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Rui‐Li Guo
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education School of Foreign Languages College of Chemistry & Materials Science Northwest University Xi'an 710069 P. R. China
| | - Xing‐Long Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education School of Foreign Languages College of Chemistry & Materials Science Northwest University Xi'an 710069 P. R. China
| | - Xian‐Pan Bu
- Ankang R&D Center for Se-enriched Products, Key Laboratory of Se-enriched Products Development and Quality Control Ministry of Agriculture and Rural Affairs Ankang Shaanxi 725000 P. R. China
| | - Meng‐Yue Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education School of Foreign Languages College of Chemistry & Materials Science Northwest University Xi'an 710069 P. R. China
| | - Bao‐Yin Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education School of Foreign Languages College of Chemistry & Materials Science Northwest University Xi'an 710069 P. R. China
| | - Ya‐Ru Gao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education School of Foreign Languages College of Chemistry & Materials Science Northwest University Xi'an 710069 P. R. China
| | - Qiong Jia
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education School of Foreign Languages College of Chemistry & Materials Science Northwest University Xi'an 710069 P. R. China
| | - Yong‐Qiang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education School of Foreign Languages College of Chemistry & Materials Science Northwest University Xi'an 710069 P. R. China
| |
Collapse
|
9
|
Qiao H, Yang L, Sun W, Chen Y, Wang J, Wang Y, Dong H. Metal-Free C3-H Hydrazination of Imidazo[1,2-a]pyridine with Azodiformates in Water at Room Temperature. HETEROCYCLES 2022. [DOI: 10.3987/com-21-14576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Qiao H, Yang L, Chen Y, Wang J, Sun W, Dong H, Wang Y. An Efficient Three-Component Tandem Approach for the Synthesis of Imidazoheterocycle-Hydrazine Derivatives under Mild Conditions. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202110015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Shi T, Liu Y, Wang S, Lv Q, Yu B. Recyclable Carbon Nitride
Nanosheet‐Photocatalyzed
Aminomethylation of Imidazo[1,2‐
a
]pyridines in Green Solvent. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Tao Shi
- School of Biology, College of Chemistry Zhengzhou University Zhengzhou Henan 450001 China
- Institute of Chemistry Henan Academy of Sciences Zhengzhou Henan 450002 China
| | - Yu‐Ting Liu
- School of Biology, College of Chemistry Zhengzhou University Zhengzhou Henan 450001 China
| | - Shan‐Shan Wang
- Beijing Institute of Technology Analysis & Testing Center, Beijing Institute of Technology Beijing 100081 China
| | - Qi‐Yan Lv
- School of Biology, College of Chemistry Zhengzhou University Zhengzhou Henan 450001 China
| | - Bing Yu
- School of Biology, College of Chemistry Zhengzhou University Zhengzhou Henan 450001 China
| |
Collapse
|
12
|
Zhu XX, Wang HQ, Li CG, Xu XL, Xu J, Dai JJ, Xu HJ. Electrochemical Trifluoromethylation of Thiophenols with Sodium Trifluoromethanesulfinate. J Org Chem 2021; 86:16114-16120. [PMID: 33416327 DOI: 10.1021/acs.joc.0c02659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We developed an electrochemical trifluoromethylation of thiophenols without the use of metal catalysts and oxidants. This reaction features mild reaction conditions, readily available substrate, as well as moderate to good yields. In addition, this protocol can be easily scaled up with moderate efficiency.
Collapse
Affiliation(s)
- Xing-Xing Zhu
- School of Food and Biological Engineering, School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
| | - Huai-Qin Wang
- School of Food and Biological Engineering, School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chen-Guang Li
- School of Food and Biological Engineering, School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiao-Lan Xu
- School of Medical Science, Anhui Medical University, Hefei 230032, China
| | - Jun Xu
- School of Food and Biological Engineering, School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jian-Jun Dai
- School of Food and Biological Engineering, School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hua-Jian Xu
- School of Food and Biological Engineering, School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
13
|
Wang HN, Dong JY, Shi J, Zhang CP. Trifluoromethylselenolation reactions using the versatile [Me4N][SeCF3] reagent. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Grollier K, Chefdeville E, Jeanneau E, Billard T. Aromatic Trifluoromethylselenolation via Pd-catalyzed C-H functionalization. Chemistry 2021; 27:12910-12916. [PMID: 34142744 DOI: 10.1002/chem.202102121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 01/15/2023]
Abstract
The synthesis of trifluoromethylselenolated aromatic molecules via an auxiliary-assisted, palladium catalyzed, C-H bonds functionalization with trifluoromethyl tolueneselenosulfonate as reagent is described. The mono- or bis-products can be preferentially formed. Some mechanistic investigations were realized to better understand the reaction. This methodology was also extended to fluoroalkylselenyl groups.
Collapse
Affiliation(s)
- Kevin Grollier
- Institute of Chemistry and Biochemistry (ICBMS - UMR CNRS 5246), Univ Lyon, CNRS, Université Lyon 1, 43 Bd du 11 novembre 1918, 69622, Lyon, France
| | - Emmanuel Chefdeville
- NMR Centre Univ Lyon, Université Lyon 1, CNRS, 43 Bd du 11 novembre 1918, 69622, Lyon, France
| | - Erwann Jeanneau
- Centre de Diffractométrie Henri Longchambon, Univ Lyon, Université Lyon 1, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Thierry Billard
- Institute of Chemistry and Biochemistry (ICBMS - UMR CNRS 5246), Univ Lyon, CNRS, Université Lyon 1, 43 Bd du 11 novembre 1918, 69622, Lyon, France.,CERMEP - In vivo imaging, Groupement Hospitalier Est, 59 Bd Pinel, 69677, Lyon, France
| |
Collapse
|
15
|
Akhtar R, Zahoor AF, Rasool N, Ahmad M, Ali KG. Recent trends in the chemistry of Sandmeyer reaction: a review. Mol Divers 2021; 26:1837-1873. [PMID: 34417715 PMCID: PMC8378299 DOI: 10.1007/s11030-021-10295-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/10/2021] [Indexed: 12/27/2022]
Abstract
Metal-catalyzed reactions play a vital part to construct a variety of pharmaceutically important scaffolds from past few decades. To carry out these reactions under mild conditions with low-cost easily available precursors, various new methodologies have been reported day by day. Sandmeyer reaction is one of these, first discovered by Sandmeyer in 1884. It is a well-known reaction mainly used for the conversion of an aryl amine to an aryl halide in the presence of Cu(I) halide via formation of diazonium salt intermediate. This reaction can be processed with or without copper catalysts for the formation of C-X (X = Cl, Br, I, etc.), C-CF3/CF2, C-CN, C-S, etc., linkages. As a result, corresponding aryl halides, trifluoromethylated compounds, aryl nitriles and aryl thioethers can be obtained which are effectively used for the construction of biologically active compounds. This review article discloses various literature reports about Sandmeyer-related transformations developed during 2000-2021 which give different ideas to synthetic chemists about further development of new and efficient protocols for Sandmeyer reaction. An updated compilation of new approaches for Sandmeyer reaction is described in this review to construct a variety of carbon-halogen, carbon-phosphorous, carbon-sulfur, carbon-boron etc. linkages.
Collapse
Affiliation(s)
- Rabia Akhtar
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Nasir Rasool
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Matloob Ahmad
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Kulsoom Ghulam Ali
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| |
Collapse
|
16
|
Liu Y, Ling Y, Ge H, Lu L, Shen Q. Rational Design and Development of
Low‐Price
, Scalable,
Shelf‐Stable
and Broadly Applicable Electrophilic Sulfonium
Ylide‐Based
Trifluoromethylating Reagents. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yafei Liu
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 China
| | - Yijing Ling
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 China
| | - Hangming Ge
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 China
| | - Long Lu
- Shanghai Institute of Organic Chemistry Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 China
| | - Qilong Shen
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
17
|
Tan KL, Wang HN, Dong T, Zhang CP. Trifluoromethylselenolation and N-acylation of indoles with [Me 4N][SeCF 3]. Org Biomol Chem 2021; 19:5368-5376. [PMID: 34047751 DOI: 10.1039/d1ob00842k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
An efficient method for oxidative trifluoromethylselenolation/N-acylation of indoles with excess [Me4N][SeCF3] in the presence of acyl peroxides and their derivatives is described. The reaction is easy to handle, proceeds smoothly at room temperature under metal-free conditions, and shows advantages such as good functional group tolerance, excellent regioselectivity, and compatibility of a number of substrates, producing 1-acyl and 3-trifluoromethylselanyl substituted indoles in good yields. Acyl peroxides and peroxycarboxylic acid behave as both oxidants and acyl sources in the transformation. This one-pot procedure provides a convenient access to a new class of indole derivatives, representing the first trifluoromethylselanyl bifunctionalization of indoles with the nucleophilic [Me4N][SeCF3] reagent.
Collapse
Affiliation(s)
- Kai-Li Tan
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.
| | - Hao-Nan Wang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.
| | - Tao Dong
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.
| | - Cheng-Pan Zhang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
18
|
Nobile E, Castanheiro T, Besset T. Radical-Promoted Distal C-H Functionalization of C(sp 3 ) Centers with Fluorinated Moieties. Angew Chem Int Ed Engl 2021; 60:12170-12191. [PMID: 32897632 DOI: 10.1002/anie.202009995] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/28/2020] [Indexed: 12/12/2022]
Abstract
Due to their unique properties, fluorinated scaffolds are pivotal compounds in pharmaceuticals, agrochemicals, and materials science. Over the last years, the development of versatile strategies for the selective synthesis of fluorinated molecules by direct C-H bond functionalization has attracted a lot of attention. In particular, the design of novel transformations based on a radical process was a bottleneck for distal C-H functionalization reactions, offering synthetic solutions for the selective introduction of fluorinated groups. This Minireview highlights the major contributions in this blossoming field. The development of new methodologies for the remote functionalization of aliphatic derivatives with various fluorinated groups based on a 1,5-hydrogen atom transfer process and a β-fragmentation reaction will be showcased and discussed.
Collapse
Affiliation(s)
- Enzo Nobile
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Thomas Castanheiro
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Tatiana Besset
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| |
Collapse
|
19
|
Mo F, Qiu D, Zhang L, Wang J. Recent Development of Aryl Diazonium Chemistry for the Derivatization of Aromatic Compounds. Chem Rev 2021; 121:5741-5829. [DOI: 10.1021/acs.chemrev.0c01030] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fanyang Mo
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Di Qiu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Lei Zhang
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
20
|
Rui X, Zhu Y, Dai R, Huang C, Wang C, Si D, Wang X, Zhang X, Wen H, Li W, Liu J. An Efficient, Sustainable Rhodium‐Catalyzed and Ionic Liquid‐Mediated C−H Thiolation and Selenation of Acetanilide with Diaryl Disulfides and Diaryl Diselenides. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xiyan Rui
- School of Pharmacy Nanjing University of Chinese Medicine 210023 Nanjing P. R. China
| | - Yueyue Zhu
- School of Pharmacy Nanjing University of Chinese Medicine 210023 Nanjing P. R. China
| | - Rupeng Dai
- School of Pharmacy Nanjing University of Chinese Medicine 210023 Nanjing P. R. China
| | - Chaoqun Huang
- School of Pharmacy Nanjing University of Chinese Medicine 210023 Nanjing P. R. China
| | - Chao Wang
- School of Pharmacy Nanjing University of Chinese Medicine 210023 Nanjing P. R. China
| | - Dongjuan Si
- School of Pharmacy Nanjing University of Chinese Medicine 210023 Nanjing P. R. China
| | - Xi Wang
- School of Pharmacy Nanjing University of Chinese Medicine 210023 Nanjing P. R. China
| | - Xiaoyuan Zhang
- School of Pharmacy Nanjing University of Chinese Medicine 210023 Nanjing P. R. China
| | - Hongmei Wen
- School of Pharmacy Nanjing University of Chinese Medicine 210023 Nanjing P. R. China
| | - Wei Li
- School of Pharmacy Nanjing University of Chinese Medicine 210023 Nanjing P. R. China
| | - Jian Liu
- School of Pharmacy Nanjing University of Chinese Medicine 210023 Nanjing P. R. China
| |
Collapse
|
21
|
Duan L, Wang Z, Zhao K, Gu Z. Enantioselective preparation of atropisomeric biaryl trifluoromethylsulfanes via ring-opening of cyclic diaryliodoniums. Chem Commun (Camb) 2021; 57:3881-3884. [PMID: 33871504 DOI: 10.1039/d1cc00171j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Two convenient and practical methods for the synthesis of axially chiral biaryls bearing the trifluoromethylthio group are reported. A Cu-catalyzed enantioselective ring-opening reaction of cyclic diaryliodoniums with CsSCF3 enables the direct synthesis of trifluoromethylthiolated biaryl atropisomers in high yields and enantioselectivity. For unsymmetric cyclic diaryliodoniums bearing an adjacent group to the C-I bond, a two-step procedure is required to achieve good regio- and enantioselectivity.
Collapse
Affiliation(s)
- Longhui Duan
- Department of Chemistry, Center for Excellence in Molecular Synthesis (Chinese Academy of Science), and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China.
| | - Zhonggui Wang
- Department of Chemistry, Center for Excellence in Molecular Synthesis (Chinese Academy of Science), and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China.
| | - Kun Zhao
- Department of Chemistry, Center for Excellence in Molecular Synthesis (Chinese Academy of Science), and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China.
| | - Zhenhua Gu
- Department of Chemistry, Center for Excellence in Molecular Synthesis (Chinese Academy of Science), and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China.
| |
Collapse
|
22
|
Wang Y, Ye Z, Zhang H, Yuan Z. Recent Advances in the Development of Direct Trifluoromethylselenolation Reagents and Methods. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001508] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yanan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences Zhejiang Normal University 688 Yingbin Road Jinhua 321004 People's Republic of China
| | - Zhegao Ye
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences Zhejiang Normal University 688 Yingbin Road Jinhua 321004 People's Republic of China
| | - Han Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences Zhejiang Normal University 688 Yingbin Road Jinhua 321004 People's Republic of China
| | - Zheliang Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences Zhejiang Normal University 688 Yingbin Road Jinhua 321004 People's Republic of China
| |
Collapse
|
23
|
Yu J, Yang NY, Cheng JT, Zhan TY, Luan C, Ye L, Gu QS, Li ZL, Chen GQ, Liu XY. Copper-Catalyzed Radical 1,2-Carbotrifluoromethylselenolation of Alkenes under Ambient Conditions. Org Lett 2021; 23:1945-1949. [PMID: 33625234 DOI: 10.1021/acs.orglett.1c00436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have described a copper-catalyzed radical 1,2-carbotrifluoromethylselenolation of alkenes using the readily available alkyl halides and (Me4N)SeCF3 salt. Critical to the success is the use of a proline-based N,N,P-ligand to enhance the reducing capability of copper for easy conversion of diverse alkyl halides to the corresponding radicals via a single-electron transfer process. The reaction features a broad substrate scope, including various mono-, di-, and trisubstituted alkenes with many functional groups.
Collapse
Affiliation(s)
- Jiao Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Road, Shenzhen 518071, China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.,Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ning-Yuan Yang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiang-Tao Cheng
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tian-Ya Zhan
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Cheng Luan
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liu Ye
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhong-Liang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guo-Qiang Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Road, Shenzhen 518071, China
| | - Xin-Yuan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
24
|
Nobile E, Castanheiro T, Besset T. Radical‐Promoted Distal C−H Functionalization of C(sp
3
) Centers with Fluorinated Moieties. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202009995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Enzo Nobile
- Normandie Univ INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) 76000 Rouen France
| | - Thomas Castanheiro
- Normandie Univ INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) 76000 Rouen France
| | - Tatiana Besset
- Normandie Univ INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) 76000 Rouen France
| |
Collapse
|
25
|
Louvel D, Ghiazza C, Debrauwer V, Khrouz L, Monnereau C, Tlili A. Forging C-SeCF 3 Bonds with Trifluoromethyl Tolueneselenosulfonate under Visible-Light. CHEM REC 2021; 21:417-426. [PMID: 33502093 DOI: 10.1002/tcr.202000184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/17/2022]
Abstract
This account highlights some of our recent work on photoinduced trifluoromethylselenolation reactions. This research program relies primarily on the design of a new key shelf-stable selenating reagent that can be involved in various radical processes In particular, we demonstrated that trifluoromethylselenolation of arenes, alkenes, alkynes as well as aliphatic organic building blocks can be readily achieved under visible-light irradiation. Mechanistic investigations based on 19 F NMR studies, EPR spectroscopy, cyclic voltammetry and luminescence studies allowed us to shed the light on the different proposed mechanisms in the designed methodologies. The applicative potential of these strategies was further demonstrated through the synthesis of bioactive analogue containing SeCF3 motif.
Collapse
Affiliation(s)
- Dan Louvel
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246), Univ Lyon, Université Lyon 1, CNRS, CPE-Lyon, INSA, 43 Bd du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Clément Ghiazza
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246), Univ Lyon, Université Lyon 1, CNRS, CPE-Lyon, INSA, 43 Bd du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Vincent Debrauwer
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246), Univ Lyon, Université Lyon 1, CNRS, CPE-Lyon, INSA, 43 Bd du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Lhoussain Khrouz
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Lyon 1, Laboratoire de Chimie, F-69342, Lyon, France
| | - Cyrille Monnereau
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Lyon 1, Laboratoire de Chimie, F-69342, Lyon, France
| | - Anis Tlili
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246), Univ Lyon, Université Lyon 1, CNRS, CPE-Lyon, INSA, 43 Bd du 11 Novembre 1918, 69622, Villeurbanne, France
| |
Collapse
|
26
|
Liu L, Ran LY, Gu Y, Zhang CP. Facile synthesis of selenocarbamyl fluorides, selenoureas and their derivatives with [Me4N][SeCF3]. Org Chem Front 2021. [DOI: 10.1039/d1qo00736j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
[Me4N][SeCF3] has proved to be an excellent precursor of Se=CF2 for amines in the preparation of selenocarbamoyl fluorides, selenoureas, and their derivatives under catalyst- and additive-free conditions, which are otherwise difficult to synthesize by other methods.
Collapse
Affiliation(s)
- Lei Liu
- School of Materials Science and Engineering & School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Long-Yu Ran
- School of Materials Science and Engineering & School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Yucheng Gu
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG426EY, UK
| | - Cheng-Pan Zhang
- School of Materials Science and Engineering & School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
27
|
Li A, Li Y, Liu J, Chen J, Lu K, Qiu D, Fagnoni M, Protti S, Zhao X. Metal-Free Trifluoromethylthiolation of Arylazo Sulfones. J Org Chem 2021; 86:1292-1299. [PMID: 33350303 PMCID: PMC8765700 DOI: 10.1021/acs.joc.0c02669] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Indexed: 12/20/2022]
Abstract
A visible-light-driven protocol for the synthesis of aryl trifluoromethyl thioethers under photocatalyst- and metal-free conditions has been pursued. The procedure exploits the peculiar properties of arylazo sulfones (having electron-rich or electron-poor substituents on the (hetero)aromatic ring) as photochemical precursors of aryl radicals and S-trifluoromethyl arylsulfonothioates as easy-to-handle trifluoromethylthiolating agents.
Collapse
Affiliation(s)
- Ankun Li
- Tianjin
Key Laboratory of Structure and Performance for Functional Molecules,
College of Chemistry, Tianjin Normal University, Tianjin 300387, People’s Republic of China
| | - Yuxuan Li
- Tianjin
Key Laboratory of Structure and Performance for Functional Molecules,
College of Chemistry, Tianjin Normal University, Tianjin 300387, People’s Republic of China
- College
of Biotechnology, Tianjin University of
Science & Technology, Tianjin 300457, China
| | - Junjie Liu
- Tianjin
Key Laboratory of Structure and Performance for Functional Molecules,
College of Chemistry, Tianjin Normal University, Tianjin 300387, People’s Republic of China
- College
of Biotechnology, Tianjin University of
Science & Technology, Tianjin 300457, China
| | - Jingqi Chen
- Tianjin
Key Laboratory of Structure and Performance for Functional Molecules,
College of Chemistry, Tianjin Normal University, Tianjin 300387, People’s Republic of China
| | - Kui Lu
- College
of Biotechnology, Tianjin University of
Science & Technology, Tianjin 300457, China
| | - Di Qiu
- Tianjin
Key Laboratory of Structure and Performance for Functional Molecules,
College of Chemistry, Tianjin Normal University, Tianjin 300387, People’s Republic of China
| | - Maurizio Fagnoni
- PhotoGreen
Lab, Department of Chemistry, University
of Pavia, V. Le Taramelli 12, Pavia 27100, Italy
| | - Stefano Protti
- PhotoGreen
Lab, Department of Chemistry, University
of Pavia, V. Le Taramelli 12, Pavia 27100, Italy
| | - Xia Zhao
- Tianjin
Key Laboratory of Structure and Performance for Functional Molecules,
College of Chemistry, Tianjin Normal University, Tianjin 300387, People’s Republic of China
| |
Collapse
|
28
|
Yang X, Chang D, Zhao R, Shi L. Recent Advances and Uses of (Me
4
N)XCF
3
(X=S, Se) in the Synthesis of Trifluoromethylthiolated and Trifluoromethylselenolated Compounds. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000575] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xi‐Hui Yang
- School of Science Harbin Institute of Technology (Shenzhen) 518055 Shenzhen P. R. China
| | - Denghu Chang
- School of Science Harbin Institute of Technology (Shenzhen) 518055 Shenzhen P. R. China
| | - Rong Zhao
- School of Science Harbin Institute of Technology (Shenzhen) 518055 Shenzhen P. R. China
| | - Lei Shi
- School of Science Harbin Institute of Technology (Shenzhen) 518055 Shenzhen P. R. China
- State Key Laboratory of Elemento-Organic Chemistry Nankai University 300071 Tianjin P. R. China
| |
Collapse
|
29
|
Gao F, Sun K, Chen XL, Shi T, Li XY, Qu LB, Zhao YF, Yu B. Visible-Light-Induced Phosphorylation of Imidazo-Fused Heterocycles under Metal-Free Conditions. J Org Chem 2020; 85:14744-14752. [PMID: 33136392 DOI: 10.1021/acs.joc.0c02107] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A metal-free and base-free procedure for the phosphorylation of imidazo[1,2-a]pyridines with phosphine oxides under the irradiation of visible light at room temperature in green solvent was reported, featuring mild and sustainable conditions, convenient operation, as well as good functional group compatibility.
Collapse
Affiliation(s)
- Fan Gao
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Kai Sun
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Xiao-Lan Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Tao Shi
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Xiao-Yun Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Ling-Bo Qu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Yu-Fen Zhao
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China.,Institute Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Bing Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| |
Collapse
|
30
|
Abstract
A chemo- and regioselective perfluoromethylation using thioamides/selenoamides (prepared one step from corresponding lactams) as starting materials has been discovered. The reaction demonstrated complementary chemoselectivity to the C-H trifluoromethylation of (hetero)arenes as well as remarkable functional group compatibility especially toward radical sensitive olefin-, alkyne-, and arylhalide-bearing substrates. The examples of perfluorothio-/selenolated drug molecules indicated application potential of this strategy in drug modification and drug-analogue preparation.
Collapse
Affiliation(s)
- Xianhong Xu
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jianyu Zhang
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Tao Xu
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts & Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
31
|
Markovnikov-Type Hydrotrifluoromethylchalcogenation of Unactivated Terminal Alkenes with [Me 4N][XCF 3] (X = S, Se) and TfOH. Molecules 2020; 25:molecules25194535. [PMID: 33022964 PMCID: PMC7582815 DOI: 10.3390/molecules25194535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 11/20/2022] Open
Abstract
The first Markovnikov-type hydrotrifluoromethylselenolation of unactivated terminal alkenes with the readily accessible [Me4N][SeCF3] reagent and the superacid TfOH is reported. The reaction proceeded at room temperature under catalyst- and additive-free conditions to give the branched trifluoromethylselenolated products in good yields. This protocol is also applicable to the Markovnikov-type hydrotrifluoromethylthiolation of unactivated terminal alkenes using [Me4N][SCF3]/TfOH, but not to the hydrotrifluoromethoxylation with CsOCF3/TfOH under the same conditions. The successful hydrotrifluoromethylselenolation and hydrotrifluoromethylthiolation showed simplicity and high regioselectivity, taming the sensitive −XCF3 (X = Se, S) anions with TfOH, and offered a convenient method for the straightforward synthesis of branched trifluoromethyl selenoethers and thioethers from unactivated alkenes.
Collapse
|
32
|
Lin Q, Weng Z, Huang Y, Zhang M. [(bpy)CuSCF3]: A Practical and Efficient Reagent for the Construction of C–SCF3 Bonds. Synlett 2020. [DOI: 10.1055/s-0040-1707211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this account, we summarize recent work on the direct introduction of the SCF3 group by using [(bpy)CuSCF3] as trifluoromethylthiolating reagent. A number of efficient and convenient strategies have been disclosed for the synthesis of trifluoromethylthiolated compounds, including trifluoromethylthiolation of aryl, alkenyl, and alkyl halides, and arylboronic acids. These reactions afford various trifluoromethyl sulfides in good yields.1 Introduction2 Synthesis of [(bpy)CuSCF3]3 Trifluoromethylthiolation of Aryl Halides4 Trifluoromethylthiolation of Alkenyl Halides5 Trifluoromethylthiolation of Alkyl Halides6 Miscellaneous7 Conclusion
Collapse
Affiliation(s)
- Qi Lin
- Fujian Engineering Research Center of New Chinese lacquer Material, Ocean College, Minjiang University
| | - Zhiqiang Weng
- Fujian Engineering Research Center of New Chinese lacquer Material, Ocean College, Minjiang University
- Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University
| | - Yangjie Huang
- Fujian Engineering Research Center of New Chinese lacquer Material, Ocean College, Minjiang University
| | - Mengjia Zhang
- Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University
| |
Collapse
|
33
|
Wu S, Jiang TH, Zhang CP. CaCl2-Promoted Dehydroxytrifluoromethylselenolation of Alcohols with [Me4N][SeCF3]. Org Lett 2020; 22:6016-6020. [DOI: 10.1021/acs.orglett.0c02109] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Shuai Wu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Tian-Hao Jiang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Cheng-Pan Zhang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| |
Collapse
|
34
|
Xu W, Xu X, Qing F. Synthesis and Properties of
CF
3
(
OCF
3
)
CH‐Substituted
Arenes and Alkenes
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wen‐Qi Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science 345 Lingling Lu Shanghai 200032 China
| | - Xiu‐Hua Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science 345 Lingling Lu Shanghai 200032 China
| | - Feng‐Ling Qing
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science 345 Lingling Lu Shanghai 200032 China
- Key Laboratory of Science and Technology of Eco‐Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University 2999 North Renmin Lu Shanghai 201620 China
| |
Collapse
|
35
|
Ghiazza C, Tlili A. Copper-promoted/copper-catalyzed trifluoromethylselenolation reactions. Beilstein J Org Chem 2020; 16:305-316. [PMID: 32256848 PMCID: PMC7082709 DOI: 10.3762/bjoc.16.30] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 02/07/2020] [Indexed: 12/14/2022] Open
Abstract
Copper catalysis and, more generally, copper chemistry are pivotal for modern organofluorine chemistry. Major advances have been made in the field of trifluoromethylselenolations of organic compounds where copper catalysis played a crucial role. Recent developments in this field are highlighted in this minireview.
Collapse
Affiliation(s)
- Clément Ghiazza
- Institute of Chemistry and Biochemistry, Univ Lyon, Université Lyon 1, CNRS, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne, France
| | - Anis Tlili
- Institute of Chemistry and Biochemistry, Univ Lyon, Université Lyon 1, CNRS, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne, France
| |
Collapse
|
36
|
Newton JJ, Jelier BJ, Meanwell M, Martin RE, Britton R, Friesen CM. Quaternary Ammonium Trifluoromethoxide Salts as Stable Sources of Nucleophilic OCF 3. Org Lett 2020; 22:1785-1790. [PMID: 32053386 DOI: 10.1021/acs.orglett.0c00099] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reaction of nucleophilic tertiary amines with trifluoromethyl and pentafluoroethyl methyl ethers provides quaternary ammonium trifluoromethoxide (NR4OCF3) and pentafluoroethoxide (NR4OCF2CF3) salts, respectively, in good yields. The new trifluoromethoxide salts disclosed herein are uniquely stable for extended periods of time in both the solid state and in solution, which complements contemporary reagents. Here we describe the preparation of a range of NR4OCF3 salts, their long-term stability, and utility in substitution reactions.
Collapse
Affiliation(s)
- Josiah J Newton
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6.,Department of Chemistry, Trinity Western University, Langley, British Columbia Canada, V2Y 1Y1
| | - Benson J Jelier
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6
| | - Michael Meanwell
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6
| | - Rainer E Martin
- Medicinal Chemistry, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Robert Britton
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6
| | - Chadron M Friesen
- Department of Chemistry, Trinity Western University, Langley, British Columbia Canada, V2Y 1Y1
| |
Collapse
|
37
|
Tan KL, Dong T, Zhang XQ, Zhang CP. Oxidative trifluoromethylselenolation of 1,3-dicarbonyls with [Me4N][SeCF3]. Org Biomol Chem 2020; 18:1769-1779. [DOI: 10.1039/d0ob00108b] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first oxidative trifluoromethylchalcogenation of 1,3-dicarbonyls with [Me4N][XCF3] (X = Se and S) and an oxidant is described.
Collapse
Affiliation(s)
- Kai-Li Tan
- School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Tao Dong
- School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Xue-Qiong Zhang
- School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Cheng-Pan Zhang
- School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan 430070
- China
| |
Collapse
|
38
|
Lu K, Li Q, Xi X, Zhou T, Zhao X. Metal-Free Difluoromethylselenolation of Arylamines Under Visible-Light Photocatalysis. J Org Chem 2019; 85:1224-1231. [DOI: 10.1021/acs.joc.9b02535] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kui Lu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Quan Li
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xiaolan Xi
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ting Zhou
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xia Zhao
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key laboratory of Inorganic−Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin 300387, China
| |
Collapse
|
39
|
Han QY, Tan KL, Wang HN, Zhang CP. Organic Photoredox-Catalyzed Decarboxylative Trifluoromethylselenolation of Aliphatic Carboxylic Acids with [Me4N][SeCF3]. Org Lett 2019; 21:10013-10017. [DOI: 10.1021/acs.orglett.9b03941] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Qiu-Yan Han
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Kai-Li Tan
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Hao-Nan Wang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Cheng-Pan Zhang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| |
Collapse
|
40
|
Yang YM, Yao JF, Yan W, Luo Z, Tang ZY. Silver-Mediated Trifluoromethoxylation of (Hetero)aryldiazonium Tetrafluoroborates. Org Lett 2019; 21:8003-8007. [PMID: 31524411 DOI: 10.1021/acs.orglett.9b03000] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Here we report a silver-mediated trifluoromethoxylation of (hetero)aryldiazonium tetrafluoroborates by converting an aromatic amino group into an OCF3 group. This method, which can be considered to be a trifluoromethoxylation variation of the classic Sandmeyer-type reaction, uses readily available aryl and heteroaromatic amines as starting materials and AgOCF3 as trifluoromethoxylating reagents. The broad substrate scope and simple, mild reaction condition made this transformation a valuable method in constructing aryl-OCF3 bonds.
Collapse
Affiliation(s)
- Yu-Ming Yang
- School of Chemical Engineering and Technology , Sun Yat-sen University , Zhuhai 519082 , China.,College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , China
| | - Jian-Fei Yao
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , China
| | - Wei Yan
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , China
| | - Zhuangzhu Luo
- School of Chemical Engineering and Technology , Sun Yat-sen University , Zhuhai 519082 , China
| | - Zhen-Yu Tang
- School of Chemical Engineering and Technology , Sun Yat-sen University , Zhuhai 519082 , China.,College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , China
| |
Collapse
|
41
|
Ghiazza C, Billard T, Dickson C, Tlili A, Gampe CM. Chalcogen OCF
3
Isosteres Modulate Drug Properties without Introducing Inherent Liabilities. ChemMedChem 2019; 14:1586-1589. [DOI: 10.1002/cmdc.201900452] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Clément Ghiazza
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246)Université Lyon 1, CNRS, CPE-Lyon, INSA 43 Boulevard du 11 Novembre 1918 69622 Villeurbanne France
| | - Thierry Billard
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246)Université Lyon 1, CNRS, CPE-Lyon, INSA 43 Boulevard du 11 Novembre 1918 69622 Villeurbanne France
- CERMEP—In vivo ImagingGroupement Hospitalier Est 59 Boulevard Pinel 69003 Lyon France
| | - Callum Dickson
- Novartis Institutes for BioMedical Research 181 Massachusetts Avenue Cambridge MA 02139 USA
| | - Anis Tlili
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246)Université Lyon 1, CNRS, CPE-Lyon, INSA 43 Boulevard du 11 Novembre 1918 69622 Villeurbanne France
| | - Christian M. Gampe
- Novartis Institutes for BioMedical Research 181 Massachusetts Avenue Cambridge MA 02139 USA
| |
Collapse
|
42
|
Zhao X, Wei X, Tian M, Zheng X, Ji L, Li Q, Lin Y, Lu K. Ferric chloride-promoted direct trifluoromethylselenolation of nitrogen-containing heterocyclic compounds by Se-(trifluoromethyl) 4-methylbenzenesulfonoselenoate in water. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Zhilin ES, Fershtat LL, Bystrov DM, Kulikov AS, Dmitrienko AO, Ananyev IV, Makhova NN. Renaissance of 1,2,5-Oxadiazolyl Diazonium Salts: Synthesis and Reactivity. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900622] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Egor S. Zhilin
- N.D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prospect, 47 119991 Moscow Russia
| | - Leonid L. Fershtat
- N.D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prospect, 47 119991 Moscow Russia
| | - Dmitry M. Bystrov
- N.D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prospect, 47 119991 Moscow Russia
| | - Alexander S. Kulikov
- N.D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prospect, 47 119991 Moscow Russia
| | - Artem O. Dmitrienko
- A. N. Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Vavilova str., 28 119991 Moscow Russia
| | - Ivan V. Ananyev
- A. N. Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Vavilova str., 28 119991 Moscow Russia
| | - Nina N. Makhova
- N.D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prospect, 47 119991 Moscow Russia
| |
Collapse
|
44
|
Zheng C, Liu Y, Hong J, Huang S, Zhang W, Yang Y, Fang G. Copper(I)-promoted trifluoromethylthiolation of arenediazonium salts with AgSCF3. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.04.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Saravanan P, Anbarasan P. Trifluoromethylthiolative 1,2-difunctionalization of alkenes with diselenides and AgSCF3. Chem Commun (Camb) 2019; 55:4639-4642. [DOI: 10.1039/c9cc00815b] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient regioselective difunctionalization of alkenes via trifluoromethylthiolation has been accomplished employing diaryl diselenide and AgSCF3 in the presence of BF3·OEt2.
Collapse
Affiliation(s)
- Perumal Saravanan
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai-600036
- India
| | | |
Collapse
|
46
|
Chen XL, Zhou SH, Lin JH, Deng QH, Xiao JC. Difluorocarbene-derived trifluoromethylselenolation of benzyl halides. Chem Commun (Camb) 2019; 55:1410-1413. [DOI: 10.1039/c8cc09719d] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cu-Promoted difluorocarbene-derived trifluoromethylselenolation of benzyl halides with the Ph3P+CF2CO2−/Se/F− system is described.
Collapse
Affiliation(s)
- Xin-Lei Chen
- College of Chemistry and Materials Science
- Shanghai Normal University
- Shanghai
- China
- Key Laboratory of Organofluorine Chemistry
| | - Sheng-Hua Zhou
- Key Laboratory of Organofluorine Chemistry
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- Shanghai 200032
| | - Jin-Hong Lin
- Key Laboratory of Organofluorine Chemistry
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- Shanghai 200032
| | - Qing-Hai Deng
- College of Chemistry and Materials Science
- Shanghai Normal University
- Shanghai
- China
| | - Ji-Chang Xiao
- Key Laboratory of Organofluorine Chemistry
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- Shanghai 200032
| |
Collapse
|
47
|
Han QY, Zhao CL, Dong T, Shi J, Tan KL, Zhang CP. Metal-free oxidative trifluoromethylselenolation of electron-rich (hetero)arenes with the readily available [Me4N][SeCF3] reagent. Org Chem Front 2019. [DOI: 10.1039/c9qo00631a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first oxidative trifluoromethylselenolation of nucleophilic (hetero)arenes with the nucleophilic [Me4N][SeCF3] salt under transition-metal-free conditions is described.
Collapse
Affiliation(s)
- Qiu-Yan Han
- School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Cheng-Long Zhao
- School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Tao Dong
- School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Jin Shi
- School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Kai-Li Tan
- School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Cheng-Pan Zhang
- School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan 430070
- China
| |
Collapse
|
48
|
He J, Chen C, Fu GC, Peters JC. Visible-Light-Induced, Copper-Catalyzed Three-Component Coupling of Alkyl Halides, Olefins, and Trifluoromethylthiolate to Generate Trifluoromethyl Thioethers. ACS Catal 2018; 8:11741-11748. [PMID: 31396434 DOI: 10.1021/acscatal.8b04094] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Photoinduced, copper-catalyzed coupling reactions are emerging as a powerful method for generating Csp3-Y (Y = C or heteroatom) bonds from alkyl electrophiles and nucleophiles. Corresponding three-component couplings of alkyl electrophiles, olefins, and nucleophiles have the potential to generate an additional Csp3-Y bond and to efficiently add functional groups to both carbons of an olefin, which serves as a readily available linchpin. In this report, we establish that a variety of electrophiles and a trifluoromethylthiolate nucleophile can add across an array of olefins (including styrenes and electron-poor olefins) in the presence of CuI/binap and blue-LED irradiation, thereby generating trifluoromethyl thioethers in good yield. The process tolerates a wide range of functional groups, and an initial survey of other nucleophiles (i.e., bromide, cyanide, and azide) suggests that this three-component coupling strategy is versatile. Mechanistic studies are consistent with a photoexcited Cu(I)/binap/SCF3 complex serving as a reductant to generate an alkyl radical from the electrophile, which likely reacts in turn with the olefin and a Cu(II)/SCF3 complex to afford the coupling product.
Collapse
Affiliation(s)
- Jian He
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Caiyou Chen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Gregory C. Fu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Jonas C. Peters
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
49
|
|
50
|
Shi WQ, Liu S, Wang CZ, Huang Y, Qing FL, Xu XH. Synthesis of CMe2CF3-Containing Heteroarenes via Tandem 1,1-Dimethyltrifluoroethylation and Cyclization of Isonitriles. J Org Chem 2018; 83:15236-15244. [DOI: 10.1021/acs.joc.8b02506] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Wen-Qiang Shi
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
| | - Shuai Liu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
| | - Chen-Ze Wang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
| | - Yangen Huang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
| | - Feng-Ling Qing
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Xiu-Hua Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|