1
|
Yang QY, Pu X, Chen C, Zeb MA, Tu WC, Li HL, Li XL, Xiao WL. Six new quassinoids from Picrasma chinese P·Y. Chen and their cytotoxicity activity. Fitoterapia 2024; 177:106094. [PMID: 38936674 DOI: 10.1016/j.fitote.2024.106094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/24/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
In the present study, six new compounds namely, picralactones CH (1-6) along with nine known compounds (7-15) were isolated from the branches and leaves of Picrasma chinese P.Y. Chen. Their structures were determined with the help of spectroscopic techniques such as NMR, HR-ESI-MS, UV, IR and CD. Cytotoxicity of all compounds was evaluated against MDA-MB-231, SW-620 and HepG2 human cancer cell lines. Compound 4 showed cytotoxic activities.
Collapse
Affiliation(s)
- Quan-Yu Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Key Laboratory of Research and Development for Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Medicine, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China
| | - Xia Pu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Key Laboratory of Research and Development for Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Medicine, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China
| | - Chan Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Key Laboratory of Research and Development for Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Medicine, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China
| | - Muhammad Aurang Zeb
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Key Laboratory of Research and Development for Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Medicine, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China
| | - Wen-Chao Tu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Key Laboratory of Research and Development for Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Medicine, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China
| | - Hong-Liang Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Key Laboratory of Research and Development for Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Medicine, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China.
| | - Xiao-Li Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Key Laboratory of Research and Development for Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Medicine, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China.
| | - Wei-Lie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Key Laboratory of Research and Development for Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Medicine, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China; Southwest United Graduate School, Kunming 650592, PR China.
| |
Collapse
|
2
|
Martins LMOS, Souto FT, Hoye TR, Alvarenga ES. Deciphering molecular structures: NMR spectroscopy and quantum mechanical insights of halogenated 4H-Chromenediones. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:583-598. [PMID: 38557999 DOI: 10.1002/mrc.5445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/15/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Sesquiterpene lactones (SL) represent a class of secondary metabolites found in the Asteraceae family, notable for their unique structures. The SL α-santonin (1) and its derivatives are worthy of mention due to their diverse biological properties. Additionally, 4H-chromenes and 4H-chromones are appealing frameworks holding the capability to be used as structural motifs for new drugs. Furthermore, unambiguous structural elucidation is crucial for developing novel compounds for diverse applications. In this context, it is common to find in the literature molecules erroneously assigned. Therefore, the use of quantum mechanical calculations to simulate NMR chemical shifts has emerged as a valuable strategy. In this work, we conceived the synthesis of two halogenated 4H-chromenediones derived from photosantonic acid (2), a photoproduct arising from irradiation of α-santonin (1) in the ultraviolet region. The structure of the chlorinated and brominated products was determined by NMR analysis, with the aid of quantum mechanical calculations at the B3LYP/6-311 + G(2d,p)//M062x/6-31 + G(d,p) level of theory. All analyses were in agreement and led to the assignment of the brominated 4H-chromene-2,7-dione as (3S,3aS,5aR,9bS)-5a-(2-bromopropan-2-yl)-3-methyl-3,3a,5,5a,8,9b-hexahydro-4H-furo[2,3-f]chromene-2,7-dione (11b) and of the chlorinated 4H-chromene-2,7-dione as (3S,3aS,5aR,9bS)-5a-(2-chloropropan-2-yl)-3-methyl-3,3a,5,5a,8,9b-hexahydro-4H-furo[2,3-f]chromene-2,7-dione (12b). The diastereoselectivities of the reactions were explained based on products and intermediates formation energy calculated using B3LYP/6-31 + G(d,p) as the level of theory. Structures 11b and 12b were identified as the thermodynamic and kinetic products of the reaction among all candidates. Consequently, the strategy utilized in this study is robust and successfully illustrates the use of quantum mechanical calculations in the structural elucidation of new compounds with potential applications as novel drugs or products.
Collapse
Affiliation(s)
- Lucas M O S Martins
- Department of Chemistry, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- Chemistry Institute, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Thomas R Hoye
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Elson S Alvarenga
- Department of Chemistry, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| |
Collapse
|
3
|
Martorano LH, Ribeiro CMR, Valverde AL, Dos Santos Junior FM, Sarotti AM. An Integrated ANN-PRA/DP4+ Tandem Computational Approach Contributing to the Ordering of the Heliannuol Family. J Org Chem 2024; 89:8937-8950. [PMID: 38848463 DOI: 10.1021/acs.joc.4c00852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Heliannuols are a unique class of sesquiterpenes isolated mostly from Helianthus annuus, commonly known as sunflower. The interesting allelopathic properties, combined with their unprecedented carbon skeletons, have drawn wide attention to phytochemistry and synthetic groups. So far, 14 heliannuols (heliannuols A-N) have been described in the literature, although some of them have not yet been validated by total synthesis. Moreover, the structural proposal of some compounds was based on the similarity of NMR data reported for previously isolated analogues (which in many instances turned out to be incorrect), coupled with little or no stereochemical analysis. Consequently, the structural reassignment is a recurring theme in heliannuol's family. Through a rigorous and comprehensive quantum chemical simulation of NMR parameters, encompassing an integrated ANN-PRA/DP4+ tandem approach, we intended to advance unexplored directions regarding the structure of the entire heliannuol family. Furthermore, we found that the size of the fused ring significantly influences the signals corresponding to the aromatic ring, making this discovery an excellent diagnostic tool for quickly determining the core structure of these compounds.
Collapse
Affiliation(s)
- Lucas H Martorano
- Department of Organic Chemistry, Chemistry Institute, Universidade Federal Fluminense (UFF), Outeiro de São João Batista, Niterói, Rio de Janeiro 24020-141, Brazil
| | - Carlos Magno Rocha Ribeiro
- Department of Organic Chemistry, Chemistry Institute, Universidade Federal Fluminense (UFF), Outeiro de São João Batista, Niterói, Rio de Janeiro 24020-141, Brazil
| | - Alessandra L Valverde
- Department of Organic Chemistry, Chemistry Institute, Universidade Federal Fluminense (UFF), Outeiro de São João Batista, Niterói, Rio de Janeiro 24020-141, Brazil
| | - Fernando Martins Dos Santos Junior
- Department of Organic Chemistry, Chemistry Institute, Universidade Federal Fluminense (UFF), Outeiro de São João Batista, Niterói, Rio de Janeiro 24020-141, Brazil
| | - Ariel M Sarotti
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| |
Collapse
|
4
|
Ai WJ, Li J, Cao D, Liu S, Yuan YY, Li Y, Tan GS, Xu KP, Yu X, Kang F, Zou ZX, Wang WX. A Very Deep Graph Convolutional Network for 13C NMR Chemical Shift Calculations with Density Functional Theory Level Performance for Structure Assignment. JOURNAL OF NATURAL PRODUCTS 2024; 87:743-752. [PMID: 38359467 DOI: 10.1021/acs.jnatprod.3c00862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Nuclear magnetic resonance (NMR) chemical shift calculations are powerful tools for structure elucidation and have been extensively employed in both natural product and synthetic chemistry. However, density functional theory (DFT) NMR chemical shift calculations are usually time-consuming, while fast data-driven methods often lack reliability, making it challenging to apply them to computationally intensive tasks with a high requirement on quality. Herein, we have constructed a 54-layer-deep graph convolutional network for 13C NMR chemical shift calculations, which achieved high accuracy with low time-cost and performed competitively with DFT NMR chemical shift calculations on structure assignment benchmarks. Our model utilizes a semiempirical method, GFN2-xTB, and is compatible with a broad variety of organic systems, including those composed of hundreds of atoms or elements ranging from H to Rn. We used this model to resolve the controversial J/K ring junction problem of maitotoxin, which is the largest whole molecule assigned by NMR calculations to date. This model has been developed into user-friendly software, providing a useful tool for routine rapid structure validation and assignation as well as a new approach to elucidate the large structures that were previously unsuitable for NMR calculations.
Collapse
Affiliation(s)
- Wen-Jing Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Jing Li
- Department of Pharmacy, National Clinical Research Center for Geriatric Disorder, in Xiangya Hospital, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Dongsheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Shao Liu
- Department of Pharmacy, National Clinical Research Center for Geriatric Disorder, in Xiangya Hospital, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Yi-Yun Yuan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Yan Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Gui-Shan Tan
- Department of Pharmacy, National Clinical Research Center for Geriatric Disorder, in Xiangya Hospital, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Kang-Ping Xu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Xia Yu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Fenghua Kang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Zhen-Xing Zou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Wen-Xuan Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, People's Republic of China
- Hunan Prima Drug Research Center Co., Ltd, Hunan Research Center for Drug Safety Evaluation, Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs, Changsha, Hunan 410331, People's Republic of China
| |
Collapse
|
5
|
Passaglia L, Zanardi MM, Sarotti AM. Study of heavy atom influence on poly-halogenated compounds using DP4/MM-DP4+/DP4+: insights and trends. Org Biomol Chem 2024; 22:2435-2442. [PMID: 38416037 DOI: 10.1039/d3ob02077k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy complemented by density functional theory (DFT) calculations is a crucial tool for structural elucidation. Nevertheless, the precision of NMR predictions is influenced by the 'heavy atom effect', wherein heavy atoms affect the shielding values of neighboring light atoms (HALA effect). Standard practice in the field involves removing the conflicting signals. However, in the case of polyhalogenated molecules, this is challenging due to the significant amount of information that ends up being lost. In this study the HALA is thoroughly investigated in the context of three leading probability methods: DP4, MM-DP4+, and DP4+. The results show that DP4+ is more sensitive to C-Cl or C-Br signals, which is a consequence of the longer bond lengths computed with DFT. Removing conflicting signals is highly effective in DP4+, but has an uncertain outcome in methods based on molecular mechanics geometries, such as DP4 and MM-DP4+. A detailed investigation of the effect of bond distance on the corresponding chemical shifts has also been conducted.
Collapse
Affiliation(s)
- Lucas Passaglia
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina.
- Instituto de Investigaciones en Ingeniería Ambiental, Química y Biotecnología Aplicada (INGEBIO), Facultad de Química e Ingeniería del Rosario, Pontificia Universidad Católica Argentina, S2002QEO Rosario, Argentina
| | - María M Zanardi
- Instituto de Investigaciones en Ingeniería Ambiental, Química y Biotecnología Aplicada (INGEBIO), Facultad de Química e Ingeniería del Rosario, Pontificia Universidad Católica Argentina, S2002QEO Rosario, Argentina
| | - Ariel M Sarotti
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina.
| |
Collapse
|
6
|
Hansen PE. The Synergy between Nuclear Magnetic Resonance and Density Functional Theory Calculations. Molecules 2024; 29:336. [PMID: 38257249 PMCID: PMC10821511 DOI: 10.3390/molecules29020336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
This paper deals with the synergy between Nuclear Magnetic Resonance (NMR) spectroscopic investigations and DFT calculations, mainly of NMR parameters. Both the liquid and the solid states are discussed here. This text is a mix of published results supplemented with new findings. This paper deals with examples in which useful results could not have been obtained without combining NMR measurements and DFT calculations. Examples of such cases are tautomeric systems in which NMR data are calculated for the tautomers; hydrogen-bonded systems in which better XH bond lengths can be determined; cage compounds for which assignment cannot be made based on NMR data alone; revison of already published structures; ionic compounds for which reference data are not available; assignment of solid-state spectra and crystal forms; and the creation of libraries for biological molecules. In addition to these literature cases, a revision of a cage structure and substituent effects on pyrroles is also discussed.
Collapse
Affiliation(s)
- Poul Erik Hansen
- Department of Science and Environment, Roskilde University, DK-4000 Roskilde, Denmark
| |
Collapse
|
7
|
Shen W, Li L, Liu QH, Cui JM, Shi W, Shi XH, Zhang XQ, Ye WC, Hu XL, Wang H. Characteristic chromanone acids from Calophyllum membranaceum: Determination of C-3 configuration and anti-inflammatory activity. PHYTOCHEMISTRY 2024; 217:113902. [PMID: 37907158 DOI: 10.1016/j.phytochem.2023.113902] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 11/02/2023]
Abstract
One undescribed homologous furanochromanone (1) featuring a 6/6/5/3 tetracyclic skeleton and four highly oxidized pyranochromanones (2-5), along with a set of four pyranochromanone stereoisomers [(±)-6a and (±)-6b], were isolated from the leaves of Calophyllum membranaceum Gardn. Et Champ. Their structures were elucidated by using spectroscopic data, Snatzke's method, quantum-chemical calculations, and X-ray crystallographic analysis. The correlation of characteristic Cotton effects and specific chemical shifts with C-3 configuration provided a convenient approach to assign the C-3 configuration of 2,3-dimethylchromanones. The stereochemical assignments of 3-OH substituted pyranochromanones by quantum-based NMR methods following single/double MTPA derivatization were consistent with the ECD/NMR prediction, which verified the feasibility and reliability of the proposed empirical rule. The underlying mechanism was further clarified by conformational and molecular orbital analyses. Moreover, biological evaluation and binding assays demonstrated that compound 3 (KD = 0.45 μM) tightly binds to the TLR4-MD2 target, thereby inhibiting the TLR4/MyD88-dependent and -independent signal pathways. This study provides the first evidence that Calophyllum chromanones are a novel structural type of TLR4 inhibitors, exerting their anti-inflammatory effects by disrupting the binding between TLR4 and MD2.
Collapse
Affiliation(s)
- Wei Shen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Lun Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Qing-He Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Jia-Min Cui
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Wei Shi
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xin-Hong Shi
- Department of Chinese Medicine Preparations, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiao-Qi Zhang
- Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou 510632, People's Republic of China
| | - Wen-Cai Ye
- Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou 510632, People's Republic of China
| | - Xiao-Long Hu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Hao Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
8
|
Tamuli R, Nguyen T, Macdonald JR, Pierens GK, Fisher GM, Andrews KT, Adewoyin FB, Omisore NO, Odaibo AB, Feng Y. Isolation and In Vitro and In Vivo Activity of Secondary Metabolites from Clerodendrum polycephalum Baker against Plasmodium Malaria Parasites. JOURNAL OF NATURAL PRODUCTS 2023; 86:2661-2671. [PMID: 37972998 DOI: 10.1021/acs.jnatprod.3c00743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Chemical investigation of the antimalarial medicinal plant Clerodendrum polycephalum led to the isolation of five new diterpenoids, including ajugarins VII-X (1-4) and teuvincenone K (5), along with four known compounds, namely, 12,16-epoxy-6,11,14,17-tetrahydroxy-17(15 → 16)-abeo-5,8,11,13,15-abietapentaen-7-one (6), methyl pheophorbide A (7), loliolide (8), and acacetin (9). The chemical structures of the new compounds were elucidated using NMR spectroscopy, mass spectrometry, circular dichroism, as well as density functional theory calculations. All compounds were evaluated for in vitro activity against Plasmodium falciparum 3D7 malaria parasites with methyl pheophorbide A (7) showing the strongest activity (IC50 4.49 μM). Subsequent in vivo testing in a Plasmodium berghei chemosuppression model showed that compound 7 significantly attenuated peripheral blood parasitemia, leading to 79% and 87% chemosuppression following oral doses at 10 and 20 mg/kg, respectively.
Collapse
Affiliation(s)
- Roktima Tamuli
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Thanh Nguyen
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Jacinta R Macdonald
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Gregory K Pierens
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Gillian M Fisher
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Katherine T Andrews
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Francis B Adewoyin
- Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State 220282, Nigeria
| | - Nusrat O Omisore
- Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State 220282, Nigeria
| | - Alexander B Odaibo
- Department of Zoology, Faculty of Science, University of Ibadan, Ibadan, Oyo State 200005, Nigeria
| | - Yunjiang Feng
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
9
|
Ang S, Liu C, Hong P, Yang L, Hu G, Zheng X, Jin J, Wu R, Wong WL, Zhang K, Gan L, Li D. Hirsutinolide-type sesquiterpenoids with anti-prostate cancer activity from Cyanthillium cinereum. PHYTOCHEMISTRY 2023; 216:113887. [PMID: 37806467 DOI: 10.1016/j.phytochem.2023.113887] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Four previously undescribed hirsutinolide-type sesquiterpenoids, cyanolides A-D (1-4), along with twelve known analogues (5-16), were isolated from the aerial parts of Cyanthillium cinereum. Their structures were determined by comprehensive analysis of NMR, HRESIMS, and ECD spectra. Compound 1 is a rarely occurring hirsutinolide-type sesquiterpenoid with 1,4-ether ring ruptured and containing a chlorine atom, and compounds 13-16 were reported from this plant for the first time. All compounds were tested for their inhibiting effects on prostate cancer cells. As a result, compounds 1, 3, and 8-14 exhibited significant anti-prostate cancer activity against PC-3 and LNCaP cells with IC50 values ranging from 2.2 ± 0.4 to 8.5 ± 0.7 μM and 3.0 ± 0.7 to 10.5 ± 1.1 μM, respectively. The preliminary structure-activity relationship was discussed. Further investigation showed that compound 1 induced apoptosis in PC-3 cells.
Collapse
Affiliation(s)
- Song Ang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, China; Guangdong University of Technology, Guangzhou, 510006, China
| | - Chun Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Peng Hong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, China
| | - Lei Yang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, China
| | - Gui'e Hu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Xi Zheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, China
| | - Jingwei Jin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, China
| | - Rihui Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, China
| | - Wing-Leung Wong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, China; Guangdong University of Technology, Guangzhou, 510006, China
| | - Lishe Gan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, China.
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, China; Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China.
| |
Collapse
|
10
|
Takamura H, Hattori K, Ohashi T, Otsu T, Kadota I. Relative stereochemical determination of the C61-C83 fragment of symbiodinolide using a stereodivergent synthetic approach. Org Biomol Chem 2023; 21:8837-8848. [PMID: 37791452 DOI: 10.1039/d3ob01420g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Structural determination is required in the use of marine natural products to create novel drugs and drug leads in medicinal chemistry. Symbiodinolide, which is a polyol marine natural product with a molecular weight of 2860, increases the intracellular Ca2+ concentration and exhibits inhibitory activity against cyclooxygenase-1. Seventy percent of the structure of symbiodinolide has been stereochemically clarified. Herein, we report the elucidation of the relative configuration of the C61-C83 fragment, which is among the remaining thirty percent, using a stereodivergent synthetic strategy. We first assigned the relative configuration of the C61-C74 fragment. Two candidate diastereomers of the C61-C74 fragment were synthesized, and their NMR data were compared with those of the natural product, revealing the relative stereochemistry of this component. We then narrowed down the candidate compounds for the C69-C83 fragment from 16 possible diastereomers by analyzing the NMR data of the natural product, and we thus selected eight candidate diastereomers. Stereodivergent synthesis of the candidates for this fragment and comparison of the NMR data of the natural product and the eight synthetic products resulted in the relative stereostructural clarification of the C69-C83 fragment. These individually determined relative stereochemistries of the C61-C74 and C69-C83 fragments were connected via the common C69-C73 tetrahydropyran moiety of the fragments. Finally, the relative configuration of the C61-C83 fragment of symbiodinolide was determined. The stereodivergent synthetic approach used in this study can be extended to the stereochemical determination of other fragments of symbiodinolide.
Collapse
Affiliation(s)
- Hiroyoshi Takamura
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
| | - Kosuke Hattori
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
| | - Takumi Ohashi
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
| | - Taichi Otsu
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
| | - Isao Kadota
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
| |
Collapse
|
11
|
Vang ZP, Sonstrom RE, Scolati HN, Clark JR, Pate BH. Assignment of the absolute configuration of molecules that are chiral by virtue of deuterium substitution using chiral tag molecular rotational resonance spectroscopy. Chirality 2023; 35:856-883. [PMID: 37277968 PMCID: PMC11102577 DOI: 10.1002/chir.23596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 06/07/2023]
Abstract
Chiral tag molecular rotational resonance (MRR) spectroscopy is used to assign the absolute configuration of molecules that are chiral by virtue of deuterium substitution. Interest in the improved performance of deuterated active pharmaceutical ingredients has led to the development of precision deuteration reactions. These reactions often generate enantioisotopomer reaction products that pose challenges for chiral analysis. Chiral tag rotational spectroscopy uses noncovalent derivatization of the enantioisotopomer to create the diastereomers of the 1:1 molecular complexes of the analyte and a small, chiral molecule. Assignment of the absolute configuration requires high-confidence determinations of the structures of these weakly bound complexes. A general search method, CREST, is used to identify candidate geometries. Subsequent geometry optimization using dispersion corrected density functional theory gives equilibrium geometries with sufficient accuracy to identify the isomers of the chiral tag complexes produced in the pulsed jet expansion used to introduce the sample into the MRR spectrometer. Rotational constant scaling based on the fact that the diastereomers have the same equilibrium geometry gives accurate predictions allowing identification of the homochiral and heterochiral tag complexes and, therefore, assignment of absolute configuration. The method is successfully applied to three oxygenated substrates from enantioselective Cu-catalyzed alkene transfer hydrodeuteration reaction chemistry.
Collapse
Affiliation(s)
- Zoua Pa Vang
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin, USA
| | - Reilly E. Sonstrom
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
- BrightSpec Inc, Charlottesville, Virginia, USA
| | - Haley N. Scolati
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Joseph R. Clark
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin, USA
| | - Brooks H. Pate
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
12
|
Franco BA, Luciano ER, Sarotti AM, Zanardi MM. DP4+App: Finding the Best Balance between Computational Cost and Predictive Capacity in the Structure Elucidation Process by DP4+. Factors Analysis and Automation. JOURNAL OF NATURAL PRODUCTS 2023; 86:2360-2367. [PMID: 37721602 DOI: 10.1021/acs.jnatprod.3c00566] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
DP4+ is one of the most popular methods for the structure elucidation of natural products using NMR calculations. While the method is simple and easy to implement, it requires a series of procedures that can be tedious, coupled with the fact that its computational demand can be high in certain cases. In this work, we made a substantial improvement to these limitations. First, we deeply explored the effect of molecular mechanics architecture on the DP4+ formalism (MM-DP4+). In addition, a Python applet (DP4+App) was developed to automate the entire process, requiring only the Gaussian NMR output files and a spreadsheet containing the experimental NMR data and labels. The script is designed to use the statistical parameters from the original 24 levels of theory (employing B3LYP/6-31G* geometries) and the new 36 levels explored in this work (over MMFF geometries). Furthermore, it enables the development of customizable methods using any desired level of theory, allowing for a free choice of test molecules.
Collapse
Affiliation(s)
- Bruno A Franco
- Instituto de Investigaciones en Ingeniería Ambiental, Química y Biotecnología Aplicada (INGEBIO), Facultad de Química e Ingeniería del Rosario, Pontificia Universidad Católica Argentina, Av. Pellegrini 3314, Rosario 2000, Argentina
| | - Ezequiel R Luciano
- Instituto de Investigaciones en Ingeniería Ambiental, Química y Biotecnología Aplicada (INGEBIO), Facultad de Química e Ingeniería del Rosario, Pontificia Universidad Católica Argentina, Av. Pellegrini 3314, Rosario 2000, Argentina
| | - Ariel M Sarotti
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - María M Zanardi
- Instituto de Investigaciones en Ingeniería Ambiental, Química y Biotecnología Aplicada (INGEBIO), Facultad de Química e Ingeniería del Rosario, Pontificia Universidad Católica Argentina, Av. Pellegrini 3314, Rosario 2000, Argentina
| |
Collapse
|
13
|
Le PQ, Nguyen NQ, Nguyen TT. DFT approach towards accurate prediction of 1H/ 13C NMR chemical shifts for dipterocarpol oxime. RSC Adv 2023; 13:31811-31819. [PMID: 37908664 PMCID: PMC10613955 DOI: 10.1039/d3ra04688e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023] Open
Abstract
A computational NMR approach for accurate predicting the 1H/13C chemical shifts of triterpenoid oximes featuring the screening of 144 DFT methods was demonstrated. Efficiently synthesized dipterocarpol oxime was employed as a model compound. The six highest accurate methods from the screening generated root-mean-square-error (RMSE) values in the range of 0.84 ppm (0.55%) to 1.14 ppm (0.75%) for calculated 13C shifts. For 1H results, simple, economical 6-31G basis set unexpectedly outperformed other more expensive basic sets; and the couple of it with selected functionals provided high accuracy shifts (0.0617 ppm (1.49%) ≤ RMSE ≤ 0.0870 ppm (2.04%)). These computational results strongly supported the proton and carbon assignments of the oxime including the difficult ones of diastereotopic methyl groups, the methyl groups attached to an internal olefin, and diastereotopic α-protons.
Collapse
Affiliation(s)
- Phong Q Le
- School of Biotechnology, International University, VNU HCM Quarter 6, Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Nhu Q Nguyen
- School of Biotechnology, International University, VNU HCM Quarter 6, Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Thien T Nguyen
- Faculty of Pharmacy, College of Medicine and Pharmacy, Duy Tan University Da Nang 550000 Vietnam
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
| |
Collapse
|
14
|
Rodríguez
Martín-Aragón V, Trigal Martínez M, Cuadrado C, Daranas AH, Fernández Medarde A, Sánchez
López JM. OSMAC Approach and Cocultivation for the Induction of Secondary Metabolism of the Fungus Pleotrichocladium opacum. ACS OMEGA 2023; 8:39873-39885. [PMID: 37901491 PMCID: PMC10601420 DOI: 10.1021/acsomega.3c06299] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023]
Abstract
The application of an OSMAC (One Strain-Many Compounds) approach on the fungus Pleotrichocladium opacum, isolated from a soil sample collected on the coast of Asturias (Spain), using different culture media, chemical elicitors, and cocultivation techniques resulted in the isolation and identification of nine new compounds (8, 9, 12, 15-18, 20, 21), along with 15 known ones (1-7, 10, 11, 14, 19, 22-25). Compounds 1-9 were detected in fungal extracts from JSA liquid fermentation, compounds 10-12 were isolated from a solid rice medium, whereas compounds 14 and 15 were isolated from a solid wheat medium. Addition of 5-azacytidine to the solid rice medium caused the accumulation of compounds 16-18, whereas adding N-acetyl-d-glucosamine triggered the production of two additional metabolites, 19 and 20. Finally, cocultivation of the fungus Pleotrichocladium opacum with Echinocatena sp. in a solid PDA medium led to the production of five additional natural products, 21-25. The structures of the new compounds were elucidated by HRESIMS and 1D and 2D NMR as well as by comparison with literature data. DP4+ and mix-J-DP4 computational methods were applied to determine the relative configurations of the novel compounds, and in some cases, the absolute configurations were assigned by a comparison of the optical rotations with those of related natural products.
Collapse
Affiliation(s)
| | - Mónica Trigal Martínez
- Biomar
Microbial Technologies, Parque Tecnológico de León, Parcela M-10.4,
Armunia,León 24009, Spain
| | - Cristina Cuadrado
- Instituto
de Productos Naturales y Agrobiología, Consejo Superior de
Investigaciones Científicas (IPNA-CSIC), San Cristobal de La Laguna, Tenerife 38206, Spain
| | - Antonio Hernández Daranas
- Instituto
de Productos Naturales y Agrobiología, Consejo Superior de
Investigaciones Científicas (IPNA-CSIC), San Cristobal de La Laguna, Tenerife 38206, Spain
| | - Antonio Fernández Medarde
- Biomar
Microbial Technologies, Parque Tecnológico de León, Parcela M-10.4,
Armunia,León 24009, Spain
| | - José M. Sánchez
López
- Biomar
Microbial Technologies, Parque Tecnológico de León, Parcela M-10.4,
Armunia,León 24009, Spain
| |
Collapse
|
15
|
Wong J, Ganoe B, Liu X, Neudecker T, Lee J, Liang J, Wang Z, Li J, Rettig A, Head-Gordon T, Head-Gordon M. An in-silico NMR laboratory for nuclear magnetic shieldings computed via finite fields: Exploring nucleus-specific renormalizations of MP2 and MP3. J Chem Phys 2023; 158:164116. [PMID: 37114707 PMCID: PMC10148725 DOI: 10.1063/5.0145130] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
We developed and implemented a method-independent, fully numerical, finite difference approach to calculating nuclear magnetic resonance shieldings, using gauge-including atomic orbitals. The resulting capability can be used to explore non-standard methods, given only the energy as a function of finite-applied magnetic fields and nuclear spins. For example, standard second-order Møller-Plesset theory (MP2) has well-known efficacy for 1H and 13C shieldings and known limitations for other nuclei such as 15N and 17O. It is, therefore, interesting to seek methods that offer good accuracy for 15N and 17O shieldings without greatly increased compute costs, as well as exploring whether such methods can further improve 1H and 13C shieldings. Using a small molecule test set of 28 species, we assessed two alternatives: κ regularized MP2 (κ-MP2), which provides energy-dependent damping of large amplitudes, and MP2.X, which includes a variable fraction, X, of third-order correlation (MP3). The aug-cc-pVTZ basis was used, and coupled cluster with singles and doubles and perturbative triples [CCSD(T)] results were taken as reference values. Our κ-MP2 results reveal significant improvements over MP2 for 13C and 15N, with the optimal κ value being element-specific. κ-MP2 with κ = 2 offers a 30% rms error reduction over MP2. For 15N, κ-MP2 with κ = 1.1 provides a 90% error reduction vs MP2 and a 60% error reduction vs CCSD. On the other hand, MP2.X with a scaling factor of 0.6 outperformed CCSD for all heavy nuclei. These results can be understood as providing renormalization of doubles amplitudes to partially account for neglected triple and higher substitutions and offer promising opportunities for future applications.
Collapse
Affiliation(s)
- Jonathan Wong
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Brad Ganoe
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Xiao Liu
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Tim Neudecker
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Joonho Lee
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Jiashu Liang
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Zhe Wang
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Jie Li
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Adam Rettig
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
16
|
Liang C, Ndi C, Kjaerulff L, Semple S, Buirchell B, Coriani S, Møller BL, Staerk D. Characterization of Serrulatane Diterpenoids in Eremophila phyllopoda subsp. phyllopoda by Triple High-Resolution α-Glucosidase/PTP1B/Radical Scavenging Profiling, NMR Spectroscopy, DFT-GIAO NMR, and Electronic Circular Dichroism Calculations. JOURNAL OF NATURAL PRODUCTS 2023; 86:694-709. [PMID: 36880726 DOI: 10.1021/acs.jnatprod.2c00692] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Extracts of Eremophila phyllopoda subsp. phyllopoda showed α-glucosidase and PTP1B inhibitory activity with IC50 values of 19.6 and 13.6 μg/mL, respectively. High-resolution α-glucosidase/PTP1B/radical scavenging profiling was performed to establish a triple high-resolution inhibition profile that allowed direct pinpointing of the constituents responsible for one or more of the observed bioactivities. Subsequent targeted isolation and purification by analytical-scale HPLC led to the identification of 21 previously undescribed serrulatane diterpenoids, eremophyllanes A-U, as well as two known serrulatane diterpenoids, 1β-trihydroxyserrulatane (8) and 1α-trihydroxyserrulatane (10d), and five known furofuran lignans, (+)-piperitol (6), horsfieldin (7e), (-)-sesamin (9), (+)-sesamin (10h), and asarinin (10i). Their structures were elucidated by extensive analysis of HRMS and 1D and 2D NMR spectroscopic data. The relative configurations of the previously undescribed compounds were established by analysis of ROESY spectra as well as by DFT-GIAO NMR calculations followed by DP4+ probability analysis. The absolute configurations were determined by comparison of experimental and calculated ECD spectra. Serrulatane diterpenoids 7b and 14 exhibited α-glucosidase inhibitory activity with IC50 values of 28.4 and 64.2 μM, respectively, while 11, 12, 14, and 15 exhibited PTP1B inhibitory activity with IC50 values ranging from 16.6 to 104.6 μM. Hypothetical routes for formation of all identified serrulatane diterpenoids are proposed.
Collapse
Affiliation(s)
- Chao Liang
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Chi Ndi
- Quality Use of Medicines and Pharmacy Research Centre, Clinical and Health Sciences, University of South Australia, Frome Road, Adelaide 5000, Australia
| | - Louise Kjaerulff
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Susan Semple
- Quality Use of Medicines and Pharmacy Research Centre, Clinical and Health Sciences, University of South Australia, Frome Road, Adelaide 5000, Australia
| | - Bevan Buirchell
- Wise Owl Consulting, Como, Western Australia 6152, Australia
| | - Sonia Coriani
- Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Dan Staerk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
17
|
Hoyt EM, Smith LO, Crittenden DL. Simple, accurate, adjustable-parameter-free prediction of NMR shifts for molecules in solution. Phys Chem Chem Phys 2023; 25:9952-9957. [PMID: 36951928 DOI: 10.1039/d3cp00721a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Accurate prediction of NMR shifts is invaluable for interpreting and assigning NMR spectra, especially for complex applications such as determining the identity of unknown substances or resolving stereochemical assignments. Statistical linear regression models have proven effective for accurately correlating density functional theory predictions of chemical shieldings with experimentally-measured shifts, but lack transferability - they must be reparameterised using a reasonably extensive training set at each level of theory and for each choice of NMR solvent. We have previously introduced a novel two-point "shift-and-scale" correction procedure for gas phase shieldings that overcomes these limitations without significant loss of accuracy. In this work, we demonstrate that this approach is equally applicable for predicting solution-phase shifts from computed gas phase shieldings, using acetaldehyde as an experimentally and computationally convenient reference system. We also present all of the required experimental reference data to enable this approach to be used for any target analyte in a range of commonly used NMR solvents (chloroform, dichloromethane, acetonitrile, methanol, acetone, DMSO, D2O, benzene, pyridine).
Collapse
Affiliation(s)
- Emlyn M Hoyt
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8140, New Zealand.
| | - Lachlan O Smith
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8140, New Zealand.
| | - Deborah L Crittenden
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8140, New Zealand.
| |
Collapse
|
18
|
Cortés I, Sarotti AM. E/ Z configurational determination of oximes and related derivatives through quantum mechanics NMR calculations: scope and limitations of the leading probabilistic methods. Org Biomol Chem 2023; 21:2935-2940. [PMID: 36942946 DOI: 10.1039/d3ob00291h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Oximes and related derivatives featuring a CN double bond are important in many areas of chemistry. Different methods for the determination of the E/Z configuration have been developed, each with its own scope and limitations. While some cannot be used when only one isomer is available, others require special NMR experiments. Here, three popular computational methodologies (DP4, DP4+, and ML-J-DP4) have been thoroughly studied using a challenging test set. Although DP4+ provides the best confidence, its computational cost might be high. On the other hand, ML-J-DP4 shows excellent performance in most cases in a fraction of CPU time. A detailed analysis of the structural factors affecting the NMR prediction and sense of the assignment is also provided.
Collapse
Affiliation(s)
- Iván Cortés
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina.
| | - Ariel M Sarotti
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina.
| |
Collapse
|
19
|
Hill A, Wang F. Intramolecular O···H Hydrogen Bonding of Salicylic Acid: Further Insights from O 1s XPS and 1H NMR Spectra Using DFT Calculations. J Phys Chem A 2023; 127:2705-2716. [PMID: 36939708 DOI: 10.1021/acs.jpca.2c08981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Intramolecular hydrogen bonding (HB) is a complex phenomenon that extends beyond a simple valence event, affecting the core electrons of a molecule. Salicylic acid (SA) and its conformers provide an excellent model compound for studying intramolecular HB as the proton donor (H) and acceptor (O) can be toggled by rotating the C-O and C-C bonds to form up to seven potential conformers through various HB. In this study, we computationally investigated intramolecular interactions in SA conformers with and without such HB, by examining their calculated O 1s core electron-binding energy (CEBE) and 1H NMR chemical shifts validated using recent measurements. The quantum mechanically stable SA conformers are fully defined by three rotatable bonds in the compound, which are abstracted as SA(η1η2η3) digital structures, where ηi = 0 if the ηi angles match the most stable SA conformer (000) and ηi = 1 otherwise. Our findings suggest that the stability is dominated by the appearance of the intergroup intramolecular HB of Hp···O (where O is in the carboxylic acid functional group and Hp is the phenolic proton in -OHp), and η3 serves as a switch of such HB. As a result, the (η1η20) SA conformers containing such Hp···O HB are more stable than other SA conformers (η1η21) without such the Hp···O HB. The present density functional theory calculations reveal that this Hp···O HB results in splitting of the O 1s CEBEs of two hydroxyl groups (-OH) by up to 1 eV and deshielding the Hp proton 1H NMR (δHp) up to 11.68 ppm for the (η1η20) conformers. Without such Hp···O HB, the O 1s XPS binding energies of two -OH groups will be closely located in the same band, and the 1H NMR chemical shift of the Hp atom will be as small as an 4.09 ppm SA conformer [SA-G(101)]. The present study indicates that the O 1s CEBE splitting between two -OH groups serves as an indicator of the presence of the Hp···O HB in SA conformers, which is also supported by the 1H NMR results.
Collapse
Affiliation(s)
- Alexander Hill
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
| | - Feng Wang
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
| |
Collapse
|
20
|
Semenov VA, Krivdin LB. Stereochemical Study of the Super Large Tetrakis Alkaloid Alasmontamine A by Means of an Advanced Computational NMR. Int J Mol Sci 2023; 24:ijms24065572. [PMID: 36982653 PMCID: PMC10054784 DOI: 10.3390/ijms24065572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
1H and 13C NMR chemical shifts of the tetrakis monoterpene indole alkaloid alasmontamine A, with a molecular formula of C84H91N8O12, have been calculated within the DFT framework. Six minimum energy conformers of this alkaloid were identified, and three key configurations that contribute to its NMR shielding constants were established. Several ambiguities in the reported assignment of the NMR chemical shifts of alasmontamine A have been resolved.
Collapse
|
21
|
Cohen RD, Wood JS, Lam YH, Buevich AV, Sherer EC, Reibarkh M, Williamson RT, Martin GE. DELTA50: A Highly Accurate Database of Experimental 1H and 13C NMR Chemical Shifts Applied to DFT Benchmarking. Molecules 2023; 28:molecules28062449. [PMID: 36985422 PMCID: PMC10051451 DOI: 10.3390/molecules28062449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/30/2023] Open
Abstract
Density functional theory (DFT) benchmark studies of 1H and 13C NMR chemical shifts often yield differing conclusions, likely due to non-optimal test molecules and non-standardized data acquisition. To address this issue, we carefully selected and measured 1H and 13C NMR chemical shifts for 50 structurally diverse small organic molecules containing atoms from only the first two rows of the periodic table. Our NMR dataset, DELTA50, was used to calculate linear scaling factors and to evaluate the accuracy of 73 density functionals, 40 basis sets, 3 solvent models, and 3 gauge-referencing schemes. The best performing DFT methodologies for 1H and 13C NMR chemical shift predictions were WP04/6-311++G(2d,p) and ωB97X-D/def2-SVP, respectively, when combined with the polarizable continuum solvent model (PCM) and gauge-independent atomic orbital (GIAO) method. Geometries should be optimized at the B3LYP-D3/6-311G(d,p) level including the PCM solvent model for the best accuracy. Predictions of 20 organic compounds and natural products from a separate probe set had root-mean-square deviations (RMSD) of 0.07 to 0.19 for 1H and 0.5 to 2.9 for 13C. Maximum deviations were less than 0.5 and 6.5 ppm for 1H and 13C, respectively.
Collapse
Affiliation(s)
- Ryan D Cohen
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ 07079, USA
| | - Jared S Wood
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC 28409, USA
| | - Yu-Hong Lam
- Department of Computational and Structural Chemistry, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Alexei V Buevich
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Edward C Sherer
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Mikhail Reibarkh
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - R Thomas Williamson
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC 28409, USA
| | - Gary E Martin
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ 07079, USA
| |
Collapse
|
22
|
Species-specific secondary metabolism by actinomycetes of the genus Phytohabitans and discovery of new pyranonaphthoquinones and isatin derivatives. J Antibiot (Tokyo) 2023; 76:249-259. [PMID: 36864231 DOI: 10.1038/s41429-023-00605-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
To further exploit secondary metabolic potential of a minor actinomycete genus Phytohabitans within the family Micromonosporaceae, metabolite profiling by HPLC-UV analysis, combined with 16S rDNA sequence-based phylotyping were attempted on seven Phytohabitans strains available at the public culture collection. The strains were grouped into three clades and each exhibited unique and distinct metabolite profiles, which were highly conserved among strains within the same clade. These results were consistent with previous observations on two other actinomycetes genera, reconfirming species-specificity of secondary metabolite production, which were conventionally thought to be strain-specific. A strain RD003215, belonging to the P. suffuscus clade, produced multiple metabolites, some of which were presumed to be naphthoquinones. Liquid fermentation followed by chromatographic separation of the broth extract led to the discovery of three new pyranonaphthoquinones, designated habipyranoquinones A-C (1-3), and one new isatin derivative, (R)-N-methyl-3-hydroxy-5,6-dimethoxyoxindole (4), along with three known synthetic compounds, 6,8-dihydroxydehydro-α-lapachone (5), N-methyl-5,6-dimethoxyisatin (6), and 5,6-dimethoxyisatin (7). Structures of 1-4 were unequivocally elucidated by NMR, MS, and CD spectral analysis, with assistance of density functional theory-based NMR chemical shift prediction and ECD spectral calculation. Compound 2 displayed antibacterial activity against Kocuria rhizophila and Staphylococcus aureus with MIC 50 µg/mL and cytotoxicity against P388 murine leukemia cells with an IC50 value of 34 µM. Compounds 1 and 4 also showed cytotoxicity against P388 cells with IC50 values of 29 and 14 µM, respectively.
Collapse
|
23
|
Naseem M, Asghar S, Farooq U, Lakhani A, Altaf Y, Hashmi MA. Determination of the Absolute Configuration of Ballonigrin Lactone A Using Density Functional Theory Calculations. ACS OMEGA 2023; 8:1923-1928. [PMID: 36687041 PMCID: PMC9850775 DOI: 10.1021/acsomega.2c03858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
We report the determination of the absolute configuration of a diterpenoid, namely, ballonigrin lactone A (BLA), by comparison of the computed optical rotations, [α]D, of its two diastereomers using density functional theory (DFT) calculations to the experimental [α]D value of +22.4. One of the diastereomers having configurations 4S, 5R, 6S, 10S, 15S was named "α-BLA," and the other one with configuration 4S, 5R, 6S, 10S, 15R was called "β-BLA". Six conformers for each diastereomer (α-BLA and β-BLA) of BLA were identified through their conformational analysis. [α]D values of these six conformations for each diastereomer were calculated using DFT at the mPW1PW91/6-311G(d,p)/SMDChloroform level of theory, leading to the conformationally averaged [α]D values of -96.8 for α-BLA and +65.1 for β-BLA. Thus, it was found that the experimental [α]D value of +22.4 was of 4S, 5R, 6S, 10S, 15R, i.e., β-BLA. Experimental and computed nuclear magnetic resonance (NMR) data were also compared, and this comparison was in accordance with the conclusion drawn from the comparison of [α]D values. Finally, the results were augmented with the calculation of the DP4 analysis, and the probability obtained also endorsed our earlier calculations.
Collapse
Affiliation(s)
- Misbah Naseem
- Department
of Chemistry, Division of Science & Technology, University of Education, 54770 Lahore, Pakistan
| | - Saleha Asghar
- Department
of Chemistry, Division of Science & Technology, University of Education, 54770 Lahore, Pakistan
| | - Umar Farooq
- Department
of Chemistry, COMSATS University Islamabad,
Abbottabad Campus, 22060 Abbottabad, Pakistan
| | - Ahmed Lakhani
- Department
of Biomedical and Health Sciences, Calumet
College of St. Joseph, 2400, New York Avenue, Whiting, Indiana 46394, United States
| | - Yasir Altaf
- Department
of Chemistry, Division of Science & Technology, University of Education, 54770 Lahore, Pakistan
| | - Muhammad Ali Hashmi
- Department
of Chemistry, Division of Science & Technology, University of Education, 54770 Lahore, Pakistan
| |
Collapse
|
24
|
Hersh WH, Chan TY. Improving the accuracy of 31P NMR chemical shift calculations by use of scaling methods. Beilstein J Org Chem 2023; 19:36-56. [PMID: 36726479 PMCID: PMC9843238 DOI: 10.3762/bjoc.19.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/14/2022] [Indexed: 01/12/2023] Open
Abstract
Calculation of 31P NMR chemical shifts for a series of tri- and tetracoordinate phosphorus compounds using several basis sets and density functional theory (DFT) functionals gave a modest fit to experimental chemical shifts, but an excellent linear fit when plotted against the experimental values. The resultant scaling methods were then applied to a variety of "large" compounds previously selected by Latypov et al. and a set of stereoisomeric and unusual compounds selected here. No one method was best for all structural types. For compounds that contain P-P bonds and P-C multiple bonds, the Latypov et al. method using the PBE0 functional was best (mean absolute deviation/root mean square deviation (MAD/RMSD) = 6.9/8.5 ppm and 6.6/8.2 ppm, respectively), but for the full set of compounds gave higher deviations (MAD/RMSD = 8.2/12.3 ppm), and failed by over 60 ppm for a three-membered phosphorus heterocycle. Use of the M06-2X functional for both the structural optimization and NMR chemical shift calculation was best overall for the compounds without P-C multiple bonds (MAD/RMSD = 5.4/7.1 ppm), but failed by 30-49 ppm for compounds having any P-C multiple-bond character. Failures of these magnitudes have not been reported previously for these widely used functionals. These failures were then used to screen a variety of recommended functionals, leading to better overall methods for calculation of these chemical shifts: optimization with the M06-2X functional and NMR calculation with the PBE0 or ωB97x-D functionals gave values for MAD/RMSD = 6.9/8.5 ppm and 6.8/9.1 ppm, respectively, over an experimental chemical shift range of -181 to 356 ppm. Due to the unexplained failures observed, we recommend use of more than one method when looking at novel structures.
Collapse
Affiliation(s)
- William H Hersh
- Department of Chemistry and Biochemistry, Queens College, Queens, NY 11367-1597, USA,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Tsz-Yeung Chan
- Department of Chemistry and Biochemistry, Queens College, Queens, NY 11367-1597, USA,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| |
Collapse
|
25
|
Jørgensen FK, Reinholdt P, Hedegård ED, Kongsted J. Nuclear Magnetic Shielding Constants with the Polarizable Density Embedding Model. J Chem Theory Comput 2022; 18:7384-7393. [PMID: 36332108 DOI: 10.1021/acs.jctc.2c00829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We extend the polarizable density embedding (PDE) model to support the calculation of nuclear magnetic resonance (NMR) shielding constants using gauge-including atomic orbitals (GIAOs) within a density functional theory (DFT) framework. The PDE model divides the total system into fragments, describing some by quantum mechanics (QM) and the others through an embedding model. The PDE model uses anisotropic polarizabilities, inter-fragment two-electron Coulomb integrals, and a non-local repulsion operator to emulate the QM effects. The terms involving Coulomb integrals are straightforwardly extended with GIAOs. In contrast, we consider two approaches to handle the gauge dependency of the non-local operator, employing either simple symmetrization or a gauge transformation. We find the latter approach to be most stable with respect to increasing the basis set size of the QM region. We examine the accuracy of the PDE model for calculating NMR shielding constants on several solutes in a water solution. The performance is compared with the classical polarizable embedding (PE) model in addition to supermolecular reference calculations. Based on these systems, we address the basis set convergence characteristics and the QM region size requirements. Furthermore, we investigate the performance of the PDE model for a system with significant electron spill-out. In many cases, we find that the PDE model outperforms the PE model, especially regarding the accuracy of nuclear shielding constants when using small QM region sizes and in systems with significant electron spill-out.
Collapse
Affiliation(s)
- Frederik Kamper Jørgensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230Odense M, Denmark
| | - Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230Odense M, Denmark
| | - Erik Donovan Hedegård
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230Odense M, Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230Odense M, Denmark
| |
Collapse
|
26
|
Krivdin LB. Computational 1 H and 13 C NMR in structural and stereochemical studies. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2022; 60:733-828. [PMID: 35182410 DOI: 10.1002/mrc.5260] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Present review outlines the advances and perspectives of computational 1 H and 13 C NMR applied to the stereochemical studies of inorganic, organic, and bioorganic compounds, involving in particular natural products, carbohydrates, and carbonium ions. The first part of the review briefly outlines theoretical background of the modern computational methods applied to the calculation of chemical shifts and spin-spin coupling constants at the DFT and the non-empirical levels. The second part of the review deals with the achievements of the computational 1 H and 13 C NMR in the stereochemical investigation of a variety of inorganic, organic, and bioorganic compounds, providing in an abridged form the material partly discussed by the author in a series of parent reviews. Major attention is focused herewith on the publications of the recent years, which were not reviewed elsewhere.
Collapse
Affiliation(s)
- Leonid B Krivdin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| |
Collapse
|
27
|
Li J, Tan YF, Liu S, Wu XQ, Wang J, Xu KP, Tan GS, Zou ZX, Wang WX. Reassignment of the structures of pestalopyrones A-D. PHYTOCHEMISTRY 2022; 200:113205. [PMID: 35436477 DOI: 10.1016/j.phytochem.2022.113205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/10/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Pestalopyrones A-D are four unusual tricyclic pyrone derivatives with flexible chiral structures, isolated from the endophytic fungus Pestalotiopsis neglecta S3. The full elucidation of their structures was a challenging task, and remained unsolved in the original article. Herein, the relative configurations of pestalopyrones A and pestalopyrones B were unambiguously assigned by detailed analyses on spectroscopic data and GIAO 13C NMR calculation method with sorted training sets (STS). The planar structures of pestalopyrones C and pestalopyrones D were revised by reinterpretation of their reported spectroscopic data, and then their relative configurations were deduced by STS GIAO 13C NMR calculation and NOE analysis. The absolute configurations of all the mentioned compounds were determined by the comparison of their experimental and calculated ECD curves.
Collapse
Affiliation(s)
- Jing Li
- Department of Pharmacy, Xiangya Hospital, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, PR China
| | - Yu-Fen Tan
- Department of Pharmacy, Xiangya Hospital, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, PR China
| | - Shao Liu
- Department of Pharmacy, Xiangya Hospital, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, PR China
| | - Xiao-Qian Wu
- Xiangya School of Pharmaceutical Sciences, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, Hunan, 410008, PR China
| | - Jing Wang
- Xiangya School of Pharmaceutical Sciences, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, Hunan, 410008, PR China
| | - Kang-Ping Xu
- Xiangya School of Pharmaceutical Sciences, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, Hunan, 410008, PR China
| | - Gui-Shan Tan
- Department of Pharmacy, Xiangya Hospital, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, PR China
| | - Zhen-Xing Zou
- Xiangya School of Pharmaceutical Sciences, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, Hunan, 410008, PR China
| | - Wen-Xuan Wang
- Xiangya School of Pharmaceutical Sciences, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, Hunan, 410008, PR China.
| |
Collapse
|
28
|
Elyashberg M, Novitskiy IM, Bates RW, Kutateladze AG, Williams CM. Reassignment of Improbable Natural Products Identified through Chemical Principle Screening. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mikhail Elyashberg
- Advanced Chemistry Development Inc. (ACD/Labs) Toronto ON, M5C 1B5 Canada
| | - Ivan M. Novitskiy
- Department of Chemistry and Biochemistry University of Denver Denver CO 80208 United States
| | - Roderick W. Bates
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371
| | - Andrei G. Kutateladze
- Department of Chemistry and Biochemistry University of Denver Denver CO 80208 United States
| | - Craig M. Williams
- School of Chemistry and Molecular Biosciences University of Queensland Brisbane 4072 Queensland Australia
| |
Collapse
|
29
|
Tosso RD, Zarycz MNC, Schiel A, Goicoechea Moro L, Baldoni HA, Angelina E, Enriz RD. Evaluating the conformational space of the active site of D 2 dopamine receptor. Scope and limitations of the standard docking methods. J Comput Chem 2022; 43:1298-1312. [PMID: 35638694 DOI: 10.1002/jcc.26938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/11/2022] [Accepted: 05/08/2022] [Indexed: 11/05/2022]
Abstract
We report here for the first time the potential energy surfaces (PES) of phenyletilamine (PEA) and meta-tyramine (m-OH-PEA) at the D2 dopamine receptor (D2DR) binding site. PESs not only allow us to observe all the critical points of the surface (minimums, maximums, and transition states), but also to note the ease or difficulty that each local minima have for their conformational inter-conversions and therefore know the conformational flexibility that these ligands have in their active sites. Taking advantage of possessing this valuable information, we analyze how accurate a standard docking study is in these cases. Our results indicate that although we have to be careful in how to carry out this type of study and to consider performing some extra-simulations, docking calculations can be satisfactory. In order to analyze in detail the different molecular interactions that are stabilizing the different ligand-receptor (L-R) complexes, we carried out quantum theory of atoms in molecules (QTAIM) computations and NMR shielding calculations. Although some of these techniques are a bit tedious and require more computational time, our results demonstrate the importance of performing computational simulations using different types of combined techniques (docking/MD/hybrid QM-MM/QTAIM and NMR shielding calculations) in order to obtain more accurate results. Our results allow us to understand in details the molecular interactions stabilizing and destabilizing the different L-R complexes reported here. Thus, the different activities observed for dopamine (DA), m-OH-PEA, and PEA can be clearly explained at molecular level.
Collapse
Affiliation(s)
- Rodrigo D Tosso
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas, San Luis, Argentina
| | - M Natalia C Zarycz
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas, San Luis, Argentina
| | - Ayelén Schiel
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas, San Luis, Argentina
| | - Luisa Goicoechea Moro
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas, San Luis, Argentina
| | - Héctor A Baldoni
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis; Instituto de Matemáticas, San Luis, Argentina
| | - Emilio Angelina
- Laboratorio de Estructura Molecular y Propiedades, Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Instituto de Química Básica y Aplicada, Corrientes, Argentina
| | - Ricardo D Enriz
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas, San Luis, Argentina
| |
Collapse
|
30
|
Li C, Hu Y, Wu X, Stumpf SD, Qi Y, D’Alessandro JM, Nepal KK, Sarotti AM, Cao S, Blodgett JAV. Discovery of unusual dimeric piperazyl cyclopeptides encoded by a Lentzea flaviverrucosa DSM 44664 biosynthetic supercluster. Proc Natl Acad Sci U S A 2022; 119:e2117941119. [PMID: 35439047 PMCID: PMC9169926 DOI: 10.1073/pnas.2117941119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/07/2022] [Indexed: 12/19/2022] Open
Abstract
Rare actinomycetes represent an underexploited source of new bioactive compounds. Here, we report the use of a targeted metabologenomic approach to identify piperazyl compounds in the rare actinomycete Lentzea flaviverrucosa DSM 44664. These efforts to identify molecules that incorporate piperazate building blocks resulted in the discovery and structural elucidation of two dimeric biaryl-cyclohexapeptides, petrichorins A and B. Petrichorin B is a symmetric homodimer similar to the known compound chloptosin, but petrichorin A is unique among known piperazyl cyclopeptides because it is an asymmetric heterodimer. Due to the structural complexity of petrichorin A, solving its structure required a combination of several standard chemical methods plus in silico modeling, strain mutagenesis, and solving the structure of its biosynthetic intermediate petrichorin C for confident assignment. Furthermore, we found that the piperazyl cyclopeptides comprising each half of the petrichorin A heterodimer are made via two distinct nonribosomal peptide synthetase (NRPS) assembly lines, and the responsible NRPS enzymes are encoded within a contiguous biosynthetic supercluster on the L. flaviverrucosa chromosome. Requiring promiscuous cytochrome p450 crosslinking events for asymmetric and symmetric biaryl production, petrichorins A and B exhibited potent in vitro activity against A2780 human ovarian cancer, HT1080 fibrosarcoma, PC3 human prostate cancer, and Jurkat human T lymphocyte cell lines with IC50 values at low nM levels. Cyclic piperazyl peptides and their crosslinked derivatives are interesting drug leads, and our findings highlight the potential for heterodimeric bicyclic peptides such as petrichorin A for inclusion in future pharmaceutical design and discovery programs.
Collapse
Affiliation(s)
- Chunshun Li
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI 96720
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813
| | - Yifei Hu
- Department of Biology, Washington University in St Louis, St Louis MO 63122
| | - Xiaohua Wu
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI 96720
| | - Spencer D. Stumpf
- Department of Biology, Washington University in St Louis, St Louis MO 63122
| | - Yunci Qi
- Department of Biology, Washington University in St Louis, St Louis MO 63122
| | | | - Keshav K. Nepal
- Department of Biology, Washington University in St Louis, St Louis MO 63122
| | - Ariel M. Sarotti
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI 96720
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813
| | | |
Collapse
|
31
|
Yan W, Xu X. Accurate Prediction of Nuclear Magnetic Resonance Parameters via the XYG3 Type of Doubly Hybrid Density Functionals. J Chem Theory Comput 2022; 18:2931-2946. [PMID: 35467852 DOI: 10.1021/acs.jctc.2c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful and versatile tools in elucidating molecular structures. To eliminate ambiguities of experimental assignments, accurate calculations of NMR spectra are of great importance. Here, a method for theoretical evaluation of the NMR shielding constants by analytic derivatives using gauge including atomic orbitals (GIAO) has been implemented for the XYG3 type of doubly hybrid density functionals (xDH), namely, the GIAO-xDH method. Benchmark calculations on shielding constants and chemical shifts demonstrate the remarkable accuracy of the GIAO-xDH method, compared to the accurate CCSD(T) references. It is shown here that the XYGJ-OS functional is able to give a mean absolute deviation (MAD) of ∼3.0 ppm in the calculated shielding constants for 13C, 15N, 17O, 19F, while both XYGJ-OS and xDH-PBE0 functionals are able to provide a satisfactory estimation of chemical shifts with MADs of ∼0.03 and 1.0 ppm for 1H and 13C, respectively. The basis set influence upon the method has been examined and a computational scheme considering both accuracy and efficiency has been proposed and tested to predict the experimental 13C chemical shifts of five medium-sized natural product molecules, yielding a MAD of ∼1.0 ppm, which demonstrates the practical feasibility of the GIAO-xDH method.
Collapse
Affiliation(s)
- Wenjie Yan
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Ministry of Education Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Ministry of Education Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai, 200433, China
| |
Collapse
|
32
|
Martorano LH, Brito JT, de Albuquerque ACF, Ribeiro CMR, Fiorot RG, Carneiro JWDM, Costa FLP, Valverde AL, Dos Santos Junior FM. Revisiting the structure of Heliannuol L: A computational approach. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2022; 60:434-441. [PMID: 34741339 DOI: 10.1002/mrc.5230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Recently, structural elucidation of natural products has undergone a revolution. The combined use of different modern spectroscopic methods has allowed obtaining a complete structural assignment of natural products using small amounts of sample. However, despite the extraordinary ongoing advances in spectroscopy, the mischaracterization of natural products has been and remains a recurrent problem, especially when the substance presents several stereogenic centers. The misinterpretation of nuclear magnetic resonance (NMR) data has resulted in frequent reports addressing structural reassignment. In this context, a great effort has been devoted to developing quantum chemical calculations that simulate NMR parameters accurately, allowing to achieve a more precise spectral interpretation. In this work, we employed a protocol for theoretical calculations of 1 H NMR chemical shifts and coupling constants using density functional theory (DFT), followed by the application of the DP4+ method to revisit the structure of Heliannuol L, a member of the Heliannuol class, isolated from Helianthus annuus. Our results indicate that the originally proposed structure of Heliannuol L needs a stereochemical reassignment, placing the hydroxyl bonded to C10 in the opposite side of the methyl and hydroxyl groups bonded to C7 and C8, respectively.
Collapse
Affiliation(s)
- Lucas H Martorano
- Department of Organic Chemistry, Chemistry Institute, Fluminense Federal University (UFF), Niterói, Brazil
| | - Jordana T Brito
- Department of Organic Chemistry, Chemistry Institute, Fluminense Federal University (UFF), Niterói, Brazil
| | | | - Carlos Magno Rocha Ribeiro
- Department of Organic Chemistry, Chemistry Institute, Fluminense Federal University (UFF), Niterói, Brazil
| | - Rodolfo Goetze Fiorot
- Department of Organic Chemistry, Chemistry Institute, Fluminense Federal University (UFF), Niterói, Brazil
| | | | | | - Alessandra L Valverde
- Department of Organic Chemistry, Chemistry Institute, Fluminense Federal University (UFF), Niterói, Brazil
| | | |
Collapse
|
33
|
Pinto BN, Moura GA, Demuner AJ, Alvarenga ES. Structural elucidation of a novel pyrrolizidine alkaloid isolated from Crotalaria retusa L. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Hwang TL, Yang N, Cheng G, Chen Y, Cui S. Application of 1D 15 N and band-selective 2D 1 H- 15 N CLIP-HSQMBC to detect 35/37 Cl isotope effect on nitrogen for unequivocal structure elucidation of the N-Cl moiety in molecules. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2022; 60:157-164. [PMID: 34376016 DOI: 10.1002/mrc.5204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 08/04/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
An impurity, designated MS204, was isolated from a scale-up production of an intermediate toward the synthesis of an active pharmaceutical ingredient. Structural elucidation of this chloro-containing impurity was performed based on the analysis of the MS and NMR data. Band-selective 2D 1 H-15 N CLIP-HSQMBC experiment was developed to unequivocally identify the ionic N-Cl moiety in the molecule by discovering the two isotope-shifted nitrogen peaks as 3 to 1 ratio separated by about 1 Δ15 N(37/35 Cl) = 19.6 ppb (1.19 Hz) due to the Cl isotope effect. 1D 15 N and 2D 1 H-15 N CLIP-HSQMBC experiments were applied to commercially available compounds to further confirm the techniques by detecting the isotope shift of nitrogen peaks for the N-Cl moiety in molecules.
Collapse
Affiliation(s)
| | - Ning Yang
- Attribute Sciences, Amgen Inc., Thousand Oaks, CA, USA
| | - Guilong Cheng
- Attribute Sciences, Amgen Inc., Thousand Oaks, CA, USA
- Department of Analytical Development and QC, Foghorn Therapeutics, Cambridge, MA, USA
| | - Ying Chen
- Drug Substance Technologies, Amgen Inc., Thousand Oaks, CA, USA
- Chemical Development, CMC, Neurocrine Biosciences, San Diego, CA, USA
| | - Sheng Cui
- Drug Substance Technologies, Amgen Inc., Thousand Oaks, CA, USA
- CMC, New Amsterdam Pharma, Miami, FL, USA
| |
Collapse
|
35
|
Semenov VA, Krivdin LB. Computational NMR of natural products. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Wang FR, Yang L, Kong FD, Ma QY, Xie QY, Wu YG, Dai HF, Chen P, Xiao N, Zhao YX. Humulane-Type Macrocyclic Sesquiterpenoids From the Endophytic Fungus Penicillium sp. of Carica papaya. Front Chem 2021; 9:797858. [PMID: 34976955 PMCID: PMC8717546 DOI: 10.3389/fchem.2021.797858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/15/2021] [Indexed: 11/23/2022] Open
Abstract
Three new humulane-type sesquiterpenoids, penirolide A (1), penirolide B (2), and 10-acetyl-phomanoxide (3), together with three known compounds aurasperone A (4), pughiinin A (5), and cyclo(l-Leu-l-Phe) (6) were isolated from the endophytic fungus Penicillium sp. derived from the leaves of Carica papaya L. Their structures including their absolute configurations were determined based on the analysis of NMR and HRESIMS spectra, NMR chemical shifts, and ECD calculations. Compounds 2, 3, 5, and 6 significantly inhibited glucagon-induced hepatic glucose production, with EC50 values of 33.3, 36.1, 18.8, and 32.1 μM, respectively. Further study revealed that compounds 2, 3, 5, and 6 inhibited hepatic glucose production by suppression of glucagon-induced cAMP accumulation.
Collapse
Affiliation(s)
- Fu-Run Wang
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, China
| | - Li Yang
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou, China
| | - Fan-Dong Kong
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, China
| | - Qing-Yun Ma
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou, China
| | - Qing-Yi Xie
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou, China
| | - You-Gen Wu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, China
| | - Hao-Fu Dai
- Hainan Institute for Tropical Agricultural Resources, CATAS, Haikou, China
| | - Ping Chen
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, China
- *Correspondence: Ping Chen, ; Na Xiao, ; You-Xing Zhao,
| | - Na Xiao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agriculture University, Tai’an, Shandong, China
- *Correspondence: Ping Chen, ; Na Xiao, ; You-Xing Zhao,
| | - You-Xing Zhao
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou, China
- *Correspondence: Ping Chen, ; Na Xiao, ; You-Xing Zhao,
| |
Collapse
|
37
|
Semenov VA, Krivdin LB. Simple and Versatile Scheme for the Stereochemical Identification of Natural Products and Diverse Organic Compounds with Multiple Asymmetric Centers. J Phys Chem A 2021; 125:10359-10372. [PMID: 34817185 DOI: 10.1021/acs.jpca.1c08687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A simple and versatile scheme of stereochemical identification of the stereochemically rich natural products and organic compounds with multiple asymmetric centers is proposed based on a detailed parsing of calculated 1H and 13C NMR chemical shifts in combination with their DP4+ analysis, as exemplified for three natural products: sungucine, physalin D, and anabsinthin. Performed benchmark calculations of the considered diastereomers provided very good agreement with their known experimental stereochemical structures.
Collapse
Affiliation(s)
- Valentin A Semenov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, 664033 Irkutsk, Russian Federation
| | - Leonid B Krivdin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, 664033 Irkutsk, Russian Federation
| |
Collapse
|
38
|
Souto JA, Román D, Domínguez M, Lera ÁR. Synthetic Studies on Alotamide A: Construction of
N
‐Demethylalotamide A. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- José A. Souto
- CINBIO Universidade de Vigo Departamento de Química Orgánica 36310 Vigo España
| | - David Román
- CINBIO Universidade de Vigo Departamento de Química Orgánica 36310 Vigo España
| | - Marta Domínguez
- CINBIO Universidade de Vigo Departamento de Química Orgánica 36310 Vigo España
| | - Ángel R. Lera
- CINBIO Universidade de Vigo Departamento de Química Orgánica 36310 Vigo España
| |
Collapse
|
39
|
de Oliveira MT, Alves JMA, Braga AAC, Wilson DJD, Barboza CA. Do Double-Hybrid Exchange-Correlation Functionals Provide Accurate Chemical Shifts? A Benchmark Assessment for Proton NMR. J Chem Theory Comput 2021; 17:6876-6885. [PMID: 34637284 DOI: 10.1021/acs.jctc.1c00604] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A benchmark density functional theory (DFT) study of 1H NMR chemical shifts for data sets comprising 200 chemical shifts, including complex natural products, has been carried out to assess the performance of DFT methods. Two new benchmark data sets, NMRH33 and NMRH148, have been established. The meta-GGA revTPSS performs remarkably well against the NMRH33 benchmark set (mean absolute deviation (MAD), 0.10 ppm; maximum deviation (max), 0.26 ppm) with the smallest MAD of all evaluated functionals. The best-performing double-hybrid density functional (DHDF), revDSD-BLYP (MAD, 0.16 ppm; max, 0.35 ppm), performs similarly to hybrid-GGA methods (e.g., mPW1PW91/6-311G(d) (MAD, 0.15 ppm; max, 0.36 ppm)), but at a considerably higher computational cost. The results indicate that currently available double-hybrid DFT methods offer no benefit over GGA (including hybrid and meta) functionals in the calculation of 1H NMR chemical shifts.
Collapse
Affiliation(s)
- Marcelo T de Oliveira
- Department of Chemistry and Physics, La Trobe Institute of Molecular Sciences, La Trobe University, Melbourne, Victoria 3086, Australia.,Chemistry Institute of São Carlos, University of São Paulo, Avenida Trabalhador São Carlense 400, 13566-590 São Carlos, São Paulo, Brazil
| | - Júlia M A Alves
- Chemistry Institute of São Carlos, University of São Paulo, Avenida Trabalhador São Carlense 400, 13566-590 São Carlos, São Paulo, Brazil
| | - Ataualpa A C Braga
- Instituto de Química, Universidade de São Paulo, Avenida Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - David J D Wilson
- Department of Chemistry and Physics, La Trobe Institute of Molecular Sciences, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Cristina A Barboza
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, Warsaw 02-668, Poland
| |
Collapse
|
40
|
Pierens GK. A New Metric for Evaluating DFT Calculated Proton and Carbon Chemical Shifts of Natural Products and Organic Compounds. Chemphyschem 2021; 22:2207-2214. [PMID: 34546658 DOI: 10.1002/cphc.202100579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/01/2021] [Indexed: 11/07/2022]
Abstract
The calculation of DFT (density functional theory) chemical shifts have become an important technique for the verification of a proposed structure. An easily calculated metric developed for proton and carbon chemical shifts of natural products and organic compounds, the calculated chemical shift index (CCSI), has been developed, which uses the deviation of each pair of calculated and experimental chemical shifts. The mean absolute deviation (MAD), which is commonly used as the goodness of fit metric for DFT calculated chemical shifts, can conceal large deviations in the calculated data. A classification strategy is also proposed for the CCSI to highlight when further assessment of the NMR data is required.
Collapse
Affiliation(s)
- Gregory K Pierens
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland, 4072, Australia
| |
Collapse
|
41
|
Kolomeychuk FM, Safonova EA, Polovkova MA, Sinelshchikova AA, Martynov AG, Shokurov AV, Kirakosyan GA, Efimov NN, Tsivadze AY, Gorbunova YG. Switchable Aromaticity of Phthalocyanine via Reversible Nucleophilic Aromatic Addition to an Electron-Deficient Phosphorus(V) Complex. J Am Chem Soc 2021; 143:14053-14058. [PMID: 34423977 DOI: 10.1021/jacs.1c05831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Reversible nucleophilic addition to a phthalocyanine core was observed for the first time for the electron-deficient cationic phosphorus(V) complex [PcP(OMe)2]+, whose reaction with KOH afforded a highly distorted nonaromatic adduct bearing an OH group at one of the α-pyrrolic carbon atoms. This adduct was characterized by single-crystal X-ray diffraction, ESI HRMS, and NMR, and UV-vis spectroscopy, together with quantum-chemical modeling. The acidic treatment of this adduct restored aromaticity and recovered the starting cationic complex. The reversible aromaticity breakage resulted in dramatic changes in the photophysical properties of the studied complex, which could pave the way to novel switchable Pc-based compounds and materials.
Collapse
Affiliation(s)
- Filipp M Kolomeychuk
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia.,Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, bldg. 4, Moscow 119071, Russia
| | - Evgeniya A Safonova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, bldg. 4, Moscow 119071, Russia
| | - Marina A Polovkova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, bldg. 4, Moscow 119071, Russia
| | - Anna A Sinelshchikova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, bldg. 4, Moscow 119071, Russia
| | - Alexander G Martynov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, bldg. 4, Moscow 119071, Russia
| | - Alexander V Shokurov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, bldg. 4, Moscow 119071, Russia
| | - Gayane A Kirakosyan
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia.,Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, bldg. 4, Moscow 119071, Russia
| | - Nikolay N Efimov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia
| | - Aslan Yu Tsivadze
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia.,Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, bldg. 4, Moscow 119071, Russia
| | - Yulia G Gorbunova
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia.,Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, bldg. 4, Moscow 119071, Russia
| |
Collapse
|
42
|
Colasurdo DD, Arancibia LA, Naspi ML, Laurella SL. Using DP4+ probability for structure elucidation of sesquiterpenic lactones: The case of (−)‐Istanbulin A. J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Diego D. Colasurdo
- CEDECOR (Centro de Estudio de Compuestos Orgánicos), Facultad de Ciencias Exactas Universidad Nacional de La Plata (UNLP) La Plata Argentina
| | - Luz A. Arancibia
- Departamento de Química, Química Orgánica Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB) Comodoro Rivadavia Chubut Argentina
| | - Mariana L. Naspi
- Departamento de Química, Química Orgánica Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB) Comodoro Rivadavia Chubut Argentina
- Departamento de Farmacia, Análisis de Medicamentos Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB) Comodoro Rivadavia Chubut Argentina
| | - Sergio L. Laurella
- CEDECOR (Centro de Estudio de Compuestos Orgánicos), Facultad de Ciencias Exactas Universidad Nacional de La Plata (UNLP) La Plata Argentina
| |
Collapse
|
43
|
Stelleranoids A-M, guaiane-type sesquiterpenoids based on [5,7] bicyclic system from Stellera chamaejasme and their cytotoxic activity. Bioorg Chem 2021; 115:105251. [PMID: 34390969 DOI: 10.1016/j.bioorg.2021.105251] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 12/31/2022]
Abstract
Thirteen previously undescribed guaiane-type sesquiterpenoids based on [5,7] bicyclic system, stelleranoids A-M (1-13), along with six known analogues (14-20), were isolated from the roots of Stellera chamaejasme with chromatographic techniques. Their structures including absolute configurations were determined by HRESIMS and spectroscopic data, quantum chemical calculations, as well as X-ray crystallographic analysis. Cytotoxicity test in three cell lines indicated that compound 14 had relatively stronger cytotoxic effect against MKN-45, SKOV3, and Du145 cell lines with IC50 of 9.8, 17.4 and 7.3 μM, respectively; compounds 3 and 8 displayed moderate cytotoxic effect against MKN-45 and Du145 cell lines with IC50 ranged from 14.5 to 18.8 μM, comparable to those of the positive control. As determined by fluorescent microscopy and flow cytometry in Du145 cell line, compound 14 could promote cell apoptosis and cause cell cycle arrest at the G0/G1 phase, leading to the inhibition of cell proliferation. Further Western blot analysis revealed that this inhibitory effect was accompanied by upregulating pro-apoptosis proteins cleaved-PARP, cleaved-Caspase-9 and tumor suppressor protein p53 while downregulating anti-apoptotic protein Bcl-2 in 14-treated Du145 cells.
Collapse
|
44
|
Navarro-Vázquez A. Computational Structural Revision of a 4-Hydroxy-3-(1'-angeloyloxy-2',3'-epoxy-3'-methyl)butylacetophenone Compound from Ageratina grandifolia. JOURNAL OF NATURAL PRODUCTS 2021; 84:2043-2047. [PMID: 34192466 DOI: 10.1021/acs.jnatprod.1c00398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The structure of the reported compound 4-hydroxy-3-((S)-1'-angeloyloxy-(R)-2',3'-epoxy-3'-methyl)butylacetophenone (1), isolated from Ageratina grandifolia, has been revised through the use of DFT computational predictions. Re-examination of the reported experimental and DFT computed chemical shifts has led to the proposal of a chromane skeleton rather than the original epoxide derivative. Empirical predictions of the 13C and 1H NMR shifts showed a much better fit for the chromane structure than for the epoxide. The relative configuration of the molecule was established using CASE-3D methodology on the basis of new DFT chemical shielding and J-coupling predictions, allowing the proposal of a new rel-2,2-dimethyl-3R-hydroxy-4S-(1-angeloyloxy)chromane structure (2) for the isolated compound. However, DFT prediction of the optical rotation for the CASE-3D selected configuration/conformations did not provide a conclusive answer for the absolute configuration.
Collapse
Affiliation(s)
- Armando Navarro-Vázquez
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 1235, Cidade Universitária, 50670-901, Recife, PE, Brazil
| |
Collapse
|
45
|
Marcarino MO, Cicetti S, Zanardi MM, Sarotti AM. A critical review on the use of DP4+ in the structural elucidation of natural products: the good, the bad and the ugly. A practical guide. Nat Prod Rep 2021; 39:58-76. [PMID: 34212963 DOI: 10.1039/d1np00030f] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: 2015 up to the end of 2020Even in the golden age of NMR, the number of natural products being incorrectly assigned is becoming larger every day. The use of quantum NMR calculations coupled with sophisticated data analysis provides ideal complementary tools to facilitate the elucidation process in challenging cases. Among the current computational methodologies to perform this task, the DP4+ probability is a popular and widely used method. This updated version of Goodman's DP4 synergistically combines NMR calculations at higher levels of theory with the Bayesian analysis of both scaled and unscaled data. Since its publication in late 2015, the use of DP4+ to solve controversial natural products has substantially grown, with several predictions being confirmed by total synthesis. To date, the structures of more than 200 natural products were determined with the aid of DP4+. However, all that glitters is not gold. Besides its intrinsic limitations, on many occasions it has been improperly used with potentially important consequences on the quality of the assignment. Herein we present a critical revision on how the scientific community has been using DP4+, exploring the strengths of the method and how to obtain optimal results from it. We also analyze the weaknesses of DP4+, and the paths to by-pass them to maximize the confidence in the structural elucidation.
Collapse
Affiliation(s)
- Maribel O Marcarino
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina.
| | - Soledad Cicetti
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina.
| | - María M Zanardi
- Instituto de Ingeniería Ambiental, Química y Biotecnología Aplicada (INGEBIO), Facultad de Química e Ingeniería del Rosario, Pontificia Universidad Católica Argentina, Av. Pellegrini 3314, Rosario 2000, Argentina.
| | - Ariel M Sarotti
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina.
| |
Collapse
|
46
|
Zanardi MM, Sarotti AM. Sensitivity Analysis of DP4+ with the Probability Distribution Terms: Development of a Universal and Customizable Method. J Org Chem 2021; 86:8544-8548. [DOI: 10.1021/acs.joc.1c00987] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- María Marta Zanardi
- Instituto de Ingeniería Ambiental, Química y Biotecnología Aplicada (INGEBIO), Facultad de Química e Ingeniería del Rosario, Pontificia Universidad Católica Argentina, S2002QEO Rosario, Argentina
| | - Ariel M. Sarotti
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
47
|
Borges R, Colby SM, Das S, Edison AS, Fiehn O, Kind T, Lee J, Merrill AT, Merz KM, Metz TO, Nunez JR, Tantillo DJ, Wang LP, Wang S, Renslow RS. Quantum Chemistry Calculations for Metabolomics. Chem Rev 2021; 121:5633-5670. [PMID: 33979149 PMCID: PMC8161423 DOI: 10.1021/acs.chemrev.0c00901] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Indexed: 02/07/2023]
Abstract
A primary goal of metabolomics studies is to fully characterize the small-molecule composition of complex biological and environmental samples. However, despite advances in analytical technologies over the past two decades, the majority of small molecules in complex samples are not readily identifiable due to the immense structural and chemical diversity present within the metabolome. Current gold-standard identification methods rely on reference libraries built using authentic chemical materials ("standards"), which are not available for most molecules. Computational quantum chemistry methods, which can be used to calculate chemical properties that are then measured by analytical platforms, offer an alternative route for building reference libraries, i.e., in silico libraries for "standards-free" identification. In this review, we cover the major roadblocks currently facing metabolomics and discuss applications where quantum chemistry calculations offer a solution. Several successful examples for nuclear magnetic resonance spectroscopy, ion mobility spectrometry, infrared spectroscopy, and mass spectrometry methods are reviewed. Finally, we consider current best practices, sources of error, and provide an outlook for quantum chemistry calculations in metabolomics studies. We expect this review will inspire researchers in the field of small-molecule identification to accelerate adoption of in silico methods for generation of reference libraries and to add quantum chemistry calculations as another tool at their disposal to characterize complex samples.
Collapse
Affiliation(s)
- Ricardo
M. Borges
- Walter
Mors Institute of Research on Natural Products, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Sean M. Colby
- Biological
Science Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - Susanta Das
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Arthur S. Edison
- Departments
of Genetics and Biochemistry and Molecular Biology, Complex Carbohydrate
Research Center and Institute of Bioinformatics, University of Georgia, Athens, Georgia 30602, United States
| | - Oliver Fiehn
- West
Coast Metabolomics Center for Compound Identification, UC Davis Genome
Center, University of California, Davis, California 95616, United States
| | - Tobias Kind
- West
Coast Metabolomics Center for Compound Identification, UC Davis Genome
Center, University of California, Davis, California 95616, United States
| | - Jesi Lee
- West
Coast Metabolomics Center for Compound Identification, UC Davis Genome
Center, University of California, Davis, California 95616, United States
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Amy T. Merrill
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Kenneth M. Merz
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Thomas O. Metz
- Biological
Science Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - Jamie R. Nunez
- Biological
Science Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - Dean J. Tantillo
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Lee-Ping Wang
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Shunyang Wang
- West
Coast Metabolomics Center for Compound Identification, UC Davis Genome
Center, University of California, Davis, California 95616, United States
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Ryan S. Renslow
- Biological
Science Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
48
|
Igarashi Y, Matsuyuki Y, Yamada M, Fujihara N, Harunari E, Oku N, Karim MRU, Yang T, Yamada K, Imada C, Fukaya K, Urabe D. Structure Determination, Biosynthetic Origin, and Total Synthesis of Akazaoxime, an Enteromycin-Class Metabolite from a Marine-Derived Actinomycete of the Genus Micromonospora. J Org Chem 2021; 86:6528-6537. [PMID: 33885295 DOI: 10.1021/acs.joc.1c00358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new enteromycin-class antibiotic, akazaoxime (1), possessing an aldoxime functionality in place of O-methyl nitronic acid, was isolated from the cultured extract of a marine-derived actinomycete of the genus Micromonospora, along with known A-76356 (2). The structure of 1, including the absolute stereochemistry of three chiral centers, was established by comprehensive analysis of nuclear magnetic resonance (NMR) and mass spectrometry data coupled with magnetic anisotropy analysis of its phenylglycine methyl ester derivatives. The stereochemistry of 2, not determined previously, was proven to be the same as that of 1 on the basis of the similarity of their NMR and specific rotation data. Precursor feeding experiments using 13C-labeled compounds elucidated that the carbon skeletons of 1 and 2 are constructed from propionate (methylmalonate), leucine, and glycine. Establishment of the concise and flexible synthetic route to 1 enabled us to implement biological evaluation of 1 and its unnatural analogues, demonstrating weak to moderate antimicrobial activities of 1 against Gram-positive Kocuria rhizophila [minimum inhibitory concentration (MIC) of 50 μg/mL] and those of synthetic analogues against a plant pathogen Glomerella cingulata (MIC of 50 μg/mL) and a human pathogen Trichophyton rubrum (MIC of 25-50 μg/mL).
Collapse
Affiliation(s)
- Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yoe Matsuyuki
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Masayuki Yamada
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Nodoka Fujihara
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Enjuro Harunari
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Naoya Oku
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Md Rokon Ul Karim
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Taehui Yang
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7, Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Katsuhisa Yamada
- DHC Corporation, 2-7-1 minami-Azabu, Minato-ku, Tokyo 106-8571, Japan
| | - Chiaki Imada
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7, Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Keisuke Fukaya
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Daisuke Urabe
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
49
|
Nazarski RB. Summary of DFT calculations coupled with current statistical and/or artificial neural network (ANN) methods to assist experimental NMR data in identifying diastereomeric structures. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
50
|
Tantillo DJ, Seeman JI. On the Structural Assignments Underlying R. B. Woodward's Most Personal Data That Led to the Woodward-Hoffmann Rules: Subramania Ranganathan's Key Role and Related Research by E. J. Corey and A. G. Hortmann. Chemistry 2021; 27:7000-7016. [PMID: 33835603 DOI: 10.1002/chem.202004790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/13/2021] [Indexed: 11/09/2022]
Abstract
In the early 1960s, as part of R. B. Woodward's isoxazole route to vitamin B12 , Subramania Ranganathan uncovered two coupled sets of stereospecific reactions, a thermal set and a photochemical set. These four reactions illustrated the alternating configurations that were the major data points that prompted the solution of the no-mechanism problem. Though Ranganathan's reactions played a major role, according to Woodward, in the development of the Woodward-Hoffmann rules, they were published only as part of the documentation of a lecture given by Woodward in 1966. The authors of this paper have uncovered Subramania Ranganathan's 1964 postdoctoral report and have used modern quantum chemical theory to predict the 1 H NMR spectra for Ranganathan's key compounds, providing support for the structure assignments made by Woodward and Ranganathan. A similar set of alternating, stereospecific reactions was observed by E. J. Corey and Alfred Hortmann in their 1963 total synthesis of dihydrocostunolide. We also have applied the computational process used for Ranganathan's compounds to Hortmann's compounds, now also including the calculation of coupling constants, and find computational support for Corey and Hortmann's structure assignments.
Collapse
Affiliation(s)
- Dean J Tantillo
- Department of Chemistry, University of California-Davis, Davis, California, 95616, United States
| | - Jeffrey I Seeman
- Department of Chemistry, University of Richmond, Richmond, Virginia, 23173, United States
| |
Collapse
|