1
|
Wang C, Wang L, Nallathambi V, Liu Y, Kresse J, Hübner R, Reichenberger S, Gault B, Zhan J, Eychmüller A, Cai B. Structural Regulation of Au-Pt Bimetallic Aerogels for Catalyzing the Glucose Cascade Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405200. [PMID: 39136065 DOI: 10.1002/adma.202405200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/24/2024] [Indexed: 10/11/2024]
Abstract
Bimetallic nanostructures are promising candidates for the development of enzyme-mimics, yet the deciphering of the structural impact on their catalytic properties poses significant challenges. By leveraging the structural versatility of nanocrystal aerogels, this study reports a precise control of Au-Pt bimetallic structures in three representative structural configurations, including segregated, alloy, and core-shell structures. Benefiting from a synergistic effect, these bimetallic aerogels demonstrate improved peroxidase- and glucose oxidase-like catalytic performances compared to their monometallic counterparts, unleashing tremendous potential in catalyzing the glucose cascade reaction. Notably, the segregated Au-Pt aerogel shows optimal catalytic activity, which is 2.80 and 3.35 times higher than that of the alloy and core-shell variants, respectively. This enhanced activity is attributed to the high-density Au-Pt interface boundaries within the segregated structure, which foster greater substrate affinity and superior catalytic efficiency. This work not only sheds light on the structure-property relationship of bimetallic catalysts but also broadens the application scope of aerogels in biosensing and biological detections.
Collapse
Affiliation(s)
- Cui Wang
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan, 250100, China
- Physical Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Lingwei Wang
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan, 250100, China
| | - Varatharaja Nallathambi
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 7, 45141, Essen, Germany
- Max-Planck-Institut for Sustainable Materials, Max-Planck-Str.1, 40237, Düsseldorf, Germany
| | - Yuanwu Liu
- Physical Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Johannes Kresse
- Physical Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - René Hübner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Sven Reichenberger
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 7, 45141, Essen, Germany
| | - Baptiste Gault
- Max-Planck-Institut for Sustainable Materials, Max-Planck-Str.1, 40237, Düsseldorf, Germany
- Department of Materials, Royal School of Mines, Imperial College London, London, SW72AZ, UK
| | - Jinhua Zhan
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan, 250100, China
| | | | - Bin Cai
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan, 250100, China
| |
Collapse
|
2
|
Lu B, Cheng H, Qu L. Inorganic Hydrogel Based on Low-Dimensional Nanomaterials. ACS NANO 2024; 18:2730-2749. [PMID: 38221737 DOI: 10.1021/acsnano.3c11262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Composed of three-dimensional (3D) nanoscale inorganic bones and up to 99% water, inorganic hydrogels have attracted much attention and undergone significant growth in recent years. The basic units of inorganic hydrogels could be metal nanoparticles, metal nanowires, SiO2 nanowires, graphene nanosheets, and MXene nanosheets, which are then assembled into the special porous structures by the sol-gel process or gelation via either covalent or noncovalent interactions. The high electrical and thermal conductivity, resistance to corrosion, stability across various temperatures, and high surface area make them promising candidates for diverse applications, such as energy storage, catalysis, adsorption, sensing, and solar steam generation. Besides, some interesting derivatives, such as inorganic aerogels and xerogels, can be produced through further processing, diversifying their functionalities and application domains greatly. In this context, we primarily provide a comprehensive overview of the current status of inorganic hydrogels and their derivatives, including the structures of inorganic hydrogels with various compositions, their gelation mechanisms, and their exceptional practical performance in fields related to energy and environmental applications.
Collapse
Affiliation(s)
- Bing Lu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- Laboratory of Flexible Electronics Technology, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Tsinghua University, Beijing 100084, P. R. China
| | - Huhu Cheng
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- Laboratory of Flexible Electronics Technology, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Tsinghua University, Beijing 100084, P. R. China
| | - Liangti Qu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- Laboratory of Flexible Electronics Technology, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
3
|
Wang C, Herranz J, Hübner R, Schmidt TJ, Eychmüller A. Element Distributions in Bimetallic Aerogels. Acc Chem Res 2023; 56:237-247. [PMID: 36700845 DOI: 10.1021/acs.accounts.2c00491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
ConspectusMetal aerogels assembled from nanoparticles have captured grand attention because they combine the virtues of metals and aerogels and are regarded as ideal materials to address current environmental and energy issues. Among these aerogels, those composed of two metals not only display combinations (superpositions) of the properties of their individual metal components but also feature novel properties distinctly different from those of their monometallic relatives. Therefore, quite some effort has been invested in refining the synthetic methods, compositions, and structures of such bimetallic aerogels as to boost their performance for the envisaged application(s). One such use would be in the field of electrocatalysis, whereby it is also of utmost interest to unravel the element distributions of the (multi)metallic catalysts to achieve a ratio of their bottom-to-up design. Regarding the element distributions in bimetallic aerogels, advanced characterization techniques have identified alloys, core-shells, and structures in which the two metal particles are segregated (i.e., adjacent but without alloy or core-shell structure formation). While an almost infinite number of metal combinations to form bimetallic aerogels can be envisaged, the knowledge of their formation mechanisms and the corresponding element distributions is still in its infancy. The evolution of the observed musters is all but well understood, not to mention the positional changes of the elements observed in operando or in beginning- vs end-of-life comparisons (e.g., in fuel cell applications).With this motivation, in this Account we summarize the endeavors made in element distribution monitoring in bimetallic aerogels in terms of synthetic methods, expected structures, and their evolution during electrocatalysis. After an introductory chapter, we first describe briefly the two most important characterization techniques used for this, namely, scanning transmission electron microscopy (STEM) combined with element mapping (e.g., energy-dispersive X-ray spectroscopy (EDXS)) and X-ray absorption spectroscopy (XAS). We then explain the universal methods used to prepare bimetallic aerogels with different compositions. Those are divided into one-step methods in which gels formed from mixtures of the respective metal salts are coreduced and two-step approaches in which monometallic nanoparticles are mixed and gelated. Subsequently, we summarize the current state-of-knowledge on the element distributions unraveled using diverse characterization methods. This is extended to investigations of the element distributions being altered during electrochemical cycling or other loads. So far, a theoretical understanding of these processes is sparse, not to mention predictions of element distributions. The Account concludes with a series of remarks on current challenges in the field and an outlook on the gains that the field would earn from a solid understanding of the underlying processes and a predictive theoretical backing.
Collapse
Affiliation(s)
- Cui Wang
- Physical Chemistry, Technische Universität Dresden, Zellescher Weg 19, 01069 Dresden, Germany
| | - Juan Herranz
- Electrochemistry Laboratory, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - René Hübner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Thomas J Schmidt
- Electrochemistry Laboratory, Paul Scherrer Institut, 5232 Villigen, Switzerland.,Laboratory of Physical Chemistry, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Alexander Eychmüller
- Physical Chemistry, Technische Universität Dresden, Zellescher Weg 19, 01069 Dresden, Germany
| |
Collapse
|
4
|
Li H, Yue X, Che J, Xiao Z, Yu X, Sun F, Xue C, Xiang J. High Performance 3D Self-Supporting Cu-Bi Aerogels for Electrocatalytic Reduction of CO 2 to Formate. CHEMSUSCHEM 2022; 15:e202200226. [PMID: 35150202 DOI: 10.1002/cssc.202200226] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/11/2022] [Indexed: 06/14/2023]
Abstract
The electrocatalytic reduction of CO2 (CO2 RR) to CO, formate, methane, and other high-value compounds is a promising technique. However, current electrocatalysts suffer from drawbacks such as few active catalytic sites, poor selectivity and low stability, etc, which restrict the practical application. Although monatomic metal catalysts have been widely reported in recent years, high performance non-noble metal aerogels were rarely investigated for electrocatalytic CO2 RR. Herein, Cu-Bi aerogels with boosted CO2 RR activity were well constructed by a simple one-step self-assembly method. The resultant Cu1 Bi2 exhibits excellent CO2 RR activity with high faradaic efficiency (FE) of 96.57 % towards HCOOH at a potential of -0.9 V vs. RHE, and the FEHCOOH remains over 80.18 % in a wide potential window (-0.8 V to -1.2 V vs. RHE). It demonstrated that the enhanced CO2 RR activity of Cu-Bi aerogels could be attributed to the 3D self-supporting structure of the catalysis, synergistic effect, and low interfacial charge transfer resistance.
Collapse
Affiliation(s)
- Huaxin Li
- Center of Materials Science and Optoelectronics Engineering, College of Materials Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xian Yue
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Jing Che
- Center of Materials Science and Optoelectronics Engineering, College of Materials Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhou Xiao
- Center of Materials Science and Optoelectronics Engineering, College of Materials Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xianbo Yu
- Center of Materials Science and Optoelectronics Engineering, College of Materials Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Fenglei Sun
- Center of Materials Science and Optoelectronics Engineering, College of Materials Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chao Xue
- Center of Materials Science and Optoelectronics Engineering, College of Materials Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Junhui Xiang
- Center of Materials Science and Optoelectronics Engineering, College of Materials Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
5
|
Zheng Y, Wang X, Kong Y, Ma Y. Two-dimensional multimetallic alloy nanocrystals: recent progress and challenges. CrystEngComm 2021. [DOI: 10.1039/d1ce00975c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this highlight article, the recent progress on the preparation and application of multimetallic alloy nanocrystals with 2D nanostructures is systematically reviewed, as well as perspectives on future challenges and opportunities.
Collapse
Affiliation(s)
- Yiqun Zheng
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Xiping Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Yuhan Kong
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Yanyun Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
6
|
Alekseev ES, Alentiev AY, Belova AS, Bogdan VI, Bogdan TV, Bystrova AV, Gafarova ER, Golubeva EN, Grebenik EA, Gromov OI, Davankov VA, Zlotin SG, Kiselev MG, Koklin AE, Kononevich YN, Lazhko AE, Lunin VV, Lyubimov SE, Martyanov ON, Mishanin II, Muzafarov AM, Nesterov NS, Nikolaev AY, Oparin RD, Parenago OO, Parenago OP, Pokusaeva YA, Ronova IA, Solovieva AB, Temnikov MN, Timashev PS, Turova OV, Filatova EV, Philippov AA, Chibiryaev AM, Shalygin AS. Supercritical fluids in chemistry. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4932] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Wang H, Fang Q, Gu W, Du D, Lin Y, Zhu C. Noble Metal Aerogels. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52234-52250. [PMID: 33174718 DOI: 10.1021/acsami.0c14007] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Noble metal-based nanomaterials have been a hot research topic during the past few decades. Particularly, self-assembled porous architectures have triggered tremendous interest. At the forefront of porous nanostructures, there exists a research endeavor of noble metal aerogels (NMAs), which are unique in terms of macroscopic assembly systems and three-dimensional (3D) porous network nanostructures. Combining excellent features of noble metals and the unique structural traits of porous nanostructures, NMAs are of high interest in diverse fields, such as catalysis, sensors, and self-propulsion devices. Regardless of these achievements, it is still challenging to rationally design well-tailored NMAs in terms of ligament sizes, morphologies, and compositions and profoundly investigate the underlying gelation mechanisms. Herein, an elaborate overview of the recent progress on NMAs is given. First, a simple description of typical synthetic methods and some advanced design engineering are provided, and then, the gelation mechanism models of NMAs are discussed in detail. Furthermore, promising applications particularly focusing on electrocatalysis and biosensors are highlighted. In the final section, brief conclusions and an outlook on the existing challenges and future chances of NMAs are also proposed.
Collapse
Affiliation(s)
- Hengjia Wang
- College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Qie Fang
- College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Wenling Gu
- College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Chengzhou Zhu
- College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
8
|
Abstract
Nanomaterials are widely used in electrocatalysts due to their quantum size effect and high utilization efficiency. There are two ways to improve the activity of nanoelectrocatalysts: increasing the number of active sites and improving the inherent activity of each catalytic site. The structure of the catalyst itself can be improved by increasing the number of exposed active sites per unit mass. The high porosity and three-dimensional network structure enable aerogels to have the characteristics of a large specific surface area, exposing many active sites and bringing structural stability through the self-supporting nature of aerogels. Thus, by adjusting the compositions of aerogels, the synergetic effect introduced by alloy elements can be utilized to further improve the single-site activity. In this review, we summarized the basic preparation strategy of aerogels and extended it to the preparation of alloys and special structure aerogels. Moreover, through the eight electrocatalysis cases, the outstanding catalytic performances and broad applicability of aerogel electrocatalysts are emphasized. Finally, we predict the future development of pure metallic aerogel electrocatalysts from the perspective of preparation to application.
Collapse
|
9
|
Fan X, Zerebecki S, Du R, Hübner R, Marzum G, Jiang G, Hu Y, Barcikowki S, Reichenberger S, Eychmüller A. Promoting the Electrocatalytic Performance of Noble Metal Aerogels by Ligand‐Directed Modulation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Xuelin Fan
- Physical Chemistry Technische Universität Dresden Bergstr. 66b 01069 Dresden Germany
| | - Swen Zerebecki
- Technical Chemistry and Center for Nanointegration Duisburg-Essen University of Duisburg-Essen 47057 Duisburg Germany
| | - Ran Du
- Physical Chemistry Technische Universität Dresden Bergstr. 66b 01069 Dresden Germany
| | - René Hübner
- Helmholtz-Zentrum Dresden-Rossendorf Institute of Ion Beam Physics and Materials Research Bautzner Landstrasse 400 01328 Dresden Germany
| | - Galina Marzum
- Technical Chemistry and Center for Nanointegration Duisburg-Essen University of Duisburg-Essen 47057 Duisburg Germany
| | - Guocan Jiang
- Physical Chemistry Technische Universität Dresden Bergstr. 66b 01069 Dresden Germany
| | - Yue Hu
- College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325000 China
| | - Stephan Barcikowki
- Technical Chemistry and Center for Nanointegration Duisburg-Essen University of Duisburg-Essen 47057 Duisburg Germany
| | - Sven Reichenberger
- Technical Chemistry and Center for Nanointegration Duisburg-Essen University of Duisburg-Essen 47057 Duisburg Germany
| | - Alexander Eychmüller
- Physical Chemistry Technische Universität Dresden Bergstr. 66b 01069 Dresden Germany
| |
Collapse
|
10
|
Fan X, Zerebecki S, Du R, Hübner R, Marzum G, Jiang G, Hu Y, Barcikowki S, Reichenberger S, Eychmüller A. Promoting the Electrocatalytic Performance of Noble Metal Aerogels by Ligand-Directed Modulation. Angew Chem Int Ed Engl 2020; 59:5706-5711. [PMID: 31990450 PMCID: PMC7154742 DOI: 10.1002/anie.201913079] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Indexed: 12/11/2022]
Abstract
Noble metal aerogels (NMAs) are an emerging class of porous materials. Embracing nano-sized highly-active noble metals and porous structures, they display unprecedented performance in diverse electrocatalytic processes. However, various impurities, particularly organic ligands, are often involved in the synthesis and remain in the corresponding products, hindering the investigation of the intrinsic electrocatalytic properties of NMAs. Here, starting from laser-generated inorganic-salt-stabilized metal nanoparticles, various impurity-free NMAs (Au, Pd, and Au-Pd aerogels) were fabricated. In this light, we demonstrate not only the intrinsic electrocatalytic properties of NMAs, but also the prominent roles played by ligands in tuning electrocatalysis through modulating the electron density of catalysts. These findings may offer a new dimension to engineer and optimize the electrocatalytic performance for various NMAs and beyond.
Collapse
Affiliation(s)
- Xuelin Fan
- Physical Chemistry, Technische Universität Dresden, Bergstr. 66b, 01069, Dresden, Germany
| | - Swen Zerebecki
- Technical Chemistry and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, 47057, Duisburg, Germany
| | - Ran Du
- Physical Chemistry, Technische Universität Dresden, Bergstr. 66b, 01069, Dresden, Germany
| | - René Hübner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Galina Marzum
- Technical Chemistry and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, 47057, Duisburg, Germany
| | - Guocan Jiang
- Physical Chemistry, Technische Universität Dresden, Bergstr. 66b, 01069, Dresden, Germany
| | - Yue Hu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000, China
| | - Stephan Barcikowki
- Technical Chemistry and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, 47057, Duisburg, Germany
| | - Sven Reichenberger
- Technical Chemistry and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, 47057, Duisburg, Germany
| | - Alexander Eychmüller
- Physical Chemistry, Technische Universität Dresden, Bergstr. 66b, 01069, Dresden, Germany
| |
Collapse
|
11
|
Pytlik N, Butscher D, Machill S, Brunner E. Diatoms – A “Green” Way to Biosynthesize Gold-Silica Nanocomposites? Z PHYS CHEM 2018. [DOI: 10.1515/zpch-2018-1141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Biosynthesis by diatoms provides a green approach for nanoparticle (NP) production. However, reproducible and homogeneous shapes are essential for their application. To improve these characteristics during biosynthesis, the underlying synthesis mechanisms as well as involved substances need to be understood. The first essential step for suitable analyses is the purification of Au-silica-nanocomposites from organic biomass. Succesfully cleaned nanocomposites could, for example, be useful as catalysts. In combination with the biosynthesized NPs, this material presents a “green” catalyst and could contribute to the currently thriving green nanochemistry. In this work, we compare different purification agents with respect to their ability to purify cells of the diatom Stephanopyxis turris without separating the biosynthesized Au-silica-nanocomposites from the diatom cell walls. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) are used to localize and identify Au-silica-nanocomposites around the cells. The amount of remaining organic compounds on the purified cell is detected by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Furthermore, inductively coupled plasma optical emission spectrometry (ICP-OES) is used to track the “gold path” during cell growth and the different purifications steps.
Collapse
Affiliation(s)
- Nathalie Pytlik
- Faculty of Chemistry and Food Chemistry, Bioanalytical Chemistry , TU Dresden , 01062 Dresden , Germany
| | - Daniel Butscher
- Faculty of Chemistry and Food Chemistry, Bioanalytical Chemistry , TU Dresden , 01062 Dresden , Germany
| | - Susanne Machill
- Faculty of Chemistry and Food Chemistry, Bioanalytical Chemistry , TU Dresden , 01062 Dresden , Germany
| | - Eike Brunner
- Faculty of Chemistry and Food Chemistry, Bioanalytical Chemistry , TU Dresden , 01062 Dresden , Germany
| |
Collapse
|
12
|
Cai B, Sayevich V, Gaponik N, Eychmüller A. Emerging Hierarchical Aerogels: Self-Assembly of Metal and Semiconductor Nanocrystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707518. [PMID: 29921028 DOI: 10.1002/adma.201707518] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 02/14/2018] [Indexed: 06/08/2023]
Abstract
Aerogels assembled from colloidal metal or semiconductor nanocrystals (NCs) feature large surface area, ultralow density, and high porosity, thus rendering them attractive in various applications, such as catalysis, sensors, energy storage, and electronic devices. Morphological and structural modification of the aerogel backbones while maintaining the aerogel properties enables a second stage of the aerogel research, which is defined as hierarchical aerogels. Different from the conventional aerogels with nanowire-like backbones, those hierarchical aerogels are generally comprised of at least two levels of architectures, i.e., an interconnected porous structure on the macroscale and a specially designed configuration at local backbones at the nanoscale. This combination "locks in" the inherent properties of the NCs, so that the beneficial genes obtained by nanoengineering are retained in the resulting monolithic hierarchical aerogels. Herein, groundbreaking advances in the design, synthesis, and physicochemical properties of the hierarchical aerogels are reviewed and organized in three sections: i) pure metallic hierarchical aerogels, ii) semiconductor hierarchical aerogels, and iii) metal/semiconductor hybrid hierarchical aerogels. This report aims to define and demonstrate the concept, potential, and challenges of the hierarchical aerogels, thereby providing a perspective on the further development of these materials.
Collapse
Affiliation(s)
- Bin Cai
- Physical Chemistry and Center for Advancing Electronics Dresden (cfAED), Technische Universität Dresden, Bergstraße 66b, 01062, Dresden, Germany
| | - Vladimir Sayevich
- Physical Chemistry and Center for Advancing Electronics Dresden (cfAED), Technische Universität Dresden, Bergstraße 66b, 01062, Dresden, Germany
| | - Nikolai Gaponik
- Physical Chemistry and Center for Advancing Electronics Dresden (cfAED), Technische Universität Dresden, Bergstraße 66b, 01062, Dresden, Germany
| | - Alexander Eychmüller
- Physical Chemistry and Center for Advancing Electronics Dresden (cfAED), Technische Universität Dresden, Bergstraße 66b, 01062, Dresden, Germany
| |
Collapse
|
13
|
Ziegler C, Wolf A, Liu W, Herrmann AK, Gaponik N, Eychmüller A. Moderne Anorganische Aerogele. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611552] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Christoph Ziegler
- Physical Chemistry; Technische Universität Dresden; Bergstraße 66b 01062 Dresden Deutschland
- LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays School of Physical and Mathematical Sciences; Nanyang Technological University; Singapore 639798 Singapur
| | - André Wolf
- Physical Chemistry; Technische Universität Dresden; Bergstraße 66b 01062 Dresden Deutschland
| | - Wei Liu
- Physical Chemistry; Technische Universität Dresden; Bergstraße 66b 01062 Dresden Deutschland
| | - Anne-Kristin Herrmann
- Physical Chemistry; Technische Universität Dresden; Bergstraße 66b 01062 Dresden Deutschland
| | - Nikolai Gaponik
- Physical Chemistry; Technische Universität Dresden; Bergstraße 66b 01062 Dresden Deutschland
| | - Alexander Eychmüller
- Physical Chemistry; Technische Universität Dresden; Bergstraße 66b 01062 Dresden Deutschland
| |
Collapse
|
14
|
Ziegler C, Wolf A, Liu W, Herrmann AK, Gaponik N, Eychmüller A. Modern Inorganic Aerogels. Angew Chem Int Ed Engl 2017; 56:13200-13221. [DOI: 10.1002/anie.201611552] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Christoph Ziegler
- Physical Chemistry; Technische Universität Dresden; Bergstrasse 66b 01062 Dresden Germany
- Present address: LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays School of Physical and Mathematical Sciences; Nanyang Technological University; Singapore 639798 Singapore
| | - André Wolf
- Physical Chemistry; Technische Universität Dresden; Bergstrasse 66b 01062 Dresden Germany
| | - Wei Liu
- Physical Chemistry; Technische Universität Dresden; Bergstrasse 66b 01062 Dresden Germany
| | - Anne-Kristin Herrmann
- Physical Chemistry; Technische Universität Dresden; Bergstrasse 66b 01062 Dresden Germany
| | - Nikolai Gaponik
- Physical Chemistry; Technische Universität Dresden; Bergstrasse 66b 01062 Dresden Germany
| | - Alexander Eychmüller
- Physical Chemistry; Technische Universität Dresden; Bergstrasse 66b 01062 Dresden Germany
| |
Collapse
|
15
|
Oezaslan M, Herrmann AK, Werheid M, Frenkel AI, Nachtegaal M, Dosche C, Laugier Bonnaud C, Yilmaz HC, Kühn L, Rhiel E, Gaponik N, Eychmüller A, Schmidt TJ. Structural Analysis and Electrochemical Properties of Bimetallic Palladium-Platinum Aerogels Prepared by a Two-Step Gelation Process. ChemCatChem 2017. [DOI: 10.1002/cctc.201600667] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Mehtap Oezaslan
- Paul Scherrer Institut; CH-5232 Villigen PSI Switzerland
- Physical Chemistry; Carl von Ossietzky University of Oldenburg; 26111 Oldenburg Germany
| | | | | | - Anatoly I. Frenkel
- Department of Materials Science and Chemical Engineering; Stony Brook University; Stony Brook NY 11794 USA
| | | | - Carsten Dosche
- Physical Chemistry; Carl von Ossietzky University of Oldenburg; 26111 Oldenburg Germany
| | - Céline Laugier Bonnaud
- Paul Scherrer Institut; CH-5232 Villigen PSI Switzerland
- Present address: AlpesLaboratoire O'Electrochimie et de Physico-chimie des Matériaux et des Interfaces; University of Grenoble; 38000 Grenoble France
| | - Hale Ceren Yilmaz
- Paul Scherrer Institut; CH-5232 Villigen PSI Switzerland
- Present address: Laboratory of Inorganic Chemistry; ETH Zurich; 8093 Zurich Switzerland
| | - Laura Kühn
- Physical Chemistry; TU Dresden; 01062 Dresden Germany
| | - Erhard Rhiel
- Light and Electron Microscopy Service Unit of the School of Mathematics and Science; Carl von Ossietzky University of Oldenburg; 26111 Oldenburg Germany
| | | | | | - Thomas Justus Schmidt
- Paul Scherrer Institut; CH-5232 Villigen PSI Switzerland
- Laboratory of Physical Chemistry; ETH Zurich; 8093 Zurich Switzerland
| |
Collapse
|