1
|
Caricato M. A Perspective on the Simulation of Electronic Circular Dichroism and Circularly Polarized Luminescence Spectra in Chiral Solid Materials. J Phys Chem A 2024; 128:1197-1206. [PMID: 38295762 DOI: 10.1021/acs.jpca.3c08095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Chiral materials have shown tremendous potential for many technological applications, such as optoelectronics, sensing, magnetism, information technology, and imaging. Characterization of these materials is mostly based on chiroptical spectroscopies, such as electronic circular dichroism (ECD) and circularly polarized luminescence (CPL). These experimental measurements would greatly benefit from theoretical simulations for interpretation of the spectra as well as predictions on new materials. While ECD and CPL simulations are well established for molecular systems, they are not for materials. In this Perspective, we describe the theoretical quantities necessary to simulate ECD and CPL spectra in oriented systems. Then, we discuss the approximate strategies currently used to perform these calculations, what computational machinery is already available to develop more general approaches, and some of the open challenges for the simulation of ECD and CPL spectra in solid materials. When methods that are as reliable and computationally efficient as those for molecules are developed, these simulations will provide invaluable insight and guidance for the rational design of optically active materials.
Collapse
Affiliation(s)
- Marco Caricato
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
2
|
Zubova EA, Strelnikov IA. Experimental detection of conformational transitions between forms of DNA: problems and prospects. Biophys Rev 2023; 15:1053-1078. [PMID: 37974981 PMCID: PMC10643659 DOI: 10.1007/s12551-023-01143-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/06/2023] [Indexed: 11/19/2023] Open
Abstract
Under different conditions, the DNA double helix can take different geometric forms. Of the large number of its conformations, in addition to the "canonical" B form, the A, C, and Z forms are widely known, and the D, Hoogsteen, and X forms are less known. DNA locally takes the A, C, and Z forms in the cell, in complexes with proteins. We compare different methods for detecting non-canonical DNA conformations: X-ray, IR, and Raman spectroscopy, linear and circular dichroism in both the infrared and ultraviolet regions, as well as NMR (measurement of chemical shifts and their anisotropy, scalar and residual dipolar couplings and inter-proton distances from NOESY (nuclear Overhauser effect spectroscopy) data). We discuss the difficulties in applying these methods, the problems of theoretical interpretation of the experimental results, and the prospects for reliable identification of non-canonical DNA conformations.
Collapse
Affiliation(s)
- Elena A. Zubova
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygin St., Moscow, 119991 Russia
| | - Ivan A. Strelnikov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygin St., Moscow, 119991 Russia
| |
Collapse
|
3
|
Michaelis M, Cupellini L, Mensch C, Perry CC, Delle Piane M, Colombi Ciacchi L. Tidying up the conformational ensemble of a disordered peptide by computational prediction of spectroscopic fingerprints. Chem Sci 2023; 14:8483-8496. [PMID: 37592980 PMCID: PMC10430726 DOI: 10.1039/d3sc02202a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/15/2023] [Indexed: 08/19/2023] Open
Abstract
The most advanced structure prediction methods are powerless in exploring the conformational ensemble of disordered peptides and proteins and for this reason the "protein folding problem" remains unsolved. We present a novel methodology that enables the accurate prediction of spectroscopic fingerprints (circular dichroism, infrared, Raman, and Raman optical activity), and by this allows for "tidying up" the conformational ensembles of disordered peptides and disordered regions in proteins. This concept is elaborated for and applied to a dodecapeptide, whose spectroscopic fingerprint is measured and theoretically predicted by means of enhanced-sampling molecular dynamics coupled with quantum mechanical calculations. Following this approach, we demonstrate that peptides lacking a clear propensity for ordered secondary-structure motifs are not randomly, but only conditionally disordered. This means that their conformational landscape, or phase-space, can be well represented by a basis-set of conformers including about 10 to 100 structures. The implications of this finding have profound consequences both for the interpretation of experimental electronic and vibrational spectral features of peptides in solution and for the theoretical prediction of these features using accurate and computationally expensive techniques. The here-derived methods and conclusions are expected to fundamentally impact the rationalization of so-far elusive structure-spectra relationships for disordered peptides and proteins, towards improved and versatile structure prediction methods.
Collapse
Affiliation(s)
- Monika Michaelis
- Hybrid Materials Interfaces Group, Faculty of Production Engineering, Bremen Center for Computational Materials Science, Center for Environmental Research and Sustainable Technology (UFT), and MAPEX Center for Materials and Processes, University of Bremen Am Fallturm 1 Bremen 28359 Germany
- Biomolecular and Materials Interface Research Group, Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University Clifton Lane Nottingham NG11 8NS UK
| | - Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, University of Pisa Via G. Moruzzi 13 Pisa I-56124 Italy
| | - Carl Mensch
- Molecular Spectroscopy Research Group, Department of Chemistry, University of Antwerp Groenenborgerlaan 171 Antwerp 2020 Belgium
| | - Carole C Perry
- Biomolecular and Materials Interface Research Group, Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University Clifton Lane Nottingham NG11 8NS UK
| | - Massimo Delle Piane
- Hybrid Materials Interfaces Group, Faculty of Production Engineering, Bremen Center for Computational Materials Science, Center for Environmental Research and Sustainable Technology (UFT), and MAPEX Center for Materials and Processes, University of Bremen Am Fallturm 1 Bremen 28359 Germany
- Department of Applied Science and Technology, Politecnico di Torino Corso Duca degli Abruzzi 24 Torino 10129 Italy
| | - Lucio Colombi Ciacchi
- Hybrid Materials Interfaces Group, Faculty of Production Engineering, Bremen Center for Computational Materials Science, Center for Environmental Research and Sustainable Technology (UFT), and MAPEX Center for Materials and Processes, University of Bremen Am Fallturm 1 Bremen 28359 Germany
| |
Collapse
|
4
|
Asha H, Green JA, Esposito L, Martinez-Fernandez L, Santoro F, Improta R. Effect of the Thermal Fluctuations of the Photophysics of GC and CG DNA Steps: A Computational Dynamical Study. J Phys Chem B 2022; 126:10608-10621. [PMID: 36508709 DOI: 10.1021/acs.jpcb.2c05688] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Here we refine and assess two computational procedures aimed to include the effect of thermal fluctuations on the electronic spectra and the ultrafast excited state dynamics of multichromophore systems, focusing on DNA duplexes. Our approach is based on a fragment diabatization procedure that, from a given Quantum Mechanical (QM) reference method, can provide the parameters (energy and coupling) of the reference diabatic states on the basis of the isolated fragments, either for a purely electronic excitonic Hamiltonian (FrDEx) or a linear vibronic coupling Hamiltonian (FrD-LVC). After having defined the most cost-effective procedure for DNA duplexes on two smaller fragments, FrDEx is used to simulate the absorption and Electronic Circular Dichroism (ECD) spectra of (GC)5 sequences, including the coupling with the Charge Transfer (CT) states, on a number of structures extracted from classical Molecular Dynamics (MD) simulations. The computed spectra are close to the reference TD-DFT calculations and fully consistent with the experimental ones. We then couple MD simulations and FrD-LVC to simulate the interplay between local excitations and CT transitions, both intrastrand and interstrand, in GC and CG steps when included in a oligoGC or in oligoAT DNA sequence. We predict that for both sequences a substantial part of the photoexcited population on G and C decays, within 50-100 fs, to the corresponding intrastrand CT states. This transfer is more effective for GC steps that, on average, are more closely stacked than CG ones.
Collapse
Affiliation(s)
- Haritha Asha
- Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), Via De Amicis 95,I-80145Napoli, Italy
| | - James A Green
- Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), Via De Amicis 95,I-80145Napoli, Italy.,Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438Frankfurt am Main, Germany
| | - Luciana Esposito
- Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), Via De Amicis 95,I-80145Napoli, Italy
| | - Lara Martinez-Fernandez
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemistry (IADCHEM), Universidad Autònoma de Madrid, Campus de Excelencia UAM-CSIC, 28049Madrid, Spain
| | - Fabrizio Santoro
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124Pisa, Italy
| | - Roberto Improta
- Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), Via De Amicis 95,I-80145Napoli, Italy.,DTU Chemistry, Technical University of Denmark, Kemitorvet Bldg 207, DK-2800Kongens Lyngby, Denmark
| |
Collapse
|
5
|
Omar ÖH, Nematiaram T, Troisi A, Padula D. Organic materials repurposing, a data set for theoretical predictions of new applications for existing compounds. Sci Data 2022; 9:54. [PMID: 35165288 PMCID: PMC8844419 DOI: 10.1038/s41597-022-01142-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/21/2021] [Indexed: 01/28/2023] Open
Abstract
We present a data set of 48182 organic semiconductors, constituted of molecules that were prepared with a documented synthetic pathway and are stable in solid state. We based our search on the Cambridge Structural Database, from which we selected semiconductors with a computational funnel procedure. For each entry we provide a set of electronic properties relevant for organic materials research, and the electronic wavefunction for further calculations and/or analyses. This data set has low bias because it was not built from a set of materials designed for organic electronics, and thus it provides an excellent starting point in the search of new applications for known materials, with a great potential for novel physical insight. The data set contains molecules used as benchmarks in many fields of organic materials research, allowing to test the reliability of computational screenings for the desired application, "rediscovering" well-known molecules. This is demonstrated by a series of different applications in the field of organic materials, confirming the potential for the repurposing of known organic molecules.
Collapse
Affiliation(s)
- Ömer H Omar
- University of Liverpool, Department of Chemistry, Liverpool, L69 7ZD, UK
| | - Tahereh Nematiaram
- University of Liverpool, Department of Chemistry, Liverpool, L69 7ZD, UK
| | - Alessandro Troisi
- University of Liverpool, Department of Chemistry, Liverpool, L69 7ZD, UK.
| | - Daniele Padula
- Università di Siena, Dipartimento di Biotecnologie, Chimica e Farmacia, Siena, 53100, Italy.
| |
Collapse
|
6
|
Nematiaram T, Padula D, Troisi A. Bright Frenkel Excitons in Molecular Crystals: A Survey. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2021; 33:3368-3378. [PMID: 34526736 PMCID: PMC8432684 DOI: 10.1021/acs.chemmater.1c00645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/14/2021] [Indexed: 05/12/2023]
Abstract
We computed the optical properties of a large set of molecular crystals (∼2200 structures) composed of molecules whose lowest excited states are strongly coupled and generate wide excitonic bands. Such bands are classified in terms of their dimensionality (1-, 2-, and 3-dimensional), the position of the optically allowed state in relation with the excitonic density of states, and the presence of Davydov splitting. The survey confirms that one-dimensional aggregates are rare in molecular crystals highlighting the need to go beyond the simple low-dimensional models. Furthermore, this large set of data is used to search for technologically interesting and less common properties. For instance, we considered the largest excitonic bandwidth that is achievable within known molecular crystals and identified materials with strong super-radiant states. Finally, we explored the possibility that strong excitonic coupling can be used to generate emissive states in the near-infrared region in materials formed by molecules with bright visible absorption and we could identify the maximum allowable red shift in this material class. These insights with the associated searchable database provide practical guidelines for designing materials with interesting optical properties.
Collapse
Affiliation(s)
- Tahereh Nematiaram
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Daniele Padula
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università
di Siena, via A. Moro 2, Siena 53100, Italy
| | - Alessandro Troisi
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K.
| |
Collapse
|
7
|
Halat M, Klimek-Chodacka M, Orleanska J, Baranska M, Baranski R. Electronic Circular Dichroism of the Cas9 Protein and gRNA:Cas9 Ribonucleoprotein Complex. Int J Mol Sci 2021; 22:2937. [PMID: 33805827 PMCID: PMC8002190 DOI: 10.3390/ijms22062937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/26/2022] Open
Abstract
The Streptococcus pyogenes Cas9 protein (SpCas9), a component of CRISPR-based immune system in microbes, has become commonly utilized for genome editing. This nuclease forms a ribonucleoprotein (RNP) complex with guide RNA (gRNA) which induces Cas9 structural changes and triggers its cleavage activity. Here, electronic circular dichroism (ECD) spectroscopy was used to confirm the RNP formation and to determine its individual components. The ECD spectra had characteristic features differentiating Cas9 and gRNA, the former showed a negative/positive profile with maxima located at 221, 209 and 196 nm, while the latter revealed positive/negative/positive/negative pattern with bands observed at 266, 242, 222 and 209 nm, respectively. For the first time, the experimental ECD spectrum of the gRNA:Cas9 RNP complex is presented. It exhibits a bisignate positive/negative ECD couplet with maxima at 273 and 235 nm, and it differs significantly from individual spectrum of each RNP components. Additionally, the Cas9 protein and RNP complex retained biological activity after ECD measurements and they were able to bind and cleave DNA in vitro. Hence, we conclude that ECD spectroscopy can be considered as a quick and non-destructive method of monitoring conformational changes of the Cas9 protein as a result of Cas9 and gRNA interaction, and identification of the gRNA:Cas9 RNP complex.
Collapse
Affiliation(s)
- Monika Halat
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (M.H.); (J.O.)
| | - Magdalena Klimek-Chodacka
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, AL. 29 Listopada 54, 31-425 Krakow, Poland;
| | - Jagoda Orleanska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (M.H.); (J.O.)
| | - Malgorzata Baranska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (M.H.); (J.O.)
- Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzyńskiego 14, 30-348 Krakow, Poland
| | - Rafal Baranski
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, AL. 29 Listopada 54, 31-425 Krakow, Poland;
| |
Collapse
|
8
|
Rukin PS, Komarova KG, Fresch B, Collini E, Remacle F. Chirality of a rhodamine heterodimer linked to a DNA scaffold: an experimental and computational study. Phys Chem Chem Phys 2020; 22:7516-7523. [PMID: 32219241 DOI: 10.1039/d0cp00223b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chiroptical properties of multi-chromophoric systems are governed by the intermolecular arrangement of the monomeric units. We report on a computational and experimental study of the linear optical properties and supramolecular structure of a rhodamine heterodimer assembled on a DNA scaffold. The experimental absorption and circular dichroism (CD) profiles confirm the dimer formation. Computationally, starting from low-cost DFT/TDDFT simulations of the bare dimer we attribute the measured -/+ CD sign sequence of the S1/S2 bands to a specific chiral conformation of the heterodimer. In the monomers, as typical for rhodamine dyes, the electric transition dipole of the lowest π-π* transition is parallel to the long axis of the xanthene planes. We show that in the heterodimer the sign sequence of the two CD bands is related to the orientation of these long axes. To account explicitly for environment effects, we use molecular dynamics (MD) simulations for characterizing the supramolecular structure of the two optical isomers tethered on DNA. Average absorption and CD-profiles were modeled using ab initio TDDFT calculations at the geometries sampled along a few nanosecond MD run. The absorption profiles computed for both optical isomers are in good agreement with the experimental absorption spectrum and do not allow one to discriminate between them. The computed averaged CD profiles provide the orientation of monomers in the enantiomer that is dominant under the experimental conditions.
Collapse
Affiliation(s)
- P S Rukin
- Theoretical Physical Chemistry, UR MolSys B6c, University of Liege, B4000, Liege, Belgium.
| | - K G Komarova
- Theoretical Physical Chemistry, UR MolSys B6c, University of Liege, B4000, Liege, Belgium.
| | - B Fresch
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - E Collini
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - F Remacle
- Theoretical Physical Chemistry, UR MolSys B6c, University of Liege, B4000, Liege, Belgium.
| |
Collapse
|
9
|
Martínez-Fernández L, Esposito L, Improta R. Studying the excited electronic states of guanine rich DNA quadruplexes by quantum mechanical methods: main achievements and perspectives. Photochem Photobiol Sci 2020; 19:436-444. [DOI: 10.1039/d0pp00065e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calculations are providing more and more useful insights into the interaction between light and DNA quadruplexes.
Collapse
Affiliation(s)
- Lara Martínez-Fernández
- Departamento de Química
- Facultad de Ciencias
- Modulo 13 Universidad Autónoma de Madrid
- Campus de Excelencia UAM-CSIC Cantoblanco
- 28049 Madrid
| | | | - Roberto Improta
- Istituto di Biostrutture e Bioimmagini
- CNR
- I-80134 Napoli
- Italy
| |
Collapse
|
10
|
Segatta F, Cupellini L, Garavelli M, Mennucci B. Quantum Chemical Modeling of the Photoinduced Activity of Multichromophoric Biosystems. Chem Rev 2019; 119:9361-9380. [PMID: 31276384 PMCID: PMC6716121 DOI: 10.1021/acs.chemrev.9b00135] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Indexed: 01/21/2023]
Abstract
Multichromophoric biosystems represent a broad family with very diverse members, ranging from light-harvesting pigment-protein complexes to nucleic acids. The former are designed to capture, harvest, efficiently transport, and transform energy from sunlight for photosynthesis, while the latter should dissipate the absorbed radiation as quickly as possible to prevent photodamages and corruption of the carried genetic information. Because of the unique electronic and structural characteristics, the modeling of their photoinduced activity is a real challenge. Numerous approaches have been devised building on the theoretical development achieved for single chromophores and on model Hamiltonians that capture the essential features of the system. Still, a question remains: is a general strategy for the accurate modeling of multichromophoric systems possible? By using a quantum chemical point of view, here we review the advancements developed so far highlighting differences and similarities with the single chromophore treatment. Finally, we outline the important limitations and challenges that still need to be tackled to reach a complete and accurate picture of their photoinduced properties and dynamics.
Collapse
Affiliation(s)
- Francesco Segatta
- Dipartimento
di Chimica Industriale “Toso Montanari” University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Lorenzo Cupellini
- Dipartimento
di Chimica e Chimica Industriale, University
of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Marco Garavelli
- Dipartimento
di Chimica Industriale “Toso Montanari” University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Benedetta Mennucci
- Dipartimento
di Chimica e Chimica Industriale, University
of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
11
|
Cupellini L, Corbella M, Mennucci B, Curutchet C. Electronic energy transfer in biomacromolecules. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1392] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale University of Pisa Pisa Italy
| | - Marina Corbella
- Departament de Farmàcia i Tecnologia Farmacèutica i Fisicoquímica and Institut de Química Teòrica i Computacional (IQTC‐UB), Facultat de Farmàcia i Ciències de l'Alimentació Universitat de Barcelona Barcelona Spain
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale University of Pisa Pisa Italy
| | - Carles Curutchet
- Departament de Farmàcia i Tecnologia Farmacèutica i Fisicoquímica and Institut de Química Teòrica i Computacional (IQTC‐UB), Facultat de Farmàcia i Ciències de l'Alimentació Universitat de Barcelona Barcelona Spain
| |
Collapse
|
12
|
Marazzi M, Gattuso H, Monari A, Assfeld X. Steady-State Linear and Non-linear Optical Spectroscopy of Organic Chromophores and Bio-macromolecules. Front Chem 2018; 6:86. [PMID: 29666792 PMCID: PMC5891624 DOI: 10.3389/fchem.2018.00086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/12/2018] [Indexed: 01/05/2023] Open
Abstract
Bio-macromolecules as DNA, lipid membranes and (poly)peptides are essential compounds at the core of biological systems. The development of techniques and methodologies for their characterization is therefore necessary and of utmost interest, even though difficulties can be experienced due to their intrinsic complex nature. Among these methods, spectroscopies, relying on optical properties are especially important to determine their macromolecular structures and behaviors, as well as the possible interactions and reactivity with external dyes—often drugs or pollutants—that can (photo)sensitize the bio-macromolecule leading to eventual chemical modifications, thus damages. In this review, we will focus on the theoretical simulation of electronic spectroscopies of bio-macromolecules, considering their secondary structure and including their interaction with different kind of (photo)sensitizers. Namely, absorption, emission and electronic circular dichroism (CD) spectra are calculated and compared with the available experimental data. Non-linear properties will be also taken into account by two-photon absorption, a highly promising technique (i) to enhance absorption in the red and infra-red windows and (ii) to enhance spatial resolution. Methodologically, the implications of using implicit and explicit solvent, coupled to quantum and thermal samplings of the phase space, will be addressed. Especially, hybrid quantum mechanics/molecular mechanics (QM/MM) methods are explored for a comparison with solely QM methods, in order to address the necessity to consider an accurate description of environmental effects on spectroscopic properties of biological systems.
Collapse
Affiliation(s)
- Marco Marazzi
- Laboratoire de Physique et Chimie Théoriques, Université de Lorraine-Nancy, UMR 7019, Vandoeuvre-lés-Nancy, France.,Laboratoire de Physique et Chimie Théoriques, Centre National de la Recherche Scientifique, UMR 7019, Vandoeuvre-lès-Nancy, France.,Departamento de Química, Centro de Investigacíon en Síntesis Química (CISQ), Universidad de La Rioja, Logroño, Spain
| | - Hugo Gattuso
- Laboratoire de Physique et Chimie Théoriques, Université de Lorraine-Nancy, UMR 7019, Vandoeuvre-lés-Nancy, France.,Laboratoire de Physique et Chimie Théoriques, Centre National de la Recherche Scientifique, UMR 7019, Vandoeuvre-lès-Nancy, France
| | - Antonio Monari
- Laboratoire de Physique et Chimie Théoriques, Université de Lorraine-Nancy, UMR 7019, Vandoeuvre-lés-Nancy, France.,Laboratoire de Physique et Chimie Théoriques, Centre National de la Recherche Scientifique, UMR 7019, Vandoeuvre-lès-Nancy, France
| | - Xavier Assfeld
- Laboratoire de Physique et Chimie Théoriques, Université de Lorraine-Nancy, UMR 7019, Vandoeuvre-lés-Nancy, France.,Laboratoire de Physique et Chimie Théoriques, Centre National de la Recherche Scientifique, UMR 7019, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
13
|
Ianeselli A, Orioli S, Spagnolli G, Faccioli P, Cupellini L, Jurinovich S, Mennucci B. Atomic Detail of Protein Folding Revealed by an Ab Initio Reappraisal of Circular Dichroism. J Am Chem Soc 2018; 140:3674-3682. [DOI: 10.1021/jacs.7b12399] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alan Ianeselli
- Centre for Integrative Biology, Trento University, Via Sommarive 9, 38128 Povo, Trento, Italy
| | - Simone Orioli
- Physics Department, Trento University, Via Sommarive 14, 38128 Povo, Trento, Italy
- INFN-TIFPA, Via Sommarive 14, 38128 Povo, Trento, Italy
| | - Giovanni Spagnolli
- Centre for Integrative Biology, Trento University, Via Sommarive 9, 38128 Povo, Trento, Italy
| | - Pietro Faccioli
- Physics Department, Trento University, Via Sommarive 14, 38128 Povo, Trento, Italy
- INFN-TIFPA, Via Sommarive 14, 38128 Povo, Trento, Italy
| | - Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124, Pisa, Italy
| | - Sandro Jurinovich
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124, Pisa, Italy
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124, Pisa, Italy
| |
Collapse
|
14
|
How and How Much Molecular Conformation Affects Electronic Circular Dichroism: The Case of 1,1-Diarylcarbinols. Molecules 2018; 23:molecules23010128. [PMID: 29315220 PMCID: PMC6017593 DOI: 10.3390/molecules23010128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 12/29/2017] [Accepted: 01/08/2018] [Indexed: 11/25/2022] Open
Abstract
Chiroptical spectra such as electronic circular dichroism (ECD) are said to be much more sensitive to conformation than their non-chiroptical counterparts, however, it is difficult to demonstrate such a common notion in a clear-cut way. We run DFT and TDDFT calculations on two closely related 1,1-diarylmethanols which show mirror-image ECD spectra for the same absolute configuration. We demonstrate that the main reason for the different chiroptical response of the two compounds lies in different conformational ensembles, caused by a single hydrogen-to-methyl substitution. We conclude that two compounds, having the same configuration but different conformation, may exhibit mirror-image ECD signals, stressing the importance and impact of conformational factors on ECD spectra.
Collapse
|
15
|
Šmidlehner T, Piantanida I, Pescitelli G. Polarization spectroscopy methods in the determination of interactions of small molecules with nucleic acids - tutorial. Beilstein J Org Chem 2018; 14:84-105. [PMID: 29441133 PMCID: PMC5789433 DOI: 10.3762/bjoc.14.5] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/13/2017] [Indexed: 01/19/2023] Open
Abstract
The structural characterization of non-covalent complexes between nucleic acids and small molecules (ligands) is of a paramount significance to bioorganic research. Highly informative methods about nucleic acid/ligand complexes such as single crystal X-ray diffraction or NMR spectroscopy cannot be performed under biologically compatible conditions and are extensively time consuming. Therefore, in search for faster methods which can be applied to conditions that are at least similar to the naturally occurring ones, a set of polarization spectroscopy methods has shown highly promising results. Electronic circular dichroism (ECD) is the most commonly used method for the characterization of the helical structure of DNA and RNA and their complexes with ligands. Less common but complementary to ECD, is flow-oriented linear dichroism (LD). Other methods such as vibrational CD (VCD) and emission-based methods (FDCD, CPL), can also be used for suitable samples. Despite the popularity of polarization spectroscopy in biophysics, aside several highly focused reviews on the application of these methods to DNA/RNA research, there is no systematic tutorial covering all mentioned methods as a tool for the characterization of adducts between nucleic acids and small ligands. This tutorial aims to help researchers entering the research field to organize experiments accurately and to interpret the obtained data reliably.
Collapse
Affiliation(s)
- Tamara Šmidlehner
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute; P. O. Box 180, 10002 Zagreb, Croatia
| | - Ivo Piantanida
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute; P. O. Box 180, 10002 Zagreb, Croatia
| | - Gennaro Pescitelli
- Department of Chemistry, University of Pisa, via Moruzzi 13, Pisa, Italy
| |
Collapse
|
16
|
Jurinovich S, Cupellini L, Guido CA, Mennucci B. EXAT: EXcitonic analysis tool. J Comput Chem 2017; 39:279-286. [PMID: 29151259 DOI: 10.1002/jcc.25118] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 01/09/2023]
Abstract
We introduce EXcitonic Analysis Tool (EXAT), a program able to compute optical spectra of large excitonic systems directly from the output of quantum mechanical calculations performed with the popular Gaussian 16 package. The software is able to combine in an excitonic scheme the single-chromophore properties and exciton couplings to simulate energies, coefficients, and excitonic spectra (UV-vis, CD, and LD). The effect of the environment can also be included using a Polarizable Continuum Model. EXAT also presents a simple graphical user interface, which shows on-screen both site and exciton properties. To show the potential of the method, we report two applications on a a chiral perturbed BODIPY system and DNA G-quadruplexes, respectively. The program is available online at http://molecolab.dcci.unipi.it/tools/. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sandro Jurinovich
- Dipartimento di Chimica, Università di Pisa, Via G. Moruzzi 13, Pisa, 56124, Italy
| | - Lorenzo Cupellini
- Dipartimento di Chimica, Università di Pisa, Via G. Moruzzi 13, Pisa, 56124, Italy
| | - Ciro A Guido
- Laboratoire CEISAM - UMR CNRS 6230, Université de Nantes, 2 Rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Benedetta Mennucci
- Dipartimento di Chimica, Università di Pisa, Via G. Moruzzi 13, Pisa, 56124, Italy
| |
Collapse
|
17
|
Padula D, Lee MH, Claridge K, Troisi A. Chromophore-Dependent Intramolecular Exciton–Vibrational Coupling in the FMO Complex: Quantification and Importance for Exciton Dynamics. J Phys Chem B 2017; 121:10026-10035. [DOI: 10.1021/acs.jpcb.7b08020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Daniele Padula
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Myeong H. Lee
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Kirsten Claridge
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Alessandro Troisi
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K
| |
Collapse
|
18
|
Fornari RP, Rowe P, Padula D, Troisi A. Importance and Nature of Short-Range Excitonic Interactions in Light Harvesting Complexes and Organic Semiconductors. J Chem Theory Comput 2017. [DOI: 10.1021/acs.jctc.7b00328] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rocco P. Fornari
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Patrick Rowe
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Daniele Padula
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Alessandro Troisi
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| |
Collapse
|
19
|
Gattuso H, García-Iriepa C, Sampedro D, Monari A, Marazzi M. Simulating the Electronic Circular Dichroism Spectra of Photoreversible Peptide Conformations. J Chem Theory Comput 2017; 13:3290-3296. [DOI: 10.1021/acs.jctc.7b00163] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Hugo Gattuso
- Théorie-Modélisation-Simulation, Université de Lorraine − Nancy, SRSMC, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy, Nancy, France
- Théorie-Modélisation-Simulation,
CNRS, SRSMC, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy, Nancy, France
| | - Cristina García-Iriepa
- Departamento
de Química, Centro de Investigación en Síntesis
Química (CISQ), Universidad de La Rioja, Madre de Dios
53, E-26006 Logroño, Spain
- Unidad
Docente de Química Física, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Diego Sampedro
- Departamento
de Química, Centro de Investigación en Síntesis
Química (CISQ), Universidad de La Rioja, Madre de Dios
53, E-26006 Logroño, Spain
| | - Antonio Monari
- Théorie-Modélisation-Simulation, Université de Lorraine − Nancy, SRSMC, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy, Nancy, France
- Théorie-Modélisation-Simulation,
CNRS, SRSMC, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy, Nancy, France
| | - Marco Marazzi
- Théorie-Modélisation-Simulation, Université de Lorraine − Nancy, SRSMC, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy, Nancy, France
- Théorie-Modélisation-Simulation,
CNRS, SRSMC, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy, Nancy, France
| |
Collapse
|
20
|
Padula D, Cerezo J, Pescitelli G, Santoro F. The shape of the electronic circular dichroism spectrum of (2,6-dimethylphenyl)(phenyl)methanol: interplay between conformational equilibria and vibronic effects. Phys Chem Chem Phys 2017; 19:32349-32360. [DOI: 10.1039/c7cp06369e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Analysis of the interplay between conformational equilibria, solvent effects and vibronic contributions in the ECD spectra.
Collapse
Affiliation(s)
- Daniele Padula
- Department of Chemistry
- University of Liverpool
- Liverpool L69 7ZD
- UK
| | - Javier Cerezo
- Departamento de Química Física
- Universidad de Murcia
- 30100 Murcia
- Spain
| | - Gennaro Pescitelli
- Università di Pisa
- Dipartimento di Chimica e Chimica Industriale
- I-56124 Pisa
- Italy
| | - Fabrizio Santoro
- Consiglio Nazionale delle Ricerche – CNR
- Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR)
- Pisa
- Italy
| |
Collapse
|