1
|
Sahil, Soni A, Suriyaprakash J, Singh R, Gupta N. Involvement of CN Sites in Solvothermally Engineered Metal-Free Carbon Material From Weed Lantana camara for the Detection of Mercury Ions: Experimental and DFT Insights. LUMINESCENCE 2024; 39:e70036. [PMID: 39632464 DOI: 10.1002/bio.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/02/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
Embarking on a journey to decipher the role of active sites in the detection and removal of toxic mercury(II) ions from polluted water, the surface of thermally engineered biomass derived carbon matrix NC-180 was customized with nitrogen atoms. The HR-TEM and XRD analyses revealed the amorphous nature of Lantana camara derived carbon material with small spherical flakes embedded in it. XPS analysis indicated the presence of pyrrolic, pyridinic, and graphitic N atoms, which was further confirmed by FT-IR analysis. The material shows quenching effect in presence of Hg2+ ions resulting in the "turn off" effect with a detection limit of 7.2 nM. The activity of NC-180 was recovered through "turn on" effect in the presence of L-cysteine. Furthermore, the mystery of binding of mercury(II) ions with N-sites is clarified through its comparison with other materials bearing sulfur and oxygen functional groups designated as AC-180, SC-180, and NSC-180. The conclusive evidence for efficient binding of nitrogen sites in NC-180 with mercury(II) ions is derived from various analyses, including 1H-NMR, FT-IR, XPS, and density functional theory. Notably, sustainability is achieved through utilization of toxic weed L. camara for the preparation of this selective carbon material for detection and adsorption of mercury(II) ions.
Collapse
Affiliation(s)
- Sahil
- Department of Chemistry and Chemical Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Abhishek Soni
- Department of Chemistry and Chemical Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Jagadeesh Suriyaprakash
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, China
| | - Raghubir Singh
- Department of Chemistry, D.A.V. College, Chandigarh, India
| | - Neeraj Gupta
- Department of Chemistry and Chemical Sciences, Central University of Himachal Pradesh, Kangra, India
| |
Collapse
|
2
|
Dev K, Singh S, Bhardwaj S, Kukreti P, Ramakanth D, Kumar P, Saini S, Roy P, Srivastava VC, Ghosh K, Maji PK. Solvent-Selective Fluorescence Sensing of Mg 2+ and Al 3+ Ions by Pincer-Type NNO Schiff Base Ligand: An Experimental and DFT Optimized Approach. Chemistry 2024; 30:e202403256. [PMID: 39301674 DOI: 10.1002/chem.202403256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
A newly developed dual-functional fluorescence sensing probe (phenylhydrazinyl pyridine) Schiff base (SB) has been designed with good selectivity for distinguishing Mg2+ and Al3+ metal ions in different solvent solutions. SB exhibits quick and visual turn-on fluorescence enhancement in response to Mg2+ and Al3+ detection. The addition of Mg2+ in ACN-HEPES buffer (1 : 1, v/v, pH 7.2) at (λmax=390 nm) and Al3+ in MeOH-HEPES buffer (1 : 1, v/v, pH 7.2) at (λmax=360 nm) resulted in significant enhancement of fluorescence, up to 7-9 times. These low detection limits of 7.1×10-6 M (7.1 μM) and 5.15×10-7 M (0.51 μM) for Mg2+ and Al3+, respectively, have been achieved by this solvent-controlled platform. Due to the sensing potential towards Mg2+, the probe was utilized as an imaging material for breast cancer cells. 1H-NMR studies were utilized to explore SB's sensing mechanism through turn-on fluorescence. Density functional theory (DFT) calculations were utilized to validate optimized SB and its intricate geometries, which govern the sensing mechanism in the solvent environment. Such a probe has extensive potential applications in bioimaging and the assessment of the quality of wastewater.
Collapse
Affiliation(s)
- Keshav Dev
- Department of Chemistry, Indian Institute of Technology Roorkee, 247667, Roorkee, Uttarakhand, India
| | - Shiva Singh
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur campus, 247001, Saharanpur, Uttar-Pradesh, India
| | - Shakshi Bhardwaj
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur campus, 247001, Saharanpur, Uttar-Pradesh, India
| | - Prashant Kukreti
- Department of Chemistry, Indian Institute of Technology Roorkee, 247667, Roorkee, Uttarakhand, India
| | - Dakuri Ramakanth
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur campus, 247001, Saharanpur, Uttar-Pradesh, India
| | - Pankaj Kumar
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Saakshi Saini
- Department of Biosciences and Bioengineering, Indian Institute of Technology, 247667, Roorkee, Uttarakhand, India
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology, 247667, Roorkee, Uttarakhand, India
| | - Vimal Chandra Srivastava
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology Roorkee, 247667, Roorkee, Uttarakhand, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology, 247667, Roorkee, Uttarakhand, India
| | - Pradip K Maji
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur campus, 247001, Saharanpur, Uttar-Pradesh, India
| |
Collapse
|
3
|
Ma W, Zhang Q, Xiang D, Mao K, Xue J, Chen Z, Chen Z, Du W, Zhai K, Zhang H. Metal-Organic Framework (MOF)-Based Sensors for Mercury (Hg) Detection: Design Strategies and Recent Progress. Chemistry 2024:e202403760. [PMID: 39567351 DOI: 10.1002/chem.202403760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/22/2024]
Abstract
Monitoring mercury (Hg) is critical for environmental and public health. Metal-organic framework (MOF)-based sensors demonstrate the advantage of high sensitivity and rapid response. We summarize the advances of MOF sensors for Hg2+ detection from the perspective of MOF type and role in the sensors. First, we introduce three MOFs used in Hg sensors-UIO, ZIF, and MIL-that have demonstrated superior performance. Then, we discuss the specifics of MOF-based sensors for Hg2+ detection in terms of the recognition and signal elements. Currently, the recognition elements include T-rich aptamers, noble metal nanoparticles, central metal ions, and organic functional groups inherent to MOFs. Sensors with fluorescence and colorimetric signals are the two main types of optical MOF sensors used for Hg detection. Electrochemical sensors have also been fabricated, but these are less frequently reported, potentially due to the limited conductivity and cycling stability of MOFs. Notably, dual-signal sensors mitigate background signals interference and enhance the accuracy of Hg2+ detection. Furthermore, to facilitate portability and user-friendliness, portable devices such as microfluidics, paper-based devices, and smartphones have been developed for Hg2+ detection, showcasing potential applications. We also address the challenges related to MOF-based sensors for Hg2+ and future outlook.
Collapse
Affiliation(s)
- Wei Ma
- School of Chemistry and Environmental Engineeing, Hubei Minzu University, Enshi, 445000, China
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 445000, China
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Qidu Zhang
- College of Civil Engineeing, Tongji University, Shanghai, 200092, China
| | - Dongshan Xiang
- School of Chemistry and Environmental Engineeing, Hubei Minzu University, Enshi, 445000, China
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 445000, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Jiaqi Xue
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Zhuo Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Zhen Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Wei Du
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Kun Zhai
- School of Chemistry and Environmental Engineeing, Hubei Minzu University, Enshi, 445000, China
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 445000, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| |
Collapse
|
4
|
Yang X, Liu W, Ren Y, Hou X, Li J. Highly Sensitive Fluorescent Sensing for Nitrobenzene of Cd II Complexes Based on Three Isomers and a Bis-Imidazole Ligand. Molecules 2024; 29:2475. [PMID: 38893353 PMCID: PMC11173416 DOI: 10.3390/molecules29112475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Detection of nitro pollutants is an important topic in environmental protection. A total of 3 Cd (II) complexes (1-3) based on 3 soft organic isomers, n-(3,5-dicarboxylato benzyloxy) benzoic acid (n = 2, 3 or 4-H3DBB), and a linear N-donor ligand, 3-bis(imidazole-l-ylmethyl) benzene (3-bibz), have been synthesized hydrothermally. Structural diversity of Complexes 1-3 displays the architectural 2D or 3D change: Complex 1 exhibits a 2D network featuring tri-nuclear metal units, Complex 2 is a 3D framework based on similar tri-nuclear metal units, and Complex 3 shows a 3D network with binuclear units. Fluorescent sensing properties exhibited in all these complexes have been discovered to detect nitrobenzene (NB) selectively and sensitively. In particular, Complex 3 possesses high sensitivity for NB with the lowest detection limit of 1.15 × 10-10 M. The results of the theoretical calculation verified the fluorescence detection mechanism of NB by these Cd-based complexes. Therefore, these Cd-based complexes might be used as excellent luminescent sensors for NB.
Collapse
Affiliation(s)
| | | | - Yixia Ren
- Laboratory of New Energy and New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, China; (X.Y.); (W.L.); (X.H.); (J.L.)
| | | | | |
Collapse
|
5
|
Singh G, Verma R, Kaur K, Deepika, Kumar S, Malik AK. Facile Layer Diffusion Technique for Synthesis of Terbium-Based Metal Organic Framework for Fluorometric Sensing of Hydroquinone. J Fluoresc 2024:10.1007/s10895-024-03682-0. [PMID: 38592594 DOI: 10.1007/s10895-024-03682-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024]
Abstract
A photoluminescent terbium (III)-based Metal Organic Framework (MOF) was synthesized at room temperature by layer diffusion method utilizing mixed carboxylate linkers (4,4'-oxybis(benzoic acid) and benzene-1,3,5 tricarboxylic acid). Synthesized MOF has crystalline nature and rod-shaped morphology and is thermally stable up to 455 °C. The fluorescence emission spectra and theoretical results revealed that carboxylate linkers functioned as sensitizers for Tb(III) photoluminescence which resulted in four distinct emission peaks at 495, 547, 584, and 621 nm corresponding to the transitions 5D4 → 7F6, 5D4 → 7F5, 5D4 → 7F4, and 5D4 → 7F3. Using synthesized MOF as fluorescent probe, hydroquinone was detected in aqueous medium with a detection limit of 0.048 μM, remarkable recovery (95.6-101.1%), and relative standard deviation less than 2.25%. The quenching phenomenon may be ascribed to electron transfer from synthesized probe to oxidized hydroquinone via carboxylic groups on the surface of MOF, which is further supported by photo-induced electron transfer mechanism. This study introduces a cheaper, faster, and more accurate method for hydroquinone detection.
Collapse
Affiliation(s)
- Gurdeep Singh
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India
| | - Rajpal Verma
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India
- Department of Chemistry, Dr. B. R. Ambedkar Govt. College Dabwali, Sirsa, Haryana, India
| | - Kirandeep Kaur
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India
| | - Deepika
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India
| | - Sanjay Kumar
- Department of Chemistry, Multani Mal Modi College, Patiala, 147001, Punjab, India
| | - Ashok Kumar Malik
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India.
| |
Collapse
|
6
|
Song Q, Wang L, Zhang J, Liu Y, Zhang X, Kong X. Fabrication of Eu-MOFs rod-shaped nanospheres with dual emissions for ratiometric fluorescence detecting Hg 2+ in water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124013. [PMID: 38394880 DOI: 10.1016/j.saa.2024.124013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/29/2023] [Accepted: 02/06/2024] [Indexed: 02/25/2024]
Abstract
The incorporation of novel nanostructure has been proven to significantly improve the performance of fluorescence-based sensors in terms of sensitivity, selectivity, and detection capability. Herein, a lanthanide metal-organic framework (BTC-Eu-BDC-NH2) with dual ligands of 2-aminobenzoic acid (BDC-NH2) and 1,3,5-benzene tricarboxylic acid (BTC) has been prepared for ratiometric fluorescent detection of Hg2+ through the rational one-step synthetic approach. Through adjusting the ratio of two ligands, this dual-ligands strategy not only provided two independent emissions at peaks of 435 nm and 615 nm to resist the influence of external conditions, but also introduced the visual detection with an obvious color change. Moreover, the specific rod-shaped nanospheres morphology substantially enlarged the surface area of BTC-Eu-BDC-NH2 to ensure good dispersion and rapid response during sensing. Upon the addition of Hg2+, the fluorescence at 435 nm of BTC-Eu-BDC-NH2 was obviously quenched because of the interaction between Hg2+ and -NH2 from the ligand, while the red fluorescence at 615 nm remains almost unchanged. As a result, the synthesized BTC-Eu-BDC-NH2 showed excellent performances for visual sensing detection of Hg2+ with a clear luminescent color conversion from blue to red, and the detecting range was 0-40 μM with a low detection limit of 67 nM. Finally, the developed sensor was applied to actual tap water, and a handy sensing kit was constructed by hydrogel with BTC-Eu-BDC-NH2, demonstrating its potential practical applications.
Collapse
Affiliation(s)
- Qiang Song
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, PR China; Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266061, PR China
| | - Liang Wang
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, PR China
| | - Jing Zhang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266061, PR China
| | - Yan Liu
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266061, PR China
| | - Xiaoyin Zhang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266061, PR China.
| | - Xiangfeng Kong
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266061, PR China.
| |
Collapse
|
7
|
Li L, Zou JY, You SY, Zhang L. Ratiometric Fluorescence Thermometry, Quantitative Gossypol Detection, and CO 2 Chemical Fixation by a Multipurpose Europium (III) Metal-Organic Framework. Inorg Chem 2023; 62:14168-14179. [PMID: 37606309 DOI: 10.1021/acs.inorgchem.3c00739] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
A lanthanide-based molecular crystalline material endows metal-organic frameworks (MOFs) with many fascinating applications such as fluorescence detection and CO2 chemical fixation. Herein, we describe and study a multipurpose europium(III) MOF with the formula of {[Eu2(TATAB)2]·2.5H2O·2DMF}n (Eu-MOF) (where H3TATAB is 4,4',4″-((1,3,5-triazine-2,4,6-triyl)tris(azanediyl))tribenzoic acid ligand) for photoluminescence sensor matrix and CO2 chemical fixation. This Eu-MOF features 1D square channels along the c direction with a pore size of ca.14.07 Å × 14.07 Å, occupied by lattice water and DMF molecules. The obtained Eu-MOF can achieve simultaneous luminescence of the H3TATAB ligand and Eu3+ ions, which can be developed as the sensor matrix for ratiometric fluorescence thermometry. The luminescence of the Eu-MOF demonstrates an obvious color change from red to yellow as temperature rises from 303 to 373 K and the Eu-MOF has a satisfying relative sensitivity of 3.21% K-1 and a small temperature uncertainty of 0.0093 K at 333 K. Moreover, sensitive detection of gossypol was achieved with a quenching constant Ksv of 1.18 × 105 M-1 and a detection limit of 4.61 μM. A combination of the competitive absorption and photoinduced electron transfer caused by host-guest interactions and strengthened π-π packing effect synergistically between gossypol molecules and the Eu-MOF skeleton realizes the "turn-off" sensing of gossypol. Importantly, the nature of the Eu-MOF allows showing CO2 chemical fixation under mild conditions. Thus, the Eu-MOF can be utilized as a multipurpose material for ratiometric fluorescence thermometry, quantitative gossypol detection, and CO2 chemical fixation.
Collapse
Affiliation(s)
- Ling Li
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, P. R. China
| | - Ji-Yong Zou
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, P. R. China
| | - Sheng-Yong You
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, P. R. China
| | - Li Zhang
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, P. R. China
| |
Collapse
|
8
|
Li Q, Zhou Y. Recent advances in fluorescent materials for mercury(ii) ion detection. RSC Adv 2023; 13:19429-19446. [PMID: 37383685 PMCID: PMC10294291 DOI: 10.1039/d3ra02410e] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023] Open
Abstract
Invading mercury would cause many serious health hazards such as kidney damage, genetic freak, and nerve injury to human body. Thus, developing highly efficient and convenient mercury detection methods is of great significance for environmental governance and protection of public health. Motivated by this problem, various testing technologies for detecting trace mercury in the environment, food, medicines or daily chemicals have been developed. Among them, the fluorescence sensing technology is a sensitive and efficient detection method for detecting Hg2+ ions due to its simple operation, rapid response and economic value. This review aims to discuss the recent advances in fluorescent materials for Hg2+ ion detection. We reviewed the Hg2+ sensing materials and divided them into seven categories according to the sensing mechanism: static quenching, photoinduced electron transfer, intramolecular charge transfer, aggregation-induced emission, metallophilic interaction, mercury-induced reactions and ligand-to-metal energy transfer. The challenges and prospects of fluorescent Hg2+ ion probes are briefly presented. We hope that this review can provide some new insights and guidance for the design and development of novel fluorescent Hg2+ ion probes to promote their applications.
Collapse
Affiliation(s)
- Qiuping Li
- Key Laboratory of Chronic Diseases, School of Pharmacy, Fuzhou Medical College of Nanchang University Fuzhou 344000 China
| | - You Zhou
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University Ningbo 315211 China
| |
Collapse
|
9
|
Darabdhara J, Roy S, Ahmaruzzaman M. Efficient Photocatalytic Degradation of an Organic Dye by the Fabrication of A Novel Ternary Composite Based on Zeolitic Imidazolate Framework via a Facile In-situ Synthetic Approach. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
10
|
Sonowal K, Saikia L. Functional groups assisted-photoinduced electron transfer-mediated highly fluorescent metal-organic framework quantum dot composite for selective detection of mercury (II) in water. J Environ Sci (China) 2023; 126:531-544. [PMID: 36503779 DOI: 10.1016/j.jes.2022.05.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 06/17/2023]
Abstract
The presence of toxic mercury (II) in water is an ever-growing problem on earth that has various harmful effect on human health and aquatic living organisms. Therefore, detection of mercury (II) in water is very much crucial and several researches are going on in this topic. Metal-organic frameworks (MOFs) are considered as an effective device for sensing of toxic heavy metal ions in water. The tunable functionalities with large surface area of highly semiconducting MOFs enhance its activity towards fluorescence sensing. In this study, we are reporting one highly selective and sensitive luminescent sensor for the detection of mercury (II) in water. A series of binary MOF composites were synthesized using in-situ solvothermal synthetic technique for fluorescence sensing of Hg2+ in water. The well-distributed graphitic carbon nitride quantum dots on porous zirconium-based MOF improve Hg2+ sensing activity in water owing to their great electronic and optical properties. The binary MOF composite (2) i.e., the sensor exhibited excellent limit of detection (LOD) value of 2.4 nmol/L for Hg2+. The sensor also exhibited excellent performance for mercury (II) detection in real water samples. The characterizations of the synthesized materials were done using various spectroscopic techniques and the fluorescence sensing mechanism was studied.
Collapse
Affiliation(s)
- Karanika Sonowal
- Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Lakshi Saikia
- Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
11
|
Kitagawa Y, Nakai T, Hosoya S, Shoji S, Hasegawa Y. Luminescent Lanthanide Complexes for Effective Oxygen-Sensing and Singlet Oxygen Generation. Chempluschem 2023:e202200445. [PMID: 36756816 DOI: 10.1002/cplu.202200445] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/25/2023] [Indexed: 02/10/2023]
Abstract
Oxygen quantification using luminescence has attracted considerable attention in various fields, including environmental monitoring and clinical analysis. Among the reported luminophores, trivalent lanthanide complexes have displayed characteristic narrow emission bands with high brightness. This bright emission is based on photo-sensitized energy transfer via organic triplet states. The organic triplet states in lanthanide complexes effectively react with the triplet oxygen, enabling oxygen quantification by lanthanide luminescence. Some TbIII and EuIII complexes with slow deactivation processes have also formed the excited state equilibrium, thus resulting in the emission-lifetime based oxygen sensing property. The combination of TbIII /EuIII emission, EuIII /SmIII emission, EuIII /ligand phosphorescence, and ligand fluorescence/ligand phosphorescence provide the ratiometric oxygen-sensing properties. Moreover, the reaction generates singlet oxygen species which exhibit numerous applications in the photo-medical field. The ligands with large π-conjugated aromatic systems, such as porphyrin, phthalocyanine, and polyaromatic compounds, induces highly efficient oxygen generation. The combination of effective luminescence with singlet-oxygen generation by the lanthanide complexes render them suitable for photo-driven theranostics. This review summarizes the research progress of lanthanide complexes with efficient oxygen-sensing and singlet-oxygen generation properties.
Collapse
Affiliation(s)
- Yuichi Kitagawa
- Faculty of Engineering, Hokkaido University Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan
| | - Takuma Nakai
- Graduate School of Chemical Sciences and Engineering, Hokkaido University Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Shota Hosoya
- Graduate School of Chemical Sciences and Engineering, Hokkaido University Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Sunao Shoji
- Faculty of Engineering, Hokkaido University Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan
| | - Yasuchika Hasegawa
- Faculty of Engineering, Hokkaido University Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan
| |
Collapse
|
12
|
Cao XQ, Wu WP, Li Q, Zheng TF, Chen YQ, Chen JL, Liu SJ, Wen HR. Selective recognition of Hg 2+ ions in aqueous solution by a Cd II-based metal-organic framework with good stability and vacant coordination sites. Dalton Trans 2023; 52:652-658. [PMID: 36537347 DOI: 10.1039/d2dt03386k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
A novel water-stable CdII-based metal-organic framework, namely {[Cd(BIBT)(TDC)]·2H2O}n (JXUST-28, BIBT = 4,7-bi(1H-imidazol-1-yl)benzo-[2,1,3]thiadiazole and H2TDC = 2,5-thiophenedicarboxylic acid), was synthesized using a mixed-ligand strategy. Structural analysis demonstrates that JXUST-28 exhibits a two-dimensional layer structure with 4-connected sql topology. Intriguingly, JXUST-28 presents good stability in boiling water (at least 5 days), common organic solvents and aqueous solutions with different pH values of 2-12 (more than 24 hours). Furthermore, fluorescence experiments revealed that JXUST-28 could sense Hg2+ ions in aqueous solution via a quenching effect with a detection limit of 0.097 μM. Meanwhile, JXUST-28 can also be regenerated at least 5 times to detect Hg2+ ions. In addition, light-emitting diode lamps, luminescent films, and test papers of JXUST-28 have been successfully developed for practical applications.
Collapse
Affiliation(s)
- Xiao-Qin Cao
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Wei-Peng Wu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Qiang Li
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Teng-Fei Zheng
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Yong-Qiang Chen
- Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, Shanxi Province, P.R. China.
| | - Jing-Lin Chen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| |
Collapse
|
13
|
Wen C, Li R, Chang X, Li N. Metal-Organic Frameworks-Based Optical Nanosensors for Analytical and Bioanalytical Applications. BIOSENSORS 2023; 13:128. [PMID: 36671963 PMCID: PMC9855937 DOI: 10.3390/bios13010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs)-based optical nanoprobes for luminescence and surface-enhanced Raman spectroscopy (SERS) applications have been receiving tremendous attention. Every element in the MOF structure, including the metal nodes, the organic linkers, and the guest molecules, can be used as a source to build single/multi-emission signals for the intended analytical purposes. For SERS applications, the MOF can not only be used directly as a SERS substrate, but can also improve the stability and reproducibility of the metal-based substrates. Additionally, the porosity and large specific surface area give MOF a sieving effect and target molecule enrichment ability, both of which are helpful for improving detection selectivity and sensitivity. This mini-review summarizes the advances of MOF-based optical detection methods, including luminescence and SERS, and also provides perspectives on future efforts.
Collapse
Affiliation(s)
- Cong Wen
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Rongsheng Li
- National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Engineering, Yunnan University, Kunming 650091, China
| | - Xiaoxia Chang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Na Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
14
|
Zhu CY, Shen MT, Cao HM, Qi MJ, Li P, Chen L, Ge Y, Gao W, Zhang XM. Highly sensitive detection of tetracycline and Fe3+ and for visualizable sensing application based on a water-stable luminescent Tb-MOF. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
15
|
Zhou X, Chen G, Yin S, Chen L, Gao P, Xiao S, Yang F. Magnetic porous carbon derived from NH
2
‐MIL‐101(Fe) as an adsorbent for the magnetic solid‐phase extraction of anthraquinones. SEPARATION SCIENCE PLUS 2022. [DOI: 10.1002/sscp.202200065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xi Zhou
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering Chongqing University Chongqing P. R. China
| | - Guo‐Ying Chen
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering Chongqing University Chongqing P. R. China
| | - Shi‐Jun Yin
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering Chongqing University Chongqing P. R. China
| | - Lin‐Xiao Chen
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering Chongqing University Chongqing P. R. China
| | - Peng Gao
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering Chongqing University Chongqing P. R. China
| | - Shang‐You Xiao
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering Chongqing University Chongqing P. R. China
| | - Feng‐Qing Yang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering Chongqing University Chongqing P. R. China
| |
Collapse
|
16
|
Liang JL, Chen QN, Zhang JX, Lian WQ, Qiu YX, Xie HY, Liu WT, Xie WT, Xu WQ. A novel triazene-based cadmium metal–organic framework as a selective fluorescent sensor for Hg2+. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
17
|
Yoon JH, Lee WR, Lee JT, Song JH, Lee G, Lim KS. Design and synthesis of novel lanthanide
MOFs
by unique in situ organic and inorganic reactions. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jung Heum Yoon
- Department of Chemistry and Institute of Applied Chemistry Hallym University Chuncheon South Korea
| | - Woo Ram Lee
- Department of Chemistry and Institute of Applied Chemistry Hallym University Chuncheon South Korea
| | - Jeong Tae Lee
- Department of Chemistry and Institute of Applied Chemistry Hallym University Chuncheon South Korea
| | - Jeong Hwa Song
- Department of Advanced Materials & Chemical Engineering Halla University Wonju South Korea
| | - Giseong Lee
- College of General Education Kookmin University Seoul South Korea
| | - Kwang Soo Lim
- Materials Evaluation Center Korea Testing & Research Institute Gwacheon South Korea
| |
Collapse
|
18
|
Xie W, Yuan Y, Zhou TY, Wang JJ, Nie ZB, Xu YH, Su ZM. Stable zinc metal-organic framework as efficient bifunctional fluorescent probe for selective detection of nitrobenzene and Fe(Ⅲ). J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
19
|
Diamantis SA, Pournara AD, Koutsouroubi ED, Moularas C, Deligiannakis Y, Armatas GS, Hatzidimitriou AG, Manos MJ, Lazarides T. Detection and Sorption of Heavy Metal Ions in Aqueous Media by a Fluorescent Zr(IV) Metal-Organic Framework Functionalized with 2-Picolylamine Receptor Groups. Inorg Chem 2022; 61:7847-7858. [PMID: 35523200 DOI: 10.1021/acs.inorgchem.2c00434] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Increasing global environmental pollution due to heavy metal ions raises the importance of research on new multifunctional materials for simultaneous detection and removal of these contaminants from water resources. In this study, we report a microporous 8-connected Zr4+ metal-organic framework (MOF) based on a terephthalate ligand decorated with a chelating 2-picolylamine side group (dMOR-2), which shows highly efficient fluorescence sensing and sorption of heavy metal cations. We demonstrate by detailed fluorescence studies the ability of a water-dispersible composite of dMOR-2 with polyvinylpyrrolidone for real-time detection of Cu2+, Pb2+, and Hg2+ in aqueous media. The limits of detection were found to be below 2 ppb for these species, while the system's performance is not affected by the presence of other potentially competitive ions. In addition, sorption studies showed that a composite of dMOR-2 with calcium alginate (dMOR-2@CaA) is an excellent sorbent for Pb2+ and Cu2+ ions with capacities of 376 ± 15 and 117 ± 4 mg per gram of dMOR-2@CaA, respectively, while displaying the capability for simultaneous removal of various heavy metal ions in low initial concentrations and in the presence of large excesses of other cationic species. Structural and spectroscopic studies with model ligands analogous to our material's receptor unit showed chelation to the 2-picolylamine moiety to be the main binding mode of metal ions to dMOR-2. Overall, dMOR-2 is shown to represent a rare example of a MOF, which combines sensitive fluorescence detection and high sorption capacity for heavy metal ions.
Collapse
Affiliation(s)
- Stavros A Diamantis
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | - Eirini D Koutsouroubi
- Department of Materials Science and Technology, University of Crete, 71003 Heraklion, Greece
| | - Constantinos Moularas
- Laboratory of Physical Chemistry of Materials & Environment, Department of Physics, University of Ioannina, 45110 Ioannina, Greece
| | - Yiannis Deligiannakis
- Laboratory of Physical Chemistry of Materials & Environment, Department of Physics, University of Ioannina, 45110 Ioannina, Greece
| | - Gerasimos S Armatas
- Department of Materials Science and Technology, University of Crete, 71003 Heraklion, Greece
| | | | - Manolis J Manos
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece.,Institute of Materials Science and Computing, University Research Center of Ioannina, 45110 Ioannina, Greece
| | - Theodore Lazarides
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
20
|
Zhu GS, Cheng SL, Zhou ZD, Du B, Shen YY, Yu BY. Bisligand-coordinated cadmium organic frameworks as fluorescent sensors to detect Ions, antibiotics and pesticides in aqueous solutions. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Wang X, Jiang Z, Yang C, Zhen S, Huang C, Li Y. Facile synthesis of binary two-dimensional lanthanide metal-organic framework nanosheets for ratiometric fluorescence detection of mercury ions. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126978. [PMID: 34461548 DOI: 10.1016/j.jhazmat.2021.126978] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Three boric acid-functionalized two-dimensional metal-organic frameworks (2D MOFs) nanosheets, namely, 2D Tb-bop, Eu-bop and Tb/Eu-bop nanosheets, were synthesized through simple mixing of a reaction mixture of Tb/Eu salts and 5-boronoisophthalic acid (5-bop) in the presence of triethylamine (TEA) at room temperature. The product had excellent mercury ions (Hg2+) sensing properties. The highly exposed boric acid sites on the surface of the 2D structure can undergo a transmetalation reaction with Hg2+ to promote the energy transfer between the ligand and the lanthanide ions, thus enhancing the emission of 2D Tb-bop and Eu-bop nanosheets and resulting in high sensitivity for Hg2+ sensing. Significantly, the Hg2+-induced transmetalation reaction in 2D binary Tb/Eu-bop nanosheets also enhanced the energy transfer between Tb3+ and Eu3+ nodes, showing a ratiometric fluorescence response toward Hg2+, and further improving the sensitivity. This novel 2D ratiometric fluorescence probe showed good linearity from 0.1 to 40 μM for Hg2+ with a detection limit of 4.83 nM. This work not only provided a simple and efficient strategy for synthesizing 2D MOFs but also yielded new insights for designing fluorescence probes with excellent sensing properties.
Collapse
Affiliation(s)
- Xue Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Zhongwei Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Changping Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Shujun Zhen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Chengzhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China.
| | - Yuanfang Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
22
|
Yang H, Qi D, Si X, Yan Z, Guo L, Shao C, Zhang W, Yang L. One novel Cd-MOF as a highly effective multi-functional luminescent sensor for the detection of Fe3+, Hg2+, CrⅥ, Aspartic acid and Glutamic acid in aqueous solution. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
23
|
Li X, Xiu D, Shi J, Miao J, Yu Y, Song H, Lin J, Feng Q, Yu H. Visual Hg(II) sensing in aqueous solution via a new 2,5-Bis(4-pyridyl)thiazolo[5,4-d]thiazole-based fluorescence coordination polymer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120367. [PMID: 34530197 DOI: 10.1016/j.saa.2021.120367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
A new fluorescence coordination polymer [Zn(Py2TTz)(5-OH-IPA)]n (1) (Py2TTz = 2,5-bis(4-pyridyl)thiazolo[5,4-d]thiazole, 5-OH-IPA = 5-hydroxyisophthalic acid dianion) was synthesized, which exhibited the characteristics of fluorescence quenching and bathochromic shift toward Hg(II) in aqueous solution at pH 7.00. Mechanism study showed that the interactions between Hg(II) ions and Py2TTz ligands in 1 were responsible for the fluorescence emission change. Thanks to the specific interactions between 1 and Hg(II), excellent selectivity was achieved both in aqueous solution and in solid test paper. The detection limit of 1 for Hg(II) sensing was 125.76 nmol L-1 and a linear rang was 1.00-10.00 μmol L-1. More importantly, satisfactory recovery and accuracy of 1 for Hg(II) sensing were also obtained in buffer-free real water samples.
Collapse
Affiliation(s)
- Xin Li
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Deping Xiu
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Junjie Shi
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Jiaran Miao
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Yingying Yu
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Huihua Song
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Jin Lin
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Qi Feng
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China.
| | - Haitao Yu
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China.
| |
Collapse
|
24
|
Yuan JJX, Shen A, Hao X, Du M, Du XXY, Ma SSF, Li M, Zhang L, Yang Y. Tb3+ luminescence cholate hydrogel-based multi-functionalized platform for Hg2+ and NO2 detection. NEW J CHEM 2022. [DOI: 10.1039/d2nj00344a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, Tb3+ luminescence cholate hydrogel (Tb3+/hydrogel) was selected as a multi-functionalized platform, and PS-BD@Tb3+/hydrogel or PS-BS@Tb3+/hydrogel systems were fabricated respectively for selective detecting of Hg2+ in water and...
Collapse
|
25
|
Zhou J, Chen Y, Xian S, Liang Y, Huang G, Wang L, Yang X. Eu(III)-based metal-organic-frameworks luminescent probe and its sensing properties for nitrobenzene and Cu(II). J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Wang SJ, Li Q, Xiu GL, You LX, Ding F, Van Deun R, Dragutan I, Dragutan V, Sun YG. New Ln-MOFs based on mixed organic ligands: synthesis, structure and efficient luminescence sensing of the Hg 2+ ions in aqueous solutions. Dalton Trans 2021; 50:15612-15619. [PMID: 34668902 DOI: 10.1039/d1dt02687a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In view of Hg2+ ion sensing by luminescence, a series of new, phenanthroline-decorated 3D lanthanide metal organic frameworks (Ln-MOFs) valorising an original combination of four different lanthanides and two organic ligands, i.e. thiobis(4-methylene-benzoic acid) (H2tmba) and 1,10-phenanthroline (phen), have been successfully synthesized, namely {[Ln4(tmba)6(phen)4]·m(H2O)(phen)}n [Ln = Ce, m = 3 (1); Pr, m = 1 (2); Eu, m = 3 (3); and Tb, m = 3 (4)]. Compounds 1-4 were characterised by single-crystal X-ray diffraction, elemental and thermogravimetric analyses, and powder X-ray diffraction. The luminescence properties of complexes 3 and 4 were thoroughly investigated. It is herein proved that compound 3 sensitively and selectively acts as an excellent luminescent probe for the detection of Hg2+ ions in waters, with a detection limit of 1.00 μM. As additional assets, 3 displays superb stability over a wide pH range (3-12) of the aqueous media, as well as convenient recycling after completion of the detection experiments. The rationale for the observed luminescence quenching effect of mercury might be a strong interaction arising between Hg2+ ions and the carboxylate oxygen atoms of the tmba2- ligand. The results open new perspectives for applications in environmental remediation.
Collapse
Affiliation(s)
- Shu-Ju Wang
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Qian Li
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Guan-Lin Xiu
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Li-Xin You
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Fu Ding
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China. .,Key Laboratory on Resources Chemicals and Material of Ministry of Education, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Rik Van Deun
- L3 - Luminescent Lanthanide Lab, Department of Chemistry, Ghent University, Krijgslaan 281 - S3, 9000 Ghent, Belgium.
| | - Ileana Dragutan
- Institute of Organic Chemistry, Romanian Academy, P. O. Box 35-108, Bucharest, 060023, Romania.
| | - Valerian Dragutan
- Institute of Organic Chemistry, Romanian Academy, P. O. Box 35-108, Bucharest, 060023, Romania.
| | - Ya-Guang Sun
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China. .,Key Laboratory on Resources Chemicals and Material of Ministry of Education, Shenyang University of Chemical Technology, Shenyang 110142, China
| |
Collapse
|
27
|
Yan X, Li P, Song X, Li J, Ren B, Gao S, Cao R. Recent progress in the removal of mercury ions from water based MOFs materials. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214034] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Liu M, Tao P, Chen Y, Jiang Y, Li L, Ding L, Zhao Y. Effect of single variable factor of electron‐acceptor on the luminescence quantum yield of terbium complex. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202000398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Min Liu
- College of Chemistry and Chemical Engineering, Research Center for Ultra Fine Powder Materials, Key Laboratory of Functional Small Organic Molecule, Ministry of Education and Jiangxi's Key Laboratory of Green Chemistry Jiangxi Normal University Nanchang 330022 China
| | - Peng Tao
- College of Chemistry and Chemical Engineering, Research Center for Ultra Fine Powder Materials, Key Laboratory of Functional Small Organic Molecule, Ministry of Education and Jiangxi's Key Laboratory of Green Chemistry Jiangxi Normal University Nanchang 330022 China
| | - Yun Chen
- College of Chemistry and Chemical Engineering, Research Center for Ultra Fine Powder Materials, Key Laboratory of Functional Small Organic Molecule, Ministry of Education and Jiangxi's Key Laboratory of Green Chemistry Jiangxi Normal University Nanchang 330022 China
| | - Yefei Jiang
- College of Chemistry and Chemical Engineering, Research Center for Ultra Fine Powder Materials, Key Laboratory of Functional Small Organic Molecule, Ministry of Education and Jiangxi's Key Laboratory of Green Chemistry Jiangxi Normal University Nanchang 330022 China
| | - Ling Li
- College of Chemistry and Chemical Engineering, Research Center for Ultra Fine Powder Materials, Key Laboratory of Functional Small Organic Molecule, Ministry of Education and Jiangxi's Key Laboratory of Green Chemistry Jiangxi Normal University Nanchang 330022 China
| | - Liwen Ding
- College of Chemistry and Chemical Engineering, Research Center for Ultra Fine Powder Materials, Key Laboratory of Functional Small Organic Molecule, Ministry of Education and Jiangxi's Key Laboratory of Green Chemistry Jiangxi Normal University Nanchang 330022 China
| | - Yongli Zhao
- College of Chemistry and Chemical Engineering, Research Center for Ultra Fine Powder Materials, Key Laboratory of Functional Small Organic Molecule, Ministry of Education and Jiangxi's Key Laboratory of Green Chemistry Jiangxi Normal University Nanchang 330022 China
| |
Collapse
|
29
|
Abstract
Metal Organic Frameworks (MOFs) are noted as exceptional candidates towards the detection and removal of specific analytes. MOFs were reported in particular for the detection/removal of environmental contaminants, such as heavy metal ions, toxic anions, hazardous gases, explosives, etc. Among heavy metal ions, mercury has been noted as a global hazard because of its high toxicity in the elemental (Hg0), divalent cationic (Hg2+), and methyl mercury (CH3Hg+) forms. To secure the environment and living organisms, many countries have imposed stringent regulations to monitor mercury at all costs. Regarding the detection/removal requirements of mercury, researchers have proposed and reported all kinds of MOFs-based luminescent/non-luminescent probes towards mercury. This review provides valuable information about the MOFs which have been engaged in detection and removal of elemental mercury and Hg2+ ions. Moreover, the involved mechanisms or adsorption isotherms related to sensors or removal studies are clarified for the readers. Finally, advantages and limitations of MOFs in mercury detection/removal are described together with future scopes.
Collapse
|
30
|
Li Y, Zhao Y, Zhang W, Shao K, Zhou H. A Fluorescent Probe of Nitrite Based on Eu
3+
Functionalized Metal‐Organic Frameworks. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100040] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yanping Li
- College of Information Science and Engineering Changsha Normal University Changsha 410100 China
- State Key Laboratory of Silicon Materials Zhejiang University Hangzhou 310027 China
| | - Yajun Zhao
- College of Information Science and Engineering Changsha Normal University Changsha 410100 China
| | - Wei Zhang
- College of Information Science and Engineering Changsha Normal University Changsha 410100 China
| | - Kai Shao
- State Key Laboratory of Silicon Materials Zhejiang University Hangzhou 310027 China
| | - Huizhong Zhou
- Zhejiang Institute of Product Quality and Safety Inspection Hangzhou 310018 China
| |
Collapse
|
31
|
Guo H, Wang X, Wu N, Xu M, Wang M, Zhang L, Yang W. In-situ synthesis of carbon dots-embedded europium metal-organic frameworks for ratiometric fluorescence detection of Hg 2+ in aqueous environment. Anal Chim Acta 2021; 1141:13-20. [PMID: 33248646 DOI: 10.1016/j.aca.2020.10.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 10/16/2020] [Indexed: 11/17/2022]
Abstract
A novel dual-emission ratiometric fluorescent sensor (CDs@Eu-MOFs) has been synthesized successfully by encapsulating water-soluble fluorescent CDs into the chambers of Eu-MOFs via a simple one-pot hydrothermal method, which can be used for the detection of Hg2+ in environmental water samples. The synthesized CDs@Eu-MOFs inherited simultaneously the excellent luminescence performance of Eu3+ and CDs and exhibited good structural and fluorescence stability in aqueous solution. The presence of Hg2+ changed the fluorescence intensity of CDs, while the fluorescence intensity of Eu-MOFs hardly changed, which could be used as the recognition part and the reference part respectively to construct the ratiometric fluorescence sensor. The obtained Hg2+ fluorescent probe showed a wide linear range (0-300 μM) and a low detection limit (0.12 nM). The developed method can be used as a multi-functional fluorescent sensor with high sensitivity and good selectivity for the determination of Hg2+ in actual water samples.
Collapse
Affiliation(s)
- Hao Guo
- Key Lab of Eco-Environments Related Polymer Materials of MOE, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Xiaoqiong Wang
- Key Lab of Eco-Environments Related Polymer Materials of MOE, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Ning Wu
- Key Lab of Eco-Environments Related Polymer Materials of MOE, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Mengni Xu
- Key Lab of Eco-Environments Related Polymer Materials of MOE, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Mingyue Wang
- Key Lab of Eco-Environments Related Polymer Materials of MOE, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Longwen Zhang
- Key Lab of Eco-Environments Related Polymer Materials of MOE, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Wu Yang
- Key Lab of Eco-Environments Related Polymer Materials of MOE, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China.
| |
Collapse
|
32
|
Yu MH, Liu XT, Space B, Chang Z, Bu XH. Metal-organic materials with triazine-based ligands: From structures to properties and applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213518] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
33
|
Lu S, Liu L, Demissie H, An G, Wang D. Design and application of metal-organic frameworks and derivatives as heterogeneous Fenton-like catalysts for organic wastewater treatment: A review. ENVIRONMENT INTERNATIONAL 2021; 146:106273. [PMID: 33264734 DOI: 10.1016/j.envint.2020.106273] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 05/25/2023]
Abstract
Advanced oxidation process (AOP), with a high oxidation efficiency, fast reaction speed (relatively no secondary pollution), has become one of the core technologies of industrial wastewater and advanced drinking water treatment. Heterogeneous Fenton-like oxidation process (HFOP) is a kind of AOP, which developed rapidly in recent years in such a way to overcome the disadvantages of traditional Fenton reaction. Metal-organic frameworks (MOFs) and their derivatives become essential heterogeneous catalysts for organics mineralization due to the large specific surface area, abundant active sites, and ease of structural regulation. However, the knowledge gap on the mechanism and the fate of heterogeneous catalyst species during organics degradation activities by MOFs presents considerable impediments, particularly for a wide application and scaling up the process. This work has the potential to provide guidance and ideas for researchers and engineers in the fields of environmental remediation, environmental catalysis and functional materials. This review focuses on clarifying the critical mechanism of •OH production from MOFs and derivatives as well as its action on the organic's degradation process. The recent developments in MOF based HFOP are compared, and more attention is paid for the following aspects in this review: (1) classifies systematically progressive modification methods of MOFs by chemical and physical treatments; (2) analyzes the fate of catalytic species during treating organic wastewater; (3) proposes design ideas and principles for improving the performance of MOFs catalysts; (4) discusses the main factors influencing the catalytic properties and practical application; (5) summarizes the possible research challenges and directions for MOFs and their derivatives as catalysts applied to wastewater treatment in the future.
Collapse
Affiliation(s)
- Sen Lu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Libing Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hailu Demissie
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guangyu An
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Dongsheng Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
34
|
Xue Y, Peng Y, Geng Z, Wang Y, Ung COL, Hu H. Metal–Organic Frameworks (MOFs) Based Analytical Techniques for Food Safety Evaluation. EFOOD 2021. [DOI: 10.2991/efood.k.210209.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
35
|
Wang YW, Li MH, Zhang SQ, Fang X, Lin MJ. Photochromic and photocontrolled luminescent rare-earth D–A hybrid crystals based on rigid viologen acceptors. CrystEngComm 2021. [DOI: 10.1039/d1ce00789k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Due to the introduction of a strong electron donor, CoIII(CN)63−, into the structure, the rare-earth donor–acceptor (D–A) hybrid crystal shows enhanced photochromism. The coordinative Eu3+ cation is also beneficial toward improving the luminescence.
Collapse
Affiliation(s)
- Yi-Wen Wang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Meng-Hua Li
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Shu-Quan Zhang
- College of Zhicheng, Fuzhou University, 350002, P.R. China
| | - Xin Fang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Mei-Jin Lin
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350116, P.R. China
- College of Materials Science and Engineering, Fuzhou University, 350116, China
- Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou, Fujian, 350002, China
| |
Collapse
|
36
|
Chen ML, Qi ZL, Jin WT, Xu Z, Cheng YH, Zhou ZH. Cation exchange in a fluorescent zinc-based metal–organic framework for cadmium ion detection. CrystEngComm 2021. [DOI: 10.1039/d1ce00931a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A Zn metal–organic framework with a large aperture shows remarkable fluorescence characteristics for the detection of cadmium ions in aqueous solution and can adsorb CO2 and O2 selectively.
Collapse
Affiliation(s)
- Mao-Long Chen
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Zhen-Li Qi
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Wan-Ting Jin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhou Xu
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Yun-Hui Cheng
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Zhao-Hui Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
37
|
Yang SL, Liu WS, Li G, Bu R, Li P, Gao EQ. A pH-Sensing Fluorescent Metal-Organic Framework: pH-Triggered Fluorescence Transition and Detection of Mycotoxin. Inorg Chem 2020; 59:15421-15429. [PMID: 33022178 DOI: 10.1021/acs.inorgchem.0c02419] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Due to its great relevance to environmental, biological, and chemical processes, the precise detection of pH or acidic/basic species is an ongoing and imperative need. In this context, pH-sensitive luminescent systems are highly desired. We reported a three-dimensional Zn(II) MOF synthesized from a bipyridyl-tetracarboxylic ligand and composed of 4-fold interpenetrated diamond frameworks. Because the steric hindrance in the ligand prevents metal coordination with the pyridyl group, the MOF features free basic N sites accessible to the small H+ ions, which renders pH responsivity. The aqueous dispersion exhibits an abrupt, high-contrast, and reversible on-off fluorescence transition in the narrow pH range of 5.4-6.2. The sensitive bistable system can be used for the precise monitoring of pH within the range and for use as a pH-triggered optical switch. The responsive mechanism through pyridyl protonation is collaboratively supported by data fitting, absorption spectra, and molecular orbital calculations. In particular, spectral and theoretical analyses reveal the destruction of n → π* transitions and the appearance of intramolecular charge-transfer transitions upon pyridyl protonation. Moreover, by virtue of the pH-responsive fluorescence, the MOF shows appealing sensing performance for the detection of 3-nitropropionic acid, a major mycotoxin in moldy sugar cane.
Collapse
Affiliation(s)
- Shuai-Liang Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Wan-Shan Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Gen Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Ran Bu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Peng Li
- College of Chemistry and Materials Science, Huaibei Normal University, Anhui 235000, China
| | - En-Qing Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
38
|
Song JH, Lee G, Yoon JH, Jang J, Choi D, Yun H, Kwon K, Kim H, Hong CS, Kim Y, Han H, Lim KS, Lee WR. Conversion from Heterometallic to Homometallic Metal-Organic Frameworks. Chemistry 2020; 26:11767-11775. [PMID: 31873958 DOI: 10.1002/chem.201904866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/19/2019] [Indexed: 11/10/2022]
Abstract
Two new heterometallic metal-organic frameworks (MOFs), LnZnTPO 1 and 2, and two homometallic MOFs, LnTPO 3 and 4 (Ln=Eu for 1 and 3, and Tb for 2 and 4; H3 TPO=tris(4-carboxyphenyl)phosphine oxide) were synthesized, and their structures and properties were analyzed. They were prepared by solvothermal reaction of the C3 -symmetric ligand H3 TPO with the corresponding metal ion(s) (a mixture of Ln3+ and Zn2+ for 1 and 2, and Ln3+ alone for 3 and 4). Single-crystal XRD (SXRD) analysis revealed that 1 and 3 are isostructural to 2 and 4, respectively. TGA showed that the framework is thermally stable up to about 400 °C for 1 and 2, and about 450 °C for 3 and 4. PXRD analysis showed their pore-structure distortions without noticeable framework-structure changes during drying processes. The shapes of gas sorption isotherms for 1 and 3 are almost identical to those for 2 and 4, respectively. Solvothermal immersion of 1 and 2 in Tb3+ and Eu3+ solutions resulted in the framework metal-ion exchange affording 4 and 3, respectively, as confirmed by photoluminescence (PL), PXRD, IR, inductively coupled plasma atomic emission spectroscopy (ICP-AES), and energy-dispersive X-ray (EDX) analyses.
Collapse
Affiliation(s)
- Jeong Hwa Song
- Department of Chemistry, Sejong University, Seoul, 05006, Korea
| | - Giseong Lee
- Department of Chemistry, Korea University, Seoul, 02841, Korea
| | - Jung Heum Yoon
- Department of Chemistry, Sejong University, Seoul, 05006, Korea
| | - Junyeon Jang
- Department of Chemistry, Sejong University, Seoul, 05006, Korea
| | - Doosan Choi
- Department of Chemistry, Korea University, Seoul, 02841, Korea.,Department of Chemistry, Sejong University, Seoul, 05006, Korea
| | - Heejun Yun
- Department of Chemistry, Sejong University, Seoul, 05006, Korea
| | - Kangin Kwon
- Department of Chemistry, Korea University, Seoul, 02841, Korea
| | - Hojin Kim
- Department of Chemistry, Korea University, Seoul, 02841, Korea
| | - Chang Seop Hong
- Department of Chemistry, Korea University, Seoul, 02841, Korea
| | - Youngki Kim
- Korea Testing & Research Institute, Gwacheon, 13810, Korea
| | - Hogyu Han
- Department of Chemistry, Korea University, Seoul, 02841, Korea
| | - Kwang Soo Lim
- Korea Testing & Research Institute, Gwacheon, 13810, Korea
| | - Woo Ram Lee
- School of Future Convergence, Department of Chemistry and Institute of, Applied Chemistry, Hallym University, Chuncheon, 24252, Korea.,Department of Chemistry, Sejong University, Seoul, 05006, Korea
| |
Collapse
|
39
|
Razavi SAA, Morsali A. Metal ion detection using luminescent-MOFs: Principles, strategies and roadmap. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213299] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
40
|
A metal-organic frameworks@ carbon nanotubes based electrochemical sensor for highly sensitive and selective determination of ascorbic acid. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127986] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
41
|
Han LJ, Kong YJ, Hou GZ, Chen HC, Zhang XM, Zheng HG. A Europium-based MOF Fluorescent Probe for Efficiently Detecting Malachite Green and Uric Acid. Inorg Chem 2020; 59:7181-7187. [PMID: 32352295 DOI: 10.1021/acs.inorgchem.0c00620] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Lanthanide (such as Tb and Eu) metal-organic frameworks (MOFs) have been widely used in fluorescent probes because of their multiple coordination modes and brilliant fluorescence characteristic. Many lanthanide MOFs were applied in detecting metal ions, inorganic anions, and small molecules. However, it's rarely reported that Ln-MOF was devoted to detecting malachite green (MG) and uric acid (UA). We prepared a europium-based metal-organic framework (Eu-TDA) (TDA = 2,5-thiophenedicarboxylic acid group). Luminescence studies demonstrated that Eu-TDA can rapidly detect MG and UA with excellent selectivity and sensitivity, where individual quenching efficiency Ksv (MG: 5.8 × 105 M-1; UA: 4.15 × 104 M-1) and detection limit (MG: 0.0221 μM; UA: 0.689 μM) were regarded as the excellent MOF sensors for detecting MG and UA. The quenching of Eu-TDA's fluorescence emission by MG and UA was likely due to the spectral overlap, energy transfer, and competition. Among 11 metal cations and 14 anions, Eu-TDA can quickly and effectively recognize MG and UA with highly selective and sensitive properties. Our method possesses potential application in detecting UA in human blood and MG in the fishpond.
Collapse
Affiliation(s)
- Li-Juan Han
- Department of Chemistry and Chemical Engineering, Jining University, Qufu 273155, P. R. China.,State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Ya-Jie Kong
- Department of Chemistry and Chemical Engineering, Jining University, Qufu 273155, P. R. China
| | - Guo-Zheng Hou
- Department of Chemistry and Chemical Engineering, Jining University, Qufu 273155, P. R. China
| | - Hua-Chong Chen
- Department of Chemistry and Chemical Engineering, Jining University, Qufu 273155, P. R. China
| | - Xing-Min Zhang
- Department of Chemistry and Chemical Engineering, Jining University, Qufu 273155, P. R. China
| | - He-Gen Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
42
|
Jiang D, Fang H, Li G, Zheng G. A responsive supramolecular-organic framework: Functionalization with organic laser dye and lanthanide ions for sensing of nitrobenzene. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
43
|
The synthesis, structural elucidation and fluorescent sensitization detection to Hg2+ based on two lanthanide-organic complexes. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119370] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
44
|
An acid-base resistant Zn-based metal-organic framework as a luminescent sensor for mercury(II). J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2019.121153] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Gao W, Zhou AM, Wei H, Wang CL, Liu JP, Zhang XM. Water-stable LnIII-based coordination polymers displaying slow magnetic relaxation and luminescence sensing properties. NEW J CHEM 2020. [DOI: 10.1039/d0nj00828a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Six Ln-CPs were synthesized: Dy-CP shows slow magnetic relaxation, and Eu-CP and Tb-CP exhibit recyclable and multi-responsive sensing for Fe3+, MnO4−, CrVI-anions (CrO42−, Cr2O72−) and TNP in an aqueous system.
Collapse
Affiliation(s)
- Wei Gao
- College of Chemistry and Materials Science
- Huaibei Normal University
- Anhui 235000
- China
| | - Ai-Mei Zhou
- College of Chemistry and Materials Science
- Huaibei Normal University
- Anhui 235000
- China
| | - Han Wei
- College of Chemistry and Materials Science
- Huaibei Normal University
- Anhui 235000
- China
| | - Cui-Li Wang
- College of Chemistry and Materials Science
- Huaibei Normal University
- Anhui 235000
- China
| | - Jie-Ping Liu
- College of Chemistry and Materials Science
- Huaibei Normal University
- Anhui 235000
- China
| | - Xiu-Mei Zhang
- College of Chemistry and Materials Science
- Huaibei Normal University
- Anhui 235000
- China
| |
Collapse
|
46
|
Singha DK, Majee P, Hui S, Mondal SK, Mahata P. Luminescent metal–organic framework-based phosphor for the detection of toxic oxoanions in an aqueous medium. Dalton Trans 2020; 49:829-840. [DOI: 10.1039/c9dt04220b] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Compound 1 has been utilized for the luminescence based visible detection of chromate, permanganate and phosphate ions in aqueous medium.
Collapse
Affiliation(s)
- Debal Kanti Singha
- Department of Chemistry
- Jadavpur University
- Kolkata-700032
- India
- Department of Chemistry
| | - Prakash Majee
- Department of Chemistry
- Siksha-Bhavana
- Visva-Bharati University
- Santiniketan-731235
- India
| | - Sayani Hui
- Department of Chemistry
- Jadavpur University
- Kolkata-700032
- India
| | - Sudip Kumar Mondal
- Department of Chemistry
- Siksha-Bhavana
- Visva-Bharati University
- Santiniketan-731235
- India
| | - Partha Mahata
- Department of Chemistry
- Jadavpur University
- Kolkata-700032
- India
| |
Collapse
|
47
|
Ren K, Guo XF, Tang YJ, Huang BH, Wang H. Size-controlled synthesis of metal–organic frameworks and their performance as fluorescence sensors. Analyst 2020; 145:7349-7356. [DOI: 10.1039/d0an01566k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescent sensing experiments were carried out to compare the sensing performance for folic acid between bulk and nano Tb-MOFs.
Collapse
Affiliation(s)
- Kui Ren
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Xiao-Feng Guo
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Ying-Jie Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Bo-Hui Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Hong Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| |
Collapse
|
48
|
Xian S, Chen HL, Feng WL, Yang XZ, Wang YQ, Li BX. Eu(III) doped zinc metal organic framework material and its sensing detection for nitrobenzene. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2019.120984] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Raza W, Kukkar D, Saulat H, Raza N, Azam M, Mehmood A, Kim KH. Metal-organic frameworks as an emerging tool for sensing various targets in aqueous and biological media. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115654] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
50
|
Luo W, Zou DH, Yang S, Cui LN, Liu PY, Zhu QY, Dai J. Water-Soluble Lanthanide–Titanium–Oxo Cluster, a Precursor for Biocompatible Nanomaterial. Inorg Chem 2019; 58:14617-14625. [DOI: 10.1021/acs.inorgchem.9b02290] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Wen Luo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
- The Key Laboratory of Rare Earth Functional Materials and Applications, Zhoukou Normal University, Zhoukou 466001, People’s Republic of China
| | - Dan-Hong Zou
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Shen Yang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Li-Na Cui
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Pei-Yi Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Qin-Yu Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Jie Dai
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| |
Collapse
|