1
|
Hsueh FC, Chen D, Rajeshkumar T, Scopelliti R, Maron L, Mazzanti M. Two-Electron Redox Reactivity of Thorium Supported by Redox-Active Tripodal Frameworks. Angew Chem Int Ed Engl 2024; 63:e202317346. [PMID: 38100190 DOI: 10.1002/anie.202317346] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Indexed: 12/31/2023]
Abstract
The high stability of the + IVoxidation state limits thorium redox reactivity. Here we report the synthesis and the redox reactivity of two Th(IV) complexes supported by the arene-tethered tris(siloxide) tripodal ligands [(KOSiR2 Ar)3 -arene)]. The two-electron reduction of these Th(IV) complexes generates the doubly reduced [KTh((OSi(Ot Bu)2 Ar)3 -arene)(THF)2 ] (2OtBu ) and [K(2.2.2-cryptand)][Th((OSiPh2 Ar)3 -arene)(THF)2 ](2Ph -crypt) where the formal oxidation state of Th is +II. Structural and computational studies indicate that the reduction occurred at the arene anchor of the ligand. The robust tripodal frameworks store in the arene anchor two electrons that become available at the metal center for the two-electron reduction of a broad range of substrates (N2 O, COT, CHT, Ph2 N2 , Ph3 PS and O2 ) while retaining the ligand framework. This work shows that arene-tethered tris(siloxide) tripodal ligands allow implementation of two-electron redox chemistry at the thorium center while retaining the ligand framework unchanged.
Collapse
Affiliation(s)
- Fang-Che Hsueh
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Damien Chen
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Thayalan Rajeshkumar
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 31077, Toulouse Cedex 4, France
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Laurent Maron
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 31077, Toulouse Cedex 4, France
| | - Marinella Mazzanti
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
2
|
Arteaga A, Nicholas AD, Ducati LC, Autschbach J, Surbella RG. Americium Oxalate: An Experimental and Computational Investigation of Metal-Ligand Bonding. Inorg Chem 2023; 62:4814-4822. [PMID: 36920249 DOI: 10.1021/acs.inorgchem.2c03976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
A novel actinide-containing coordination polymer, [Am(C2O4)(H2O)3Cl] (Am-1), has been synthesized and structurally characterized. The crystallographic analysis reveals that the structure is two-dimensional and comprised of pseudo-dimeric Am3+ nodes that are bridged by oxalate ligands to form sheets. Each metal center is nine-coordinate, forming a distorted capped square antiprism geometry with a C1 symmetry, and features bound oxalate, aqua, and chloro ligands. The Am3+-ligand bonds were probed computationally using the quantum theory of atoms in molecules nd natural localized molecular orbital approaches to investigate the underlying mechanisms and hybrid atomic orbital contributions therein. The analyses indicate that the bonds within Am-1 are predominantly ionic and the 5f shell of the Am3+ metal centers does not add a significant covalent contribution to the bonds. Our bonding assessment is supported by measurements on the optical properties of Am-1 using diffuse reflectance and photoluminescence spectroscopies. The position of the principal absorption band at 507 nm (5L6' ← 7F0') is notable because it is consistent with previously reported americium oxalate complexes in solution, indicating similarities in the electronic structure and ionic bonding. Compound Am-1 is an active phosphor, featuring strong bright-blue oxalate-based luminescence with no evidence of metal-centered emission.
Collapse
Affiliation(s)
- Ana Arteaga
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Aaron D Nicholas
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Lucas C Ducati
- Department of Fundamental Chemistry Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, 312 Natural Sciences Complex, Buffalo, New York 14260, United States
| | - Robert G Surbella
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| |
Collapse
|
3
|
Sinhababu S, Lakliang Y, Mankad NP. Recent advances in cooperative activation of CO 2 and N 2O by bimetallic coordination complexes or binuclear reaction pathways. Dalton Trans 2022; 51:6129-6147. [PMID: 35355033 DOI: 10.1039/d2dt00210h] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The gaseous small molecules, CO2 and N2O, play important roles in climate change and ozone layer depletion, and they hold promise as underutilized reagents and chemical feedstocks. However, productive transformations of these heteroallenes are difficult to achieve because of their inertness. In nature, these gases are cycled through ecological systems by metalloenzymes featuring multimetallic active sites that employ cooperative mechanisms. Thus, cooperative bimetallic chemistry is an important strategy for synthetic systems, as well. In this Perspective, recent advances (since 2010) in cooperative activation of CO2 and N2O are reviewed, including examples involving s-block, p-block, d-block, and f-block metals and different combinations thereof.
Collapse
Affiliation(s)
- Soumen Sinhababu
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL 60607, USA.
| | - Yutthana Lakliang
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL 60607, USA.
| | - Neal P Mankad
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL 60607, USA.
| |
Collapse
|
4
|
Marx M, Frauendorf H, Spannenberg A, Neumann H, Beller M. Revisiting Reduction of CO 2 to Oxalate with First-Row Transition Metals: Irreproducibility, Ambiguous Analysis, and Conflicting Reactivity. JACS AU 2022; 2:731-744. [PMID: 35373201 PMCID: PMC8970009 DOI: 10.1021/jacsau.2c00005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Construction of higher C≥2 compounds from CO2 constitutes an attractive transformation inspired by nature's strategy to build carbohydrates. However, controlled C-C bond formation from carbon dioxide using environmentally benign reductants remains a major challenge. In this respect, reductive dimerization of CO2 to oxalate represents an important model reaction enabling investigations on the mechanism of this simplest CO2 coupling reaction. Herein, we present common pitfalls encountered in CO2 reduction, especially its reductive coupling, based on established protocols for the conversion of CO2 into oxalate. Moreover, we provide an example to systematically assess these reactions. Based on our work, we highlight the importance of utilizing suitable orthogonal analytical methods and raise awareness of oxidative reactions that can likewise result in the formation of oxalate without incorporation of CO2. These results allow for the determination of key parameters, which can be used for tailoring of prospective catalytic systems and will promote the advancement of the entire field.
Collapse
Affiliation(s)
- Maximilian Marx
- Leibniz-Institut
für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Holm Frauendorf
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Anke Spannenberg
- Leibniz-Institut
für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Helfried Neumann
- Leibniz-Institut
für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Matthias Beller
- Leibniz-Institut
für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| |
Collapse
|
5
|
Hsueh FC, Barluzzi L, Keener M, Rajeshkumar T, Maron L, Scopelliti R, Mazzanti M. Reactivity of Multimetallic Thorium Nitrides Generated by Reduction of Thorium Azides. J Am Chem Soc 2022; 144:3222-3232. [PMID: 35138846 DOI: 10.1021/jacs.1c13150] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Thorium nitrides are likely intermediates in the reported cleavage and functionalization of dinitrogen by molecular thorium complexes and are attractive compounds for the study of multiple bond formation in f-element chemistry, but only one example of thorium nitride isolable from solution was reported. Here, we show that stable multimetallic azide/nitride thorium complexes can be generated by reduction of thorium azide precursors─a route that has failed so far to produce Th nitrides. Once isolated, the thorium azide/nitride clusters, M3Th═N═Th (M = K or Cs), are stable in solutions probably due to the presence of alkali ions capping the nitride, but their synthesis requires a careful control of the reaction conditions (solvent, temperature, nature of precursor, and alkali ion). The nature of the cation plays an important role in generating a nitride product and results in large structural differences with a bent Th═N═Th moiety found in the K-bound nitride as a result of a strong K-nitride interaction and a linear arrangement in the Cs-bound nitride. Reactivity studies demonstrated the ability of Th nitrides to cleave CO in ambient conditions yielding CN-.
Collapse
Affiliation(s)
- Fang-Che Hsueh
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Luciano Barluzzi
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Megan Keener
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Thayalan Rajeshkumar
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 31077 Cedex 4 Toulouse, France
| | - Laurent Maron
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 31077 Cedex 4 Toulouse, France
| | - Rosario Scopelliti
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Marinella Mazzanti
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
6
|
Dickie TKK, Hayes PG. Thorium(IV) Diphosphazide Complexes: CO2 Insertion into Th–C and Th–N Bonds. Organometallics 2022. [DOI: 10.1021/acs.organomet.1c00638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tara K. K. Dickie
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada
| | - Paul G. Hayes
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
7
|
Corner SC, Goodwin CAP, Ortu F, Evans P, Zhang H, Gransbury GK, Whitehead GFS, Mills DP. Synthesis of heteroleptic yttrium and dysprosium 1,2,4-tris(trimethylsilyl)cyclopentadienyl complexes. Aust J Chem 2022. [DOI: 10.1071/ch21314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Celis-Barros C, Albrecht-Schönzart T, Windorff CJ. Computational Investigation of the Bonding in [(η 5–Cp′) 3(η 1–Cp′)M] 1– (M = Pu, U, Ce). Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Cristian Celis-Barros
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, RM. 118 DLC, Tallahassee, Florida 32306, United States
| | - Thomas Albrecht-Schönzart
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, RM. 118 DLC, Tallahassee, Florida 32306, United States
| | - Cory J. Windorff
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, RM. 118 DLC, Tallahassee, Florida 32306, United States
- Department of Chemistry and Biochemistry, New Mexico State University, MSC 3C, PO Box 3001, Las Cruces, New Mexico 88003, United States
| |
Collapse
|
9
|
Escomel L, Del Rosal I, Maron L, Jeanneau E, Veyre L, Thieuleux C, Camp C. Strongly Polarized Iridium δ--Aluminum δ+ Pairs: Unconventional Reactivity Patterns Including CO 2 Cooperative Reductive Cleavage. J Am Chem Soc 2021; 143:4844-4856. [PMID: 33735575 DOI: 10.1021/jacs.1c01725] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The iridium tetrahydride complex Cp*IrH4 reacts with a range of isobutylaluminum derivatives of general formula Al(iBu)x(OAr)3-x (x = 1, 2) to give the unusual iridium aluminum species [Cp*IrH3Al(iBu)(OAr)] (1) via a reductive elimination route. The Lewis acidity of the Al atom in complex 1 is confirmed by the coordination of pyridine, leading to the adduct [Cp*IrH3Al(iBu)(OAr)(Py)] (2). Spectroscopic, crystallographic, and computational data support the description of these heterobimetallic complexes 1 and 2 as featuring strongly polarized Al(III)δ+-Ir(III)δ- interactions. Reactivity studies demonstrate that the binding of a Lewis base to Al does not quench the reactivity of the Ir-Al motif and that both species 1 and 2 promote the cooperative reductive cleavage of a range of heteroallenes. Specifically, complex 2 promotes the decarbonylation of CO2 and AdNCO, leading to CO (trapped as Cp*IrH2(CO)) and the alkylaluminum oxo ([(iBu)(OAr)Al(Py)]2(μ-O) (3)) and ureate ({Al(OAr)(iBu)[κ2-(N,O)AdNC(O)NHAd]} (4)) species, respectively. The bridged amidinate species Cp*IrH2(μ-CyNC(H)NCy)Al(iBu)(OAr) (5) is formed in the reaction of 2 with dicyclohexylcarbodiimine. Mechanistic investigations via DFT support cooperative heterobimetallic bond activation processes.
Collapse
Affiliation(s)
- Léon Escomel
- Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128, Université de Lyon, Institut de Chimie de Lyon, CNRS, Université Lyon 1, ESCPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Iker Del Rosal
- Université de Toulouse, CNRS, INSA, UPS, UMR 5215, LPCNO, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | - Laurent Maron
- Université de Toulouse, CNRS, INSA, UPS, UMR 5215, LPCNO, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | - Erwann Jeanneau
- Université de Lyon, Centre de Diffractométrie Henri Longchambon, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Laurent Veyre
- Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128, Université de Lyon, Institut de Chimie de Lyon, CNRS, Université Lyon 1, ESCPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Chloé Thieuleux
- Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128, Université de Lyon, Institut de Chimie de Lyon, CNRS, Université Lyon 1, ESCPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Clément Camp
- Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128, Université de Lyon, Institut de Chimie de Lyon, CNRS, Université Lyon 1, ESCPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| |
Collapse
|
10
|
Haiduc I. Inverse coordination metal complexes with oxalate and sulfur, selenium and nitrogen analogues as coordination centers. Topology and systematization. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1789120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ionel Haiduc
- Facultatea de Chimie, Universitatea Babeş-Bolyai, Cluj-Napoca, Romania
| |
Collapse
|
11
|
Murray AV, Vanagas NA, Wacker JN, Bertke JA, Knope KE. From Isolated Molecular Complexes to Extended Networks: Synthesis and Characterization of Thorium Furanmono‐ and Dicarboxylates. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Aphra V. Murray
- Department of Chemistry Georgetown University 37 and O Streets NW Washington D.C. 20057 USA
| | - Nicole A. Vanagas
- Department of Chemistry Georgetown University 37 and O Streets NW Washington D.C. 20057 USA
| | - Jennifer N. Wacker
- Department of Chemistry Georgetown University 37 and O Streets NW Washington D.C. 20057 USA
| | - Jeffery A. Bertke
- Department of Chemistry Georgetown University 37 and O Streets NW Washington D.C. 20057 USA
| | - Karah E. Knope
- Department of Chemistry Georgetown University 37 and O Streets NW Washington D.C. 20057 USA
| |
Collapse
|
12
|
Tarlton ML, Del Rosal I, Vilanova SP, Kelley SP, Maron L, Walensky JR. Comparative Insertion Reactivity of CO, CO2, tBuCN, and tBuNC into Thorium– and Uranium–Phosphorus Bonds. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00221] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Michael L. Tarlton
- Department of Chemistry, University of Missouri, 601 South College Avenue, Columbia, Missouri 65211, United States
| | - Iker Del Rosal
- Universite de Toulouse, 135 Avenuede Rangueil, 31077 Toulouse, France
| | - Sean P. Vilanova
- Department of Chemistry, University of Missouri, 601 South College Avenue, Columbia, Missouri 65211, United States
| | - Steven P. Kelley
- Department of Chemistry, University of Missouri, 601 South College Avenue, Columbia, Missouri 65211, United States
| | - Laurent Maron
- Universite de Toulouse, 135 Avenuede Rangueil, 31077 Toulouse, France
| | - Justin R. Walensky
- Department of Chemistry, University of Missouri, 601 South College Avenue, Columbia, Missouri 65211, United States
| |
Collapse
|
13
|
Jestilä JS, Denton JK, Perez EH, Khuu T, Aprà E, Xantheas SS, Johnson MA, Uggerud E. Characterization of the alkali metal oxalates (MC 2O 4-) and their formation by CO 2 reduction via the alkali metal carbonites (MCO 2-). Phys Chem Chem Phys 2020; 22:7460-7473. [PMID: 32219243 DOI: 10.1039/d0cp00547a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reduction of carbon dioxide to oxalate has been studied by experimental Collisionally Induced Dissociation (CID) and vibrational characterization of the alkali metal oxalates, supplemented by theoretical electronic structure calculations. The critical step in the reductive process is the coordination of CO2 to an alkali metal anion, forming a metal carbonite MCO2- able to subsequently receive a second CO2 molecule. While the energetic demand for these reactions is generally low, we find that the degree of activation of CO2 in terms of charge transfer and transition state energies is the highest for lithium and systematically decreases down the group (M = Li-Cs). This is correlated to the strength of the binding interaction between the alkali metal and CO2, which can be related to the structure of the oxalate moiety within the product metal complexes evolving from a planar to a staggered conformer with increasing atomic number of the interacting metal. Similar structural changes are observed for crystalline alkali metal oxalates, although the C2O42- moiety is in general more planar in these, a fact that is attributed to the increased number of interacting alkali metal cations compared to the gas-phase ions.
Collapse
Affiliation(s)
- Joakim S Jestilä
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, P.O. Box 1033, Blindern, Oslo N-0135, Norway.
| | - Joanna K Denton
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, USA
| | - Evan H Perez
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, USA
| | - Thien Khuu
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, USA
| | - Edoardo Aprà
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA
| | - Sotiris S Xantheas
- Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS K1-83, Richland, Washington, USA and Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Mark A Johnson
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, USA
| | - Einar Uggerud
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, P.O. Box 1033, Blindern, Oslo N-0135, Norway.
| |
Collapse
|
14
|
Liu Y, Liu R, Ding W, Wang D. Evaluation of Influencing Factors in Tetravalent Uranium Complex-Mediated CO 2 Functionalization by Density Functional Theory. J Phys Chem A 2020; 124:2683-2693. [PMID: 32154718 DOI: 10.1021/acs.jpca.0c00724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The functionalization of CO2 mediated by a series of U(IV) mixed-sandwich compounds, (COTTIPS2)Cp*UR (R = -CH3, -CH2Ph, -CH2TMS, -CH(TMS)2, -NHPh, -OPh, -SPh, -SePh; COTTIPS2 = C8H6(SiiPr3-1,4)2; Cp* = C5Me5; TMS = SiMe3), was investigated by the density functional theory method. A two-step mechanism was revealed, in which the insertion of CO2 into the U-C bond was identified as the rate-determining step via a transition state featured by a four-membered ring with a free-energy barrier of 18.8 kcal/mol to the reaction of the (COTTIPS2)Cp*UCH3 system. The whole reaction was strongly exothermic by 45.0 kcal/mol. Substitution effect was discussed, including the bulkiness of the R group and the nature of the ligating atom, and steric hindrance and electrostatic interactions were found to be responsible for the observed variation in reactivity. The reactivity of U(III) and U(IV) complexes in CO2 functionalization was also compared and discussed. The results were consistent with experimental studies and complemented with molecular level of understanding on the mechanisms of CO2 functionalization promoted by tetravalent U complexes.
Collapse
Affiliation(s)
- Yanxiao Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ruozhuang Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wanjian Ding
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Dongqi Wang
- Multidisciplinary Initiative Center, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Magnall R, Balázs G, Lu E, Kern M, Slageren J, Tuna F, Wooles AJ, Scheer M, Liddle ST. Photolytic and Reductive Activations of 2‐Arsaethynolate in a Uranium–Triamidoamine Complex: Decarbonylative Arsenic‐Group Transfer Reactions and Trapping of a Highly Bent and Reduced Form. Chemistry 2019; 25:14246-14252. [DOI: 10.1002/chem.201903973] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Rosie Magnall
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Gábor Balázs
- Institute of Inorganic ChemistryUniversity of Regensburg Universitätsstr.31 Regensburg 93053 Germany
| | - Erli Lu
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Michal Kern
- Institute of Physical ChemistryUniversity of Stuttgart Pfaffenwaldring 55 Stuttgart 70569 Germany
| | - Joris Slageren
- Institute of Physical ChemistryUniversity of Stuttgart Pfaffenwaldring 55 Stuttgart 70569 Germany
| | - Floriana Tuna
- School of Chemistry and Photon Science InstituteThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Ashley J. Wooles
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Manfred Scheer
- Institute of Inorganic ChemistryUniversity of Regensburg Universitätsstr.31 Regensburg 93053 Germany
| | - Stephen T. Liddle
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
16
|
Magnall R, Balázs G, Lu E, Tuna F, Wooles AJ, Scheer M, Liddle ST. Trapping of a Highly Bent and Reduced Form of 2‐Phosphaethynolate in a Mixed‐Valence Diuranium–Triamidoamine Complex. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904676] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rosie Magnall
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Gábor Balázs
- Institute of Inorganic ChemistryUniversity of Regensburg Universitätsstr.31 93053 Regensburg Germany
| | - Erli Lu
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Floriana Tuna
- School of Chemistry and Photon Science InstituteThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Ashley J. Wooles
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Manfred Scheer
- Institute of Inorganic ChemistryUniversity of Regensburg Universitätsstr.31 93053 Regensburg Germany
| | - Stephen T. Liddle
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
17
|
Magnall R, Balázs G, Lu E, Tuna F, Wooles AJ, Scheer M, Liddle ST. Trapping of a Highly Bent and Reduced Form of 2-Phosphaethynolate in a Mixed-Valence Diuranium-Triamidoamine Complex. Angew Chem Int Ed Engl 2019; 58:10215-10219. [PMID: 31125153 DOI: 10.1002/anie.201904676] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Indexed: 11/07/2022]
Abstract
The chemistry of 2-phosphaethynolate is burgeoning, but there remains much to learn about this ligand, for example its reduction chemistry is scarce as this promotes P-C-O fragmentations or couplings. Here, we report that reduction of [U(TrenTIPS )(OCP)] (TrenTIPS =N(CH2 CH2 NSiPri 3 )3 ) with KC8 /2,2,2-cryptand gives [{U(TrenTIPS )}2 {μ-η2 (OP):η2 (CP)-OCP}][K(2,2,2-cryptand)]. The coordination mode of this trapped 2-phosphaethynolate is unique, and derives from an unprecedented highly reduced and highly bent form of this ligand with the most acute P-C-O angle in any complex to date (P-C-O ∡ ≈127°). The characterisation data support a mixed-valence diuranium(III/IV) formulation, where backbonding from uranium gives a highly reduced form of the P-C-O unit that is perhaps best described as a uranium-stabilised OCP2-. radical dianion. Quantum chemical calculations reveal that this gives unprecedented carbene character to the P-C-O unit, which engages in a weak donor-acceptor interaction with one of the uranium ions.
Collapse
Affiliation(s)
- Rosie Magnall
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Gábor Balázs
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstr.31, 93053, Regensburg, Germany
| | - Erli Lu
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Floriana Tuna
- School of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Ashley J Wooles
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstr.31, 93053, Regensburg, Germany
| | - Stephen T Liddle
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
18
|
Inman CJ, Cloke FGN. The experimental determination of Th(iv)/Th(iii) redox potentials in organometallic thorium complexes. Dalton Trans 2019; 48:10782-10784. [PMID: 31183480 DOI: 10.1039/c9dt01553a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first ThIV/ThIII redox couple values have been determined experimentally using cyclic voltammetry (CV), which has been facilitated by the use of [nBu4N][BPh4] as a supporting electrolyte in THF. Th(iv) and Th(iii) metallocene compounds have been studied and their redox couple values are in the range of -2.96 V to -3.32 V vs FeCp2+/0.
Collapse
Affiliation(s)
- Christopher J Inman
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK.
| | - F Geoffrey N Cloke
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK.
| |
Collapse
|
19
|
Abstract
Recent developments and results from the organometallic chemistry of the actinides are reviewed. In the last one and a half years the structural data of about 15 organometallic complexes of transuranium actinides (Np or Pu) have been published, all involving π-ligands in the coordination sphere of the metal ion. On the basis of these data, a comparison of these molecules is presented. Depending on the steric demands of the ligands, effects like the actinide contraction seem to be stronger or weaker in the structural features. This indicates that the interplay between the actinide ion and the π-ligand is rather flexible, enabling the formation of stable bonds over a broad range of actinide ion oxidation states.
Collapse
Affiliation(s)
- Olaf Walter
- European Commission–Joint Research CentreDirectorate for Nuclear Safety and Security–G. I. 5Postfach 234076125KarlsruheGermany
| |
Collapse
|
20
|
Werner D, Deacon GB, Junk PC. Trapping CS22– and S32– between Two Ytterbium Formamidinates. Inorg Chem 2019; 58:1912-1918. [DOI: 10.1021/acs.inorgchem.8b02820] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel Werner
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Glen B. Deacon
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Peter C. Junk
- College of Science & Engineering, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
21
|
Willauer AR, Toniolo D, Fadaei-Tirani F, Yang Y, Laurent M, Mazzanti M. Carbon dioxide reduction by dinuclear Yb(ii) and Sm(ii) complexes supported by siloxide ligands. Dalton Trans 2019; 48:6100-6110. [DOI: 10.1039/c9dt00554d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Low-coordinate dinuclear lanthanide complexes supported by siloxides effect the reduction of carbon dioxide to both carbonate and oxalate, but the cooperative binding of CO2 to the two Ln(ii) cations in the dimer favours oxalate formation.
Collapse
Affiliation(s)
- Aurélien R. Willauer
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL)
- 1015 Lausanne
- Switzerland
| | - Davide Toniolo
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL)
- 1015 Lausanne
- Switzerland
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL)
- 1015 Lausanne
- Switzerland
| | - Yan Yang
- Université de Toulouse et CNRS INSA
- UPS
- CNRS
- UMR 5215
- LPCNO
| | - Maron Laurent
- Université de Toulouse et CNRS INSA
- UPS
- CNRS
- UMR 5215
- LPCNO
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL)
- 1015 Lausanne
- Switzerland
| |
Collapse
|
22
|
Ding W, Liu Y, Wang D. Computational Comparative Mechanistic Study of C−E (E=C,N,O,S) Coupling Reactions through CO2Activation Mediated by Uranium(III) Complexes. Chemistry 2018; 24:19289-19299. [DOI: 10.1002/chem.201804072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Wanjian Ding
- MOE Key Laboratory of Theoretical and Computational Photochemistry, and College of ChemistryBeijing Normal University Beijing 100875 P.R. China
| | - Yanxiao Liu
- MOE Key Laboratory of Theoretical and Computational Photochemistry, and College of ChemistryBeijing Normal University Beijing 100875 P.R. China
| | - Dongqi Wang
- Division of Multidisciplinary ResearchInstitute of High Energy PhysicsChinese Academy of Sciences Beijing 100049 P.R. China
| |
Collapse
|
23
|
Wu W, Rehe D, Hrobárik P, Kornienko AY, Emge TJ, Brennan JG. Molecular Thorium Compounds with Dichalcogenide Ligands: Synthesis, Structure, 77Se NMR Study, and Thermolysis. Inorg Chem 2018; 57:14821-14833. [DOI: 10.1021/acs.inorgchem.8b02555] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wen Wu
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - David Rehe
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - Peter Hrobárik
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, SK-84215 Bratislava, Slovakia
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Anna Y. Kornienko
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - Thomas J. Emge
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - John G. Brennan
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| |
Collapse
|
24
|
|
25
|
Bi YT, Bao Z, Li L, Shen ZH, Pan QJ. A Relativistic DFT Probe of Thorium and Protactinium Complexes Supported by Heterocalix[4]arene and Redox Properties of Early-Middle Actinides. ChemistrySelect 2018. [DOI: 10.1002/slct.201800328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yan-Ting Bi
- Science & Technology Division; Key Laboratory of Functional Inorganic Material Chemistry of Education Ministry; Heilongjiang University; Harbin China 150080
| | - Zhe Bao
- Science & Technology Division; Key Laboratory of Functional Inorganic Material Chemistry of Education Ministry; Heilongjiang University; Harbin China 150080
| | - Li Li
- Science & Technology Division; Key Laboratory of Functional Inorganic Material Chemistry of Education Ministry; Heilongjiang University; Harbin China 150080
| | - Zhong-Hui Shen
- Science & Technology Division; Key Laboratory of Functional Inorganic Material Chemistry of Education Ministry; Heilongjiang University; Harbin China 150080
| | - Qing-Jiang Pan
- Science & Technology Division; Key Laboratory of Functional Inorganic Material Chemistry of Education Ministry; Heilongjiang University; Harbin China 150080
| |
Collapse
|
26
|
Kerridge A. Quantification of f-element covalency through analysis of the electron density: insights from simulation. Chem Commun (Camb) 2018; 53:6685-6695. [PMID: 28569895 DOI: 10.1039/c7cc00962c] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The electronic structure of f-element compounds is complex due to a combination of relativistic effects, strong electron correlation and weak crystal field environments. However, a quantitative understanding of bonding in these compounds is becoming increasingly technologically relevant. Recently, bonding interpretations based on analyses of the physically observable electronic density have gained popularity and, in this Feature Article, the utility of such density-based approaches is demonstrated. Application of Bader's Quantum Theory of Atoms in Molecules (QTAIM) is shown to elucidate many properties including bonding trends, orbital overlap and energy degeneracy-driven covalency, oxidation state identification and bond stability, demonstrating the increasingly important role that simulation and analysis play in the area of f-element bond characterisation.
Collapse
Affiliation(s)
- A Kerridge
- Department of Chemistry, Faraday Building, Lancaster University, Lancaster, LA1 4YB, UK.
| |
Collapse
|
27
|
Mixed sandwich imido complexes of Uranium(V) and Uranium(IV): Synthesis, structure and redox behaviour. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2017.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Liu J, Seed JA, Formanuik A, Ortu F, Wooles AJ, Mills DP, Liddle ST. Thorium(IV) alkyl synthesis from a thorium(III) cyclopentadienyl complex and an N-heterocyclic olefin. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2017.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
(C5Me5)2Y(μ-H)(μ-CH2C5Me4)Y(C5Me5) as a reservoir of electrons for the reduction of PhSSPh and CO2: A theoretical study. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2017.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Xémard M, Goudy V, Braun A, Tricoire M, Cordier M, Ricard L, Castro L, Louyriac E, Kefalidis CE, Clavaguéra C, Maron L, Nocton G. Reductive Disproportionation of CO2 with Bulky Divalent Samarium Complexes. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00630] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mathieu Xémard
- LCM,
CNRS, Ecole polytechnique, Université Paris-Saclay, Route de
Saclay, 91128 Palaiseau
Cedex, France
| | - Violaine Goudy
- LCM,
CNRS, Ecole polytechnique, Université Paris-Saclay, Route de
Saclay, 91128 Palaiseau
Cedex, France
| | - Augustin Braun
- LCM,
CNRS, Ecole polytechnique, Université Paris-Saclay, Route de
Saclay, 91128 Palaiseau
Cedex, France
| | - Maxime Tricoire
- LCM,
CNRS, Ecole polytechnique, Université Paris-Saclay, Route de
Saclay, 91128 Palaiseau
Cedex, France
| | - Marie Cordier
- LCM,
CNRS, Ecole polytechnique, Université Paris-Saclay, Route de
Saclay, 91128 Palaiseau
Cedex, France
| | - Louis Ricard
- LCM,
CNRS, Ecole polytechnique, Université Paris-Saclay, Route de
Saclay, 91128 Palaiseau
Cedex, France
| | - Ludovic Castro
- LPCNO,
UMR 5215, Université de Toulouse-CNRS, INSA, UPS, Toulouse, France
| | - Elisa Louyriac
- LPCNO,
UMR 5215, Université de Toulouse-CNRS, INSA, UPS, Toulouse, France
| | | | - Carine Clavaguéra
- Laboratoire
de Chimie Physique, CNRS-Université Paris-Sud, Université Paris-Saclay, 15 avenue Jean Perrin, 91405 Orsay Cedex, France
| | - Laurent Maron
- LPCNO,
UMR 5215, Université de Toulouse-CNRS, INSA, UPS, Toulouse, France
| | - Grégory Nocton
- LCM,
CNRS, Ecole polytechnique, Université Paris-Saclay, Route de
Saclay, 91128 Palaiseau
Cedex, France
| |
Collapse
|
31
|
Edelmann FT. Lanthanides and actinides: Annual survey of their organometallic chemistry covering the year 2016. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.02.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Grice KA. Carbon dioxide reduction with homogenous early transition metal complexes: Opportunities and challenges for developing CO 2 catalysis. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.01.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
33
|
Formanuik A, Ortu F, Liu J, Nodaraki LE, Tuna F, Kerridge A, Mills DP. Double Reduction of 4,4′-Bipyridine and Reductive Coupling of Pyridine by Two Thorium(III) Single-Electron Transfers. Chemistry 2017; 23:2290-2293. [DOI: 10.1002/chem.201605974] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Alasdair Formanuik
- School of Chemistry; The University of Manchester; Manchester M13 9PL UK
| | - Fabrizio Ortu
- School of Chemistry; The University of Manchester; Manchester M13 9PL UK
| | - Jingjing Liu
- School of Chemistry; The University of Manchester; Manchester M13 9PL UK
| | - Lydia E. Nodaraki
- School of Chemistry; The University of Manchester; Manchester M13 9PL UK
| | - Floriana Tuna
- School of Chemistry; The University of Manchester; Manchester M13 9PL UK
| | - Andrew Kerridge
- Department of Chemistry; Lancaster University; Lancaster LA1 4YB UK
| | - David P. Mills
- School of Chemistry; The University of Manchester; Manchester M13 9PL UK
| |
Collapse
|
34
|
Arnold PL, Turner ZR. Carbon oxygenate transformations by actinide compounds and catalysts. Nat Rev Chem 2017. [DOI: 10.1038/s41570-016-0002] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Formanuik A, Ortu F, Inman CJ, Kerridge A, Castro L, Maron L, Mills DP. Concomitant Carboxylate and Oxalate Formation From the Activation of CO 2 by a Thorium(III) Complex. Chemistry 2016; 22:17976-17979. [PMID: 27714966 PMCID: PMC5215673 DOI: 10.1002/chem.201604622] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Indexed: 11/14/2022]
Abstract
Improving our comprehension of diverse CO2 activation pathways is of vital importance for the widespread future utilization of this abundant greenhouse gas. CO2 activation by uranium(III) complexes is now relatively well understood, with oxo/carbonate formation predominating as CO2 is readily reduced to CO, but isolated thorium(III) CO2 activation is unprecedented. We show that the thorium(III) complex, [Th(Cp′′)3] (1, Cp′′={C5H3(SiMe3)2‐1,3}), reacts with CO2 to give the mixed oxalate‐carboxylate thorium(IV) complex [{Th(Cp′′)2[κ2‐O2C{C5H3‐3,3′‐(SiMe3)2}]}2(μ‐κ2:κ2‐C2O4)] (3). The concomitant formation of oxalate and carboxylate is unique for CO2 activation, as in previous examples either reduction or insertion is favored to yield a single product. Therefore, thorium(III) CO2 activation can differ from better understood uranium(III) chemistry.
Collapse
Affiliation(s)
- Alasdair Formanuik
- School of Chemistry, The University of Manchester, Manchester, M13 9PL, UK
| | - Fabrizio Ortu
- School of Chemistry, The University of Manchester, Manchester, M13 9PL, UK
| | - Christopher J Inman
- Department of Chemistry and Biochemistry, School of Life Sciences, University of Sussex, Brighton, BN1 9QL, UK
| | - Andrew Kerridge
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK
| | - Ludovic Castro
- LPCNO, CNRA and INSA, Université Paul Sabatier, 135 Avenue de Rangeuil, Toulouse, 31077, France
| | - Laurent Maron
- LPCNO, CNRA and INSA, Université Paul Sabatier, 135 Avenue de Rangeuil, Toulouse, 31077, France
| | - David P Mills
- School of Chemistry, The University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|